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Abstract. We introduce some new mappings of constraint satisfaction
problems into propositional satisfiability. These encodings generalize most
of the existing encodings. Unit propagation on those encodings is the
same as establishing relational k-arc consistency on the original prob-
lem. They can also be used to establish (i,j)-consistency on binary con-
straints. Experiments show that these encodings are an effective method
for enforcing such consistencies, that can lead to a reduction in runtimes
at the phase transition in most cases. Compared to the more traditional
(direct) encoding, the search tree can be greatly pruned.

1 Introduction

Propositional Satisfiability (SAT) and Constraint Satisfaction Problems (CSPs)
are two very typical NP-complete combinatorial problems. There has been con-
siderable research in developing algorithms for both problems. Translation from
one problem to the other can therefore profit from the algorithmic improvements
obtained on either side. Enforcing a local consistency is one of the most impor-
tant aspect of systematic search algorithms. In particular, arc consistency is often
the best tradeoff between the amount of pruning and the cost of pruning. The
AC encoding [Kas90] has the property that arc consistency in the original CSP is
established by unit propagation in the encoding [Gen02]. A complete backtrack-
ing algorithm with unit propagation, such as DP [DLL62], therefore explores an
equivalent search tree to a CSP algorithm that maintains arc consistency.

The rest of the paper is organized as follows. In section 2 we present the
basic concepts used in the rest of the paper. In section 3 we introduce a family
of encodings called the k-AC encodings where k is a parameter. These encodings
enable a large family of consistencies, the so called relational k-arc-consistency
[DvB95] to be established by unit propagation on the SAT encoding. They work
with any arity of constraints. Section 4 focuses on binary networks, and show that
these encodings can also be used to establish any (4,j)-consistency (another large
family of consistencies [Fre85]). We also show that unit propagation on the k-AC
encodings can achieve the given level of consistency in optimal time complexity
in all cases. Section 5 introduces mixed encodings that combines previous ones
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to perform a high level of filtering only where it is really needed. And finally,
in section 6, we present some experiments, that assess the improvement of these
encodings in comparison with the direct reformulation. The results also show
the ability of this approach to solve large and hard problems by comparing it
with the best algorithms for CSPs.

2 Background

2.1 Constraint satisfaction problem (CSP)

A CSP P =(X,D,C)is aset X = {X1,...,X,} of n variables, each taking
a value from a finite domain D(X;),...,D(X,) elements of D, and a set C
of e constraints, d is the size of the largest domain. A constraint Cg, where
S ={X4,...,Xi,} C X,is a subset of the cartesian product of the domains
of the variables in S, Cs C D(X;) x D(X2) X ... x D(X,) that denotes the
compatible values for the variables in S. The incompatibles tuples are called
nogoods. We are calling S, the scope of Cs and |S| = a its arity. An instantiation
I of a set T of variables is an element of the cartesian product of the domains of
the variables in T'. We denote I[A] for the projection of I onto the set of variables
A, and Cg[A] the projection of the constraint Cs onto A. An instantiation I is
consistent if and only if it satisfies all the constraints, that is, VC's € C such that
S CT,I[S] € Cs. A solution is a consistent instantiation over X.

Let T and S be two distinct sets of variables 7,5 C X, and I an instantiation
of T which is consistent. A support J of I for S is an instantiation J of S such
that I U J is consistent. For an instantiation I, if there exists a set .S such that
I has no support for S, then I doesn’t belong to any solution.

2.2 Direct encoding

The direct encoding [Wal00] is the most commonly used encoding of CSPs into
SAT. There is one Boolean variable X, for each value v of each CSP variable X.
X, =T means the value v is assigned to the variable X . Those variables appear
in three sets of clauses :

At-least-one clause : There is one such clause for each variable, and their
meaning is that a value from its domain must be given to this variable.

let X be variable and D(X) = {v1,vs,...,v,}, then we add the at-least-one
clause : Xv1 VXva V...V Xv,.

At-most-one clause : There is one such clause for each pair of values for each
variable, and their meaning is that this variable cannot get more than one value.
Let v;,v; € D(X),i # j, then we add the at-most-one clause : =Xv; V - Xwv;.
Conflict clause : There is one such clause for each nogood of each constraint,
and their meaning is that this tuple of values is forbidden.

Let Cxyz be a constraint on the variables X, Y, Z and [u,v,w] € D(X)x D(Y") x
D(Z), an instantiation forbidden by Cxyz ([u, v, w] ¢ Cxyz), then we add the
conflict clause : ~Xu V -YvV - Zw.
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2.3 AC encoding

The AC encoding [Gen02] enables a SAT procedure to maintain arc-consistency
during search through wnit propagation. It encodes not only the structure of
the network, but also a consistency algorithm used to solve it. It differs from
the direct encoding only on the conflict clauses which are replaced by support
clauses, the others clauses remain unchanged.

Let X,Y be two variables, v € D(X) a value of X and {wy,...,w} the supports
of X =wv for Y, then we add the support clause : ~XvVYw; VYwsV...VYw.
This clause is equivalent to Xv — (Yw; V Ywy V ...V Ywy) which means : as
long as Xv holds (i.e Xv # False, that is “the value v remains in X’s domain”),
then at least one of its support must hold. Therefore when all the supports of
X = are falsified then v is itself falsified.

3 Generalisation of the AC encoding

The AC encoding can only be applied to binary networks, because support
clauses encode the supports of a single variable for another single variable. Our
goal is to encode any kind of support that follows from the definition in sec-
tion 2.1. The new encoding we introduce here, k-AC encoding, allows this under
the following restriction. The set of “supported” and “support” variables must
be subsets of the scope of a constraint. In fact, this is not a strong restriction,
because the union of this two sets can always be viewed as the scope of a con-
straint, i.e., the constraint which is the join of all those involved in these sets. The
supports are conjunctions of values, they correspond to a conjunction of positive
literals. Let [v1, .. ., vp] be asupport of an instantiation, respectively for the vari-
ables X1, ..., X,. The conjunction that encode this support is (X1 viA. . . AXpvy).
To keep the encoding in clausal form, we need then to add an extra variable,
say s, for this support and the following equivalence, s <> (X1v1 A ... A Xpvp)
which result in the following equivalence clauses : (s V X1v1),...,(-s V Xpvp)
and (—|X1’U1 V...V —|Xp’Up \Y S).

Definition 1 (k-AC clause. ). Let R = (X,D,C) be a constraint network,
Cs € C be a constraint on S C X such that |S| = a, I = [v;y,...,v;,] € D(X;,) x
... X D(X;,) an instantiation of k variables in S (k < a) and finally s1, ..., spm
its supports for the set of remaining variables in S : {XWH) s X b

I is represented by a conjunction : X; vy, A ... AX;, v, .

Therefore, (X vi, A ... AN X v;,) = (s1V s2...V sp), (associated with the
corresponding equivalence clauses) is the k-AC clause representing the fact that
if I is assigned to true, then at least one of its supports must also be true.

In figure 1, we show the four possible k-AC encodings for a ternary constraint.
Note that, in the particular cases where the set of support variables is a singleton
or the empty set, in other words, a—k = 1 or a—k = 0, the conjunctions standing
for the supports are unit and we do not need to add extra variables.

The k-AC clauses are a generalisation of support clauses in two ways:
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0-AC encoding 3-AC encoding
T—(S1VS2VS3VSy)A [[(XaAYaAZa) — F)A
(XaAYaAZb) <> Si1A (XaNYbA Za) = F)A
(XaAYbA Zb) <+ SaA (XbAYbA Za) — F)A
(XbAYa A Za) <> SzA (XbAYbAZb) — F)
(XbAYa AZb) <+ Sy
2-AC encoding 1-AC encoding
((XaAYa) = Zb)A (Xa — (S1V S2)A
XY Z ((Xa AYD) — Zb)A (Xb — (S5 V S1)A
alalb (XbAYa) = (ZbV Za))A||(Ya — (Sa V S5 V Se))A
alblb =k_AC ((Xb N Yb) ) (Yb — S4)/\
blala ((Xa A Za) — F)A (Za — S7)A
blalh ((Xa/\Zb)—)(YaVYb))/\ (Zb — (S7 VvV Sg V So))A
((XbA Za) = Ya)A ((Ya A Zb) <+ S1)A
((XbA Zb) = Ya)A ((Yb A Zb) & So)A
((YaNn Za) — Xb)A ((Ya A Za) <> S3)A
((Yan Zb) — (XaV Xb))A||((Xa A Zb) <> Sa)A
((YbA Za) — ) ((XbA Za) <> S5)A
((YbA Zb) = Xa) ((Xb A Zb) <+ Se)A
((XbAYa) <« S7)A
((Xa AYa) < Sg)A
((Xa A YD) < Sg)

Table 1. A ternary constraint, first line : the variables involved in the constraint, the other lines
give the allowed tuples. And four possible k-AC encoding of this constraint.

— They capture a larger family of consistencies, relational k-arc-consistency
(section 3) and (i, j)-consistency (section 4).
— They work for any arity of constraints.

Note that support clauses are 1-AC clauses for binary constraints, and conflict
clauses are a-AC clauses for constraints of arity a. For instance, let Cxyz be a
constraint on the variables X, Y and Z. If I = {X =u,Y =v,Z = w} is an
allowed tuple, then the corresponding 3-AC clause is (Xu AYv A Zw) — True
and is useless. If I is a nogood, then we have (Xu A Yv A Zw) — False, which
is a conflict clause (=X u V—Y vV =Zw). Direct and support encodings are then
particular cases of k-AC encoding.

Unit propagation on the k-AC Clauses corresponds exactly to enforcing rela-
tional k-arc-consistency. Relational arc-consistency [DvB95] extends the concept
of local consistency, which usually concerns variables, to constraints. A constraint
is relationally arc-consistent if any instantiation which is allowed on a subset of
its variables extends to a consistent instantiation on the whole. Relational k-
arc-consistency is the restriction of the definition above to sets of variables of
cardinality k.

Definition 2 (Relational k-arc-consistency.). Let R = (X,D,C) be a con-
straint network, Cs a constraint over the set of variables S C X. Cs is re-
lationally k-arc-consistent iff YA C S such that |A| = k and VI a consistent
instantiation on A, I can be extented to a consistent instantiation on S in rela-
tion to Cs. This means : if Cs[A] is the projection of the relation Cs on A and
I is consistent on A, therefore I € Cs[A].

A constraint network is relationally k-arc-consistent iff all its constraints are
relationally k-arc-consistent.
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A k-AC clause is an implication which premiss is a conjunction that stands for
the k-instantiation I, and conclusion is a disjunction of supports s1VsaV...Vsy,.
The k-AC clause for I 'is H =1 — s1 Vsa V...V sy,. Relational k-arc-consistency
ensures that each consistent instantiation of £ variables of a constraint can be
extented to all the variables of that constraint. In other words, if an instantiation
doesn’t satisfy this assertion, the constraint forbids that this tuple is added. In
the case of the k-AC clauses, when all the supports (which are linked to the
conjunction of assignments they represent by equivalence clauses), are falsified,
then the premiss must be falsified and this is exactly the nogood corresponding
to the k-instantiation, H = —1I.

Theorem 1 Performing full unit propagation on at-least-one, at-most-one and
k-AC clauses is equivalent to establish relational k-arc-consistency on the origi-
nal problem.

We assume that CSPs have e constraints, n variables, each with a domains
size d. The total number of k-AC clauses is in O(ed*) and the total number of
literals for each k-AC clause (and for the equivalency clauses) is in O(d*~*). The
space complexity is then still O(ed®) for any arbitrary constraint and any k.

4 (i,7)-Consistencies in SAT.

In addition to relational k-arc-consistency, k-AC clauses allow us to enforce
another very common family of local consistencies (specifically, (7, j)-consistency
[Fre85]) by adding the joins of certain constraints and performing the k-AC
encoding on this augmented problem.

Definition 3 ((i,j)-Consistency.). A binary constraint network is (i,j)-consistent
iff VE;, E; two sets of © and j distinct variables, any consistent assignment on
E; is a subset of a consistent assignment on E; U E;.

This family includes many well known consistencies: arc consistency (AC)

corresponds to (1,1)-counsistency, path consistency (PC) corresponds to (2,1)-
counsistency, path inverse consistency (PIC) corresponds to (1,2)-consistency.
If on binary networks, arc consistency is often the best choice, higher level of
filtering may sometimes be useful, for instance, path consistency is used in tem-
poral reasoning. However, implementing algorithms to maintain any consistency,
and moreover, combining this with improvements like (conflict directed) back-
jumping, requires a lot of work. With our approach, just by setting two param-
eters, (k and the size of the subsets to consider) and applying any SAT solver to
the resulting encoding, you can solve the problem with the chosen consistency
combined to all the features of the solver.

Definition 4 (Join of Constraints.). Let Cg1,Cgs2 be two constraints, the
join Cg1 X Cgo is the relation on S1 U S2 containing all tuples t such that
t[Sl] € Cs1 and t[S2] € Cgs.
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Theorem 2 FEnforcing (i,7)-consistency is equivalent to enforcing relational i-
arc-consistency on the join of all constraints involved in a set of © + j variables,
for each of them.

The space complexity results of section 3 also apply here, but the number of
constraints is equal to the number of subsets of ¢ 4+ j vertices in the constraint
graph, i.e. O(n**7), and a = i + j. Therefore the worst case space complexity is
O(n*t7d*7), and so is the worst case time complexity. This is again optimal.

5 Mixed encoding

There is a clear relation between the tightness of a constraint and the perfor-
mance of DP on that constraint encoded with the direct or a k-AC encoding.
Consider the binary not equal constraint. You need only d clauses of size 2 to
encode it in the direct encoding while you need 2d clauses of size d in the AC-
encoding even though AC propagation in not equal is pointless. On the other
hand, consider the binary equal constraint. This is encoded with (d — 1) binary
clauses in the direct encoding, while you need only 2d binary clauses in the AC
encoding, and you can expect a lot of AC propagation. The space complexity
and the level of propagation is thus linked to the tightness of the constraint.
One strategy therefore is to adapt the encoding to the constraint’s tightness,
i.e. using the direct encoding when the constraint is loose and the AC encoding
when it is tight. Moreover we can use, for each constraint, the k-AC clause with
the best “adapted” k. The principal issue is to know a priori how to pick k. The
notion of m-looseness [vBD97] give us a way to choose among the different k.

Definition 5 (m-looseness). A constraint relation R of arity a is called m-
loose if, for any variable X; constrained by R and any instantiation I of the
remaining a — 1 variables constrained by R, there are at least m extensions® of
I to X; that satisfy R.

Theorem 3 (van Beek and Dechter[vBD97]) A constraint network with do-
mains that are of size at most d and relations that are m-loose is relation-
ally (k,(fﬁ] — 1) )-consistent for all k.

We can restrict this to relational (k,1)-consistency (that is relational k-arc-
counsistency) and then we have the relation fﬁ] — 1 > 1 which is reduced
to:m > %. This means that, given a subset of variables, if all the relations
that constrain these variables are %—loose or more (every instantiations of this
subset minus one variable have at least % supports on this variable) then these
constraints are relationally k-arc-consistent for any k. Therefore enforcing rela-
tional k-arc-consistency will not give any pruning, at least initially. In addition,
the direct encoding would be more compact for such constraints.

In the mized encoding, k is adapted to the number of supports of any k-
instantiation for k in any interval between a lower bound and the arity of the

3 i.e., supports.
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constraint. This interval has an arbitrary length M. For each k,(a — M) <
k < a, let T[k] the threshold associated to k. For each k-instantiation I, if T
is not covered by a former clause, that is, there is not a former clause which
premiss is subset of I*, we count its number of supports. If I has less than
T'[k] supports, then the corresponding k-AC clause is added, otherwise, we do
the same operation with all the (k-+1)-instantiations that contain I. A simple
example is the mixed encoding with M = 1 on binary constraint, that is a mix of
support and direct encodings. There is only one k to consider : 1, and T[1] = %
(because of the theorem 3). For each 1-instantiation of each constraint, that is for
each value, the mixed(1) encoding contains the support clause for this value, iff
it has less than % supports, and all the conflict clauses with this value otherwise.
The size of the k-AC clauses is then bounded by T'[k] + k.

6 Experimental Results

We have performed a set of experiments to assess the respective charasteristics of
the different encodings introduced. However, space limitation prevent us giving
many details. Here are the main conclusions we can draw from those experiments.

— Encoding the supports tends to be more pruningful, and then more efficient
than encoding conflicts. A DP algorithm on the best k-AC encoding is several
times faster than on direct encoding for hard instances.

— The best choice usually is (a — 1)-AC encoding, where a is the arity of the
encoded constraint i.e. AC encoding [Gen02] for binary networks, 2-AC for
ternary, etc. The reason is that other k-AC clauses need equivalence clauses
and extra variables, increasing the number of unit propagations required for
the same filtering.

— The performances of a DP solver on high filtering k-AC encoding (all but
direct) are better on tight constraints than on loose. The main reason is that
k-AC clauses encode supports, and they are by definition more numerous in
loose constraints.

— For some structured problems (see [vBWO01]), a DP algorithm on the mixed
encoding is almost always faster than any other encoding. This seems to
show that adapting the level of filtering depending on the constraint pay off
for problem less homogeneous than random problems.

— For binary networks, a state of the art SAT solver, BerkMin [GN02], on k-
AC encoding is between 4 and 15 times slower, depending on the tightness
of the constraints, than a state of the art CSP solver [BRO1].

— However, for non-binary networks, whereas implementing a good CSP algo-
rithm is not easy, BerkMin on (a—1)-AC encoding can be faster than a state
of the art CSP solver [BMFL02], on networks with tight constraints.

* we could skip this step, and consider an instantiation even if it is already covered,
but these clauses are not required for correctness.



8 Christian Bessiére, Emmanuel Hebrard, and Toby Walsh

7 Conclusion

We presented a new family of mappings of constraint problems into satisfaction
problems, and proved the optimality in space and time complexity of these en-
codings. We also proved that performing full unit propagation on k-AC encoding
is the same as enforcing relational k-arc-consistency on the original problem, or
used in a slightly different way, (i,j)-consistency. We showed how to mix the
differents encodings to take advantage of their best individual features. And fi-
nally we demonstrated preliminary experimental results of the efficiency of the
introduced encodings.

From a constraint programming perspective, these new encodings are a very
easy way to implement and test algorithms for enforcing a wide range of filter-
ings, all in optimal worst case time complexity. Such encodings also profit from
the sophisticated branching heuristics and other algorithmic features of the SAT
solver (like non-chronological backtracking and nogood learning). Given the re-
cent rapid advances in SAT solvers, they offer an alternative way to solve hard
problem instances. From the satisfiability perspective, these encodings are useful
for modelling, since many real life problems are likely to have straightforward
representations as CSPs whereas SAT models are often not as easy to make.
Modelling is also far more understood for CSPs than for SAT. These encodings
allow the SAT research community to take advantage therefore of CSP modelling
results.
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