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Abstract. Much progress has been made in terms of boosting the e#eass of
backtrack style search methods. In addition, during the dasade, a much better
understanding of problem hardness, typical case complextitd backtrack search
behavior has been obtained. One example of a recent insigghbacktrack search
concerns so-called heavy-tailed behavior in randomizesioes of backtrack search.
Such heavy-tails explain the large variations in run-tinfiero observed in practice.
However, heavy-tailed behavior does certainly not occualbimstances. This has led
to a need for a more precise characterization of when heailgdhess does and when
it does not occur in backtrack search. In this paper, we pesgiich a characteriza-
tion. In particular, we will identify different statistitaegimes in the parameter space
of a standard instance generation model. We show that whbe#uktrack search is
heavy-tailed or not depends on the statistical regime oirtstance space.

Keywords: constraint satisfaction problems, heavy-tailed distitms, inconsistent search
subtrees.

1 Introduction

In recent years we have made great strides in designing nfarieset backtrack search meth-
ods for solving constraint satisfaction problems (CSRjluding Boolean satisfiability prob-
lems (SAT). Current state-of-the-art backtrack solvers ascombination of strong search
heuristics, fast pruning and propagation techniques,afwonological backtracking and no-
good learning, and more recently randomization and resstedr example, in areas such as
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planning and finite model-checking, we are now able to sawgd CSP’s with up to a mil-
lion variables and five million constraints. The study of lgeim structure of combinatorial
search problems has also provided tremendous insightsrimrmderstanding of the inter-
play between structure, search algorithms, and more géneypical case complexity. For
example, the work on phase transition phenomena in condrinhtearch has led to a bet-
ter characterization of search cost, beyond the worst4gasen of NP-completeness. While
the notion of NP-completeness captures the computatiasalaf the very hardest possible
instances of a given problem, in practice, one may not erteodhat many instances that
are quite that hard. We now know that, in general, CSP problexhibit an “easy-hard-easy”
pattern of search cost, depending on the constrainednéss pfoblem [10, 7]. The computa-
tional hardest instances appear to lie at the phase tr@mségion, the area in which instances
change from being almost all solvable to being almost alblvable. “Exceptionally hard in-
stances” seem to defy this pattern: such instances occueinnder-constrained area, they
are considerably harder than other similar instances aed barder than instances from the
critically constrained area. However, different algomith encounter different “exceptionally
hard instances”. Therefore, the “hardness” of exceptlgterd instances does not necessar-
ily reside purely in the instances, but rather in the comtiameof the instance with the details
of the search method [4, 12]. The work on the study of run tinséridutions of backtrack
search algorithms further explains this phenomenon — tipeance of backtrack search
algorithms can exhibit extremely large variance, even @st#imeinstancejustby introduc-
ing a small element of randomness into its heuristic, fongpla by breaking ties randomly.
Such extreme fluctuations in the run time of backtrack sealgbrithms are nicely captured
by so-called heavy-tailed distributions, distributiohattare characterized by extremely long
tails with some infinite moments [5, 6]. The decay of the taflseavy-tailed distributions fol-
lows a power law, much slower than the decay of standardloligtons, such as the normal,
or log-normal, or the exponential distribution, that haa#stthat decay exponentially. Fur-
ther insights into the empirical evidence of heavy-taileémpomena are provided laypstract
models of backtrack search that show that, under certaiditons, such procedurgsov-
ably exhibit heavy-tailed behavior. In this woldackdoorvariables are a key notion [2, 13].
A set of variables forms a backdoor for a problem instanchef¢ is a value assignment to
these variables such that the simplified sub-problem cawlvedin polynomial time by the
propagation and simplification mechanism of the CSP solmdeuconsideration. Intuitively,
the backdoor corresponds to a set of variables, such that w#iecorrectly, the sub-solver
can solve the remaining problem easily. A backtrack sealgbrighm exhibits heavy-tailed
behavior when the success probability of the heuristic efttacktrack search method is suf-
ficiently low and the backdoor size is sufficiently small [3].1

In this paper we report a different approach. We study theiecaprun time distribu-
tions ofconcretebacktrack search algorithms across the different comsttaiess regions of
random binary constraint satisfaction problem models (#Mad B, and E [1, 3]). In order
to obtain more accurate empirical run time distributiorlspar runs are performed with-
out censorshipife., we run our algorithms without a cutoff). Our study revealardatically
different statistical regimes for randomized backtrac&rsk algorithms across the different
constrainedness regions of the CSP models. Figure 1 pmwaigeeview of our results. The
figure plots the run time distributions (the survival furctji.e., the complement to one of
the cumulative distribution function), of a simple backkaearch algorithm (no look-ahead
and no look-back), using variable random ordering hewristith random value selection,
for different constrainedness regions of model E (instanggh 20 variables and domain
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Figure 1: Survival function of the number of backtracks ttvedlifferent instances of model E with 20 variables
and a domain size of 10. The parametaraptures the constrainedness of the instances. Heaeg-taijime
(curves with linear behavior) and a non-heavy-tailed reggan be identified.
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Figure 2: Inconsistent sub-trees in backtrack search.

size 10). Two regions, with dramatically different statat regimes of the survival function
of run time distributions of the backtrack search algoritbam be clearly identified. There
is a region in which the tails of the survival distributioncag slowly, exhibiting power law
decay. In Figure 1, the curves corresponding to instanctspvc 0.075 exhibit power law
decay, which is easily identified by their linear behaviarsbme extent the boundary of this
region corresponds to a threshold for the backtrack sedguritnm. After this region, the
instances become too hard for the backtrack search alggrih the runs become homoge-
neously long, and therefore the variance of the backtraakchealgorithm decreases and the
tails of its survival function decay exponentially (seewigl, e.g., the curve corresponding
to the instance witlp = 0.22 exhibits exponential decay, much faster than linear bemavi

In order to get further insights into the statistical beloawaf our backtrack search method
we study the inconsistent sub-trees discovered by theithgoduring the search, which are
associated with the well known phenomenortlofishingin backtrack search (see Figure
2). The distribution of the depth of inconsistent trees igejtevealing: when the run time
distribution of the backtrack search method has a power kewayl (see Figure 3, left panel,
p = 0.075), the distribution of the depth of the inconsistent treexrelases exponentially (see
Figure 3, right panely = 0.075). In other words, the backtrack search heuristic has a highe
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Figure 3: Example of an instance with Pareto-like< 0.075) and non-Pareto-like run time distributiop &
0.22). The two instances with different regimes in decay of stalvifunction of the run time distributions
have also quite different distributions for the correspogdnconsistency Sub-tree Depth (ISTD). For Pareto-
like distributions of the run time, the corresponding IST@ldws an exponential distribution (right panel,
p = 0.075), which is not the case when the run time distribution haoerptial decayy = 0.22).

probability of finding inconsistencies with a few variablesggnments, and this probability
decreases exponentially as the variable assignmentager€ontrast this behavior with the
case in which the survival function of run time distributiohthe backtrack search method
has an exponential decay (see Figure 3, left panel,0.22). In this case, the distribution of

the depth of inconsistent trees no longer decreases expaihe(see Figure 3, right panel,

p = 0.22).

The rest of the paper is organized as follows: in next seatierpresent definitions con-
cerning the random CSP models and concepts used in the pegénen present empirical
results illustrating the different statistical regimestloé run time distributions of our back-
track search methods. We also provide experimental evedehthe different shapes of the
distributions of the depth of inconsistent sub-trees, elpselated to the tail regime of the
underlying run time distributions of the backtrack searcétmod. Finally, conclusions and
future work are discussed.

2 Prdiminaries

Constraint Networks

A finite binary constraint networkP = (X, D,(C) is defined as a set of variablesX =
{z1,...,2,}, a set ofdomainsD = {D(z1),...,D(z,)}, whereD(z;) is the finite set of
possiblevaluesfor variablex;, and a sef€ of e binary constraintsetween pairs of variables.
A constraintC;; on the ordered set of variablés;, z;) is a subset of the Cartesian product
D(z;) x D(z;) that specifies thallowed combinations of values for the variables and
z;. A solutionof a constraint network is an instantiation of the variatdash that all the
constraints are satisfied. The constraint satisfactioblpro (CSP) involves finding a solution
of a constraint network or proving that none exists.



Random Problems

The CSP research community has always made a great use ofmgnglenerated constraint
satisfaction problems for comparing different search méges and studying their behavior.
Several models for generating these random problems hame fp@posed over the years.
The oldest one, which was the most commonly used until thedi@i€lO’s is model A. A
network generated by this model is characterized by fouampaters< N, D,pl,p2 >,
where N is the number of variableg) the size of the domaing; the probability of having
a constraint between two variables, andthe probability that a pair of values is forbidden
in a constraint. Notice that the variance in the type of peold generated with the same four
parameters can be large, since the actual number of camtstfar two problems with the
same parameters can vary from one problem to another, aratthal number of forbidden
tuples for two constraints inside the same problem can asdifferent. Model B does not
have this variance. In model B, the four parameters are ayain, p1, andp2, where N

is the number of variables, anfd the size of the domains. But noyy, is the proportion of
binary constraints that are in the netwoile(, there are exactly = |p; - N - (N — 1)/2]
constraints), ang, is the proportion of forbidden tuples in a constrairg ( there are exactly

t = |p,- D?*] forbidden tuples in each constraint). Problems classdssmodel are denoted
by < N, D, ¢, t >. In[1], it was shown that model B (and model A as well) can bawid”
when we increasé’. Indeed, whenV goes to infinity, we will almost surely havefawed
variable (that is, one variable which has all its values mststent with one of the constraints
involving it). Model E has been proposed to overcome thiskmeas. It is a three parameter
model,< N, D, p >, whereN andD are the same as in the other models, gnd?- N - (N —
1)/2] forbidden pairs of values are selected with repetition dithe D? - N - (N — 1)/2
possible pairs. Note, however, that there is another wayakling the problem of flawed
variables. In [14] it is shown that some properties on thatiet values ofV, D, p;, andp,,
guarantee that the model is sound and scalable, for a ceatage of values of the parameters.

Search Trees

A search treas composed ohodesandarcs. A nodeu represents an ordered partial instan-
tiation I (u) = (x;, = v;,,...,x;, = v;,). A search tree is rooted at the particular node
with I(ug) = (). There is an arc from a nodeto a nodeu, if I(u.) = (I(u),z = v), z and

v being a variable and one of its values. The nades called a child ofu andu a parent of
u.. Every nodeu in a treeT’ defines asubtre€l, that consists of all the nodes and arcs below
u in T. Thedepthof a subtre€l’, is the length of the longest path fromto any other node

in T,,. An inconsistent subtree (IST) is a subtree that does ndagoany node: such that
I(u) is a solution. The depth of an inconsistent subtree is refeto as ISTD. We denote by
T(A, P) the search tree of a backtrack search algorithreolving a particular problen#,
which contains a node for each instantiation visiteddoyntil it reached a solution or proved
inconsistency of?. Once assigned a partial instantiatibfu) = (z;, = vi,,...,2z;, = v;,)

for nodeu, the algorithm will search for a partial instantiation ofse of its children. In the
case that there exists no instantiation which does nottédhe constraints, algorithoh will
take another value for variablg, , and start again checking the children of this new node.
In this situation, it is said that backtrackhappens. Theearch cosof an algorithmA on a
particular problemP is the number of total backtracks (A, P).



Algorithms

In the following, we will use different search procedurdmttdiffer in the amount of propaga-
tion they perform, and in the order in which they generatéainsations. We used three levels
of propagation: no propagation (backtrackimy,), removal of values directly inconsistent
with the last instantiation performed (forward-checkikg;), and arc consistency propaga-
tion (maintaining arc consistendyAC). We used three different heuristics for ordering vari-
ables: random selection of the next variable to instanfrea@dom), variables pre-ordered by
decreasing degree in the constraint gragg), and selection of the variable with smallest
domain first, ties broken by decreasing degeni+deq).
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Figure 4: Survival functions of the number of backtracksd§ome instances generated under model E and solved
using different algorithms. All the instances belong to¢hess(20, 10, p).

Pareto-like Distributions

The runtime distributions of backtrack search methods &enaharacterized by very long
tails or heavy-tails(HT). These non-standard probability distributions werst fintroduced
by Vilfredo Pareto in 1897 in the context of income distribat and have recently received
much attention because of their suitability to model statibgghenomena subject to extreme
fluctuations.

Given a general Pareto distributidf(z), the probability that a random variable is larger
than a given value, i.e., its survival function, is:

1—F(z)=P[X >z]~Cz *, x>0,



wherea > 0 andC > 0 are constants. These distributions have infinite varianbenwv
1 < a < 2 and infinite mean and variance whéen< a <= 1. If 1 — F(z) (the survival
function) is plotted in a wide-ranged plot, a perfécshape is observed. The log-log plot of
the survival function of a Pareto-like distribution showselar behavior with slope equal to
— .

3 Empirical Results

In the previous section we formally defined our models andritlgms, as well as the con-
cepts that are key in our study: the runtime distribution®wf backtrack search methods
and the associated distributions of the depth of the instersi subtrees found by the back-
track method. In this section we show how the behavior ofdhe® distributions is highly
correlated.

The results presented in this paper concern mainly insgaot®odel E, using BT and
FC algorithms with different heuristics. Nevertheless,al& show some results for harder
problems of model B, when using more sophisticated propag&/AC). We present results
for the survival functions of the search cost (number of b@dks) of our backtrack search
algorithms. All the plots were computed with over at leash@@hdependent executions of
a given problem instance. We also present the results focdhesponding inconsistency
sub-tree depth distributions (ISTD). The ISTD distribusovere computed according to the
following procedure:

1. Atevery node of the search, we translate our CSP probleworijunction with the already
assigned variables, into a SAT problem, in order to use acfasiplete SAT-solver. Then
we applysat z [9, 8] to determine if the remaining problem is consistent.

2. If so, we proceed as in step 1. If not, we have found an instarg sub-tree (IST). In
order to compute its depth, we mark the current node and pobwgth the backtrack
search procedure that is the focus of the stufy (e.g., puktizck search) until it reaches
inconsistency.

3. At this point one inconsistent sub-tree (IST) has beenprded. Then, we backtrack up
to the marked node in step 2 and proceed as in step 1.

This procedure allows us to compute the ISTD independemtlygoCSP algorithm employed
and skipping all the search inside an IST.

Figure 4 plots the survival functions of the number of baagks for different instances
generated under model E and solved using different algost@T- r andom BT- deg,
FC- r andomandFC- deg). All the instances for model E belong to the cldg8, 10, p).

The results in Figure 4 show that the threshold for heavgdabehavior i(e., Pareto-
like behavior with power law decay) occurs at different levef constrainedness, depend-
ing on how powerful the propagation and the heuristic ara. é&@mple, using a simple
BT- r andomalgorithm, problems withp < 0.075 show Pareto-like distributions, whereas
the larger isp beyond this point, the clearer is the exponential drop ofdis&ribution. Con-
sidering nowC- deg, the threshold for heavy-tailed (Pareto-like) behaviovescloser to
the phase-transition, aroupd= 0.085.

1Satz outperforms other available CSP solvers on thesenicestaOne could use any fast CSP solver.
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Figure 5: Survival functions of the number of backtrackssome instances generated under model B and solved
with MAC r andom algorithm for problem clas&50, 8, 150, ¢).

Table 1: Model K20, 10, p). Estimation ofx and its corresponding mean square error.

Algorithm P Q Error
BT-random | 0.065| 0.302| 0.015
BT-random | 0.075| 0.318| 0.009
BT- deg 0.070| 0.418| 0.004
BT- deg 0.075| 0.448]| 0.026
FC-random | 0.070| 0.365| 0.003
FC-random | 0.100| 0.506| 0.053
FC- deg 0.085| 0.517| 0.009
FC- deg 0.120| 0.588| 0.068
FC-dom+tdeg | 0.120| 0.915]| 0.031
FC-dom+deg | 0.140| 0.833| 0.080

We also observed such a clear separation of two distinasstal regimes — Pareto-
like distribution of the run-time distributions vs. non+Bto-like distributions — for instances
of model B, for different problem sizes and with more sopgh&ted algorithms. Figure 5
shows the survival functions of run time distributions aftances of model B50, 8, 150, ¢),
for different levels of constrainedness, solved WNMhC- r andom Again, the two different
statistical regimes of the survival functions are quiteacle

In order to quantify the heavy-tailedness of our Parete-tlistributions we used a QQ-
estimator [11]. We estimate the paramteof our distributions by estimating the slope of the
tails using a linear regression of the logarithmic valuehaf data against the logarithmic val-
ues of the probability. Table 1 summarizes the results fodeh&. The table shows instances
of model E in the clas§0, 10, p). This table illustrates the following behaviors:

e The heavy-tailedness of the distributions decreasesgreases) as constrainedness in-
creasesy increases);

e The heavy-tailedness of the distributions decreasem¢reases) when using more so-
phisticated search algorithms (e.BT- deg exhibits less heavy-tailed behavior (smaller
«) thanBT- r andom)

These results suggest that the existence of heavy-taileallwe in the cost distributions
depends on the efficiency of the heuristic and the prunindgwargisms of the backtrack search
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Figure 6: Model E. Distribution of the ISTD for some of thetiasces plotted in Figure 4.

algorithm as well as on the level of constrainedness of thblpm, and of course on the size
of the instances. Increasing the algorithm efficiency tetodshift the heavy-tail threshold
closer to the phase transition.

A second set of results is related to the distributions ofitttensistency sub-tree detph
(ISTD). Figure 6 plots the ISTD distributions for some of tinstances plotted in Figure
4. It can be observed that when the cost distribution is Bdilet, its corresponding ISTD
distribution shows an exponential decay. Preliminary igsifout of the scope of this paper)
explain this fact from an analytical point of view. On the ethand, as the cost distribution
is less Pareto-like, its ISTD distribution moves away fromexponential decay. This effect
can be observed clearly in Figure 7.

4 Conclusions and Future Work

We study the run time distributions of complete backtrackrele methods on instances of
well-known random CSP binary models. Our results cleanyeat different regimes in the
runtime distributions of the backtrack search procedures@rresponding distributions of
the depth of the inconsistent sub-trees. In the first regius (egion starts at the most under-
constrained area), randomized backtrack search solvéibiekeavy-tailed behavior. The
boundary of this region corresponds to a threshold for arglvacktrack search algorithm.
After this region, the instances become harder for the backtsearch algorithm, all the runs
become homogeneously long, and therefore the varianceedidhktrack search algorithm
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decreases and the tails of its run time distribution decapentially. The location where the

transition from the heavy-tailed region to the non-heaailetl region occurs depends on the
constrainedness of the instances and the efficiency of tgagation and search heuristics of
the backtrack search algorithm. The more efficient the acktsearch algorithm, the closer
to the phase-transition is the heavy-tail threshold. We al®w that there is a clear correla-
tion between the regime of the tail of the run time distribas and the distributions of the

depth of the inconsistent sub-trees encountered by theraa&ksearch method. We believe
that we can exploit this correlation to design more efficiestart strategies of randomized
backtrack search methods.
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