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Abstract. Much progress has been made in terms of boosting the effectiveness of
backtrack style search methods. In addition, during the last decade, a much better
understanding of problem hardness, typical case complexity, and backtrack search
behavior has been obtained. One example of a recent insight into backtrack search
concerns so-called heavy-tailed behavior in randomized versions of backtrack search.
Such heavy-tails explain the large variations in run-time often observed in practice.
However, heavy-tailed behavior does certainly not occur onall instances. This has led
to a need for a more precise characterization of when heavy-tailedness does and when
it does not occur in backtrack search. In this paper, we provide such a characteriza-
tion. In particular, we will identify different statistical regimes in the parameter space
of a standard instance generation model. We show that whether backtrack search is
heavy-tailed or not depends on the statistical regime of theinstance space.

Keywords: constraint satisfaction problems, heavy-tailed distributions, inconsistent search
subtrees.

1 Introduction

In recent years we have made great strides in designing more efficient backtrack search meth-
ods for solving constraint satisfaction problems (CSP), including Boolean satisfiability prob-
lems (SAT). Current state-of-the-art backtrack solvers use a combination of strong search
heuristics, fast pruning and propagation techniques, non-chronological backtracking and no-
good learning, and more recently randomization and restarts. For example, in areas such as�Research supported by AFOSR, grant F49620-01-1-0076 (Intelligent Information Systems Institute) and
F49620-01-1-0361 (MURI grant on Cooperative Control of Distributed Autonomous Vehicles in Adversarial
Environments), CICYT, TIC2001-1577-C03-03 and DARPA, F30602-00-2-0530 (Controlling Computational
Cost: Structure, Phase Transitions and Randomization) andF30602-00-2-0558 (Configuring Wireless Transmis-
sion and Decentralized Data Processing for Generic Sensor Networks). The views and conclusions contained
herein are those of the authors and should not be interpretedas necessarily representing the official policies or
endorsements, either expressed or implied, of AFOSR, DARPA, or the U.S. Government.



planning and finite model-checking, we are now able to solve large CSP’s with up to a mil-
lion variables and five million constraints. The study of problem structure of combinatorial
search problems has also provided tremendous insights in our understanding of the inter-
play between structure, search algorithms, and more generally, typical case complexity. For
example, the work on phase transition phenomena in combinatorial search has led to a bet-
ter characterization of search cost, beyond the worst-casenotion of NP-completeness. While
the notion of NP-completeness captures the computational cost of the very hardest possible
instances of a given problem, in practice, one may not encounter that many instances that
are quite that hard. We now know that, in general, CSP problems exhibit an “easy-hard-easy”
pattern of search cost, depending on the constrainedness ofthe problem [10, 7]. The computa-
tional hardest instances appear to lie at the phase transition region, the area in which instances
change from being almost all solvable to being almost all unsolvable. “Exceptionally hard in-
stances” seem to defy this pattern: such instances occur in the under-constrained area, they
are considerably harder than other similar instances and even harder than instances from the
critically constrained area. However, different algorithms encounter different “exceptionally
hard instances”. Therefore, the “hardness” of exceptionally hard instances does not necessar-
ily reside purely in the instances, but rather in the combination of the instance with the details
of the search method [4, 12]. The work on the study of run time distributions of backtrack
search algorithms further explains this phenomenon — the performance of backtrack search
algorithms can exhibit extremely large variance, even on thesameinstance,justby introduc-
ing a small element of randomness into its heuristic, for example by breaking ties randomly.
Such extreme fluctuations in the run time of backtrack searchalgorithms are nicely captured
by so-called heavy-tailed distributions, distributions that are characterized by extremely long
tails with some infinite moments [5, 6]. The decay of the tailsof heavy-tailed distributions fol-
lows a power law, much slower than the decay of standard distributions, such as the normal,
or log-normal, or the exponential distribution, that have tails that decay exponentially. Fur-
ther insights into the empirical evidence of heavy-tailed phenomena are provided byabstract
models of backtrack search that show that, under certain conditions, such proceduresprov-
ably exhibit heavy-tailed behavior. In this workbackdoorvariables are a key notion [2, 13].
A set of variables forms a backdoor for a problem instance if there is a value assignment to
these variables such that the simplified sub-problem can be solved in polynomial time by the
propagation and simplification mechanism of the CSP solver under consideration. Intuitively,
the backdoor corresponds to a set of variables, such that when set correctly, the sub-solver
can solve the remaining problem easily. A backtrack search algorithm exhibits heavy-tailed
behavior when the success probability of the heuristic of the backtrack search method is suf-
ficiently low and the backdoor size is sufficiently small [2, 13].

In this paper we report a different approach. We study the empirical run time distribu-
tions ofconcretebacktrack search algorithms across the different constrainedness regions of
random binary constraint satisfaction problem models (Model A, B, and E [1, 3]). In order
to obtain more accurate empirical run time distributions, all our runs are performed with-
out censorship (i.e., we run our algorithms without a cutoff). Our study reveals dramatically
different statistical regimes for randomized backtrack search algorithms across the different
constrainedness regions of the CSP models. Figure 1 provides a preview of our results. The
figure plots the run time distributions (the survival function, i.e., the complement to one of
the cumulative distribution function), of a simple backtrack search algorithm (no look-ahead
and no look-back), using variable random ordering heuristic, with random value selection,
for different constrainedness regions of model E (instances with 20 variables and domain
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Figure 1: Survival function of the number of backtracks to solve different instances of model E with 20 variables
and a domain size of 10. The parameterp captures the constrainedness of the instances. Heavy-tailed regime
(curves with linear behavior) and a non-heavy-tailed regime can be identified.
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Figure 2: Inconsistent sub-trees in backtrack search.

size 10). Two regions, with dramatically different statistical regimes of the survival function
of run time distributions of the backtrack search algorithmcan be clearly identified. There
is a region in which the tails of the survival distribution decay slowly, exhibiting power law
decay. In Figure 1, the curves corresponding to instances with p � 0:075 exhibit power law
decay, which is easily identified by their linear behavior. To some extent the boundary of this
region corresponds to a threshold for the backtrack search algorithm. After this region, the
instances become too hard for the backtrack search algorithm, all the runs become homoge-
neously long, and therefore the variance of the backtrack search algorithm decreases and the
tails of its survival function decay exponentially (see Figure 1, e.g., the curve corresponding
to the instance withp = 0:22 exhibits exponential decay, much faster than linear behavior).

In order to get further insights into the statistical behavior of our backtrack search method
we study the inconsistent sub-trees discovered by the algorithm during the search, which are
associated with the well known phenomenon ofthrashingin backtrack search (see Figure
2). The distribution of the depth of inconsistent trees is quite revealing: when the run time
distribution of the backtrack search method has a power law decay (see Figure 3, left panel,p = 0:075), the distribution of the depth of the inconsistent trees decreases exponentially (see
Figure 3, right panel,p = 0:075). In other words, the backtrack search heuristic has a higher
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Figure 3: Example of an instance with Pareto-like (p = 0:075) and non-Pareto-like run time distribution (p =0:22). The two instances with different regimes in decay of survival function of the run time distributions
have also quite different distributions for the corresponding Inconsistency Sub-tree Depth (ISTD). For Pareto-
like distributions of the run time, the corresponding ISTD follows an exponential distribution (right panel,p = 0:075), which is not the case when the run time distribution has exponential decay (p = 0:22).

probability of finding inconsistencies with a few variable assignments, and this probability
decreases exponentially as the variable assignments increase. Contrast this behavior with the
case in which the survival function of run time distributionof the backtrack search method
has an exponential decay (see Figure 3, left panel,p = 0:22). In this case, the distribution of
the depth of inconsistent trees no longer decreases exponentially (see Figure 3, right panel,p = 0:22).

The rest of the paper is organized as follows: in next sectionwe present definitions con-
cerning the random CSP models and concepts used in the paper.We then present empirical
results illustrating the different statistical regimes ofthe run time distributions of our back-
track search methods. We also provide experimental evidence of the different shapes of the
distributions of the depth of inconsistent sub-trees, closely related to the tail regime of the
underlying run time distributions of the backtrack search method. Finally, conclusions and
future work are discussed.

2 Preliminaries

Constraint Networks

A finite binary constraint networkP = (X ;D; C) is defined as a set ofn variablesX =fx1; : : : ; xng, a set ofdomainsD = fD(x1); : : : ; D(xn)g, whereD(xi) is the finite set of
possiblevaluesfor variablexi, and a setC of e binaryconstraintsbetween pairs of variables.
A constraintCij on the ordered set of variables(xi; xj) is a subset of the Cartesian productD(xi) � D(xj) that specifies theallowed combinations of values for the variablesxi andxj. A solutionof a constraint network is an instantiation of the variablessuch that all the
constraints are satisfied. The constraint satisfaction problem (CSP) involves finding a solution
of a constraint network or proving that none exists.



Random Problems

The CSP research community has always made a great use of randomly generated constraint
satisfaction problems for comparing different search techniques and studying their behavior.
Several models for generating these random problems have been proposed over the years.
The oldest one, which was the most commonly used until the middle 90’s is model A. A
network generated by this model is characterized by four parameters< N;D; p1; p2 >,
whereN is the number of variables,D the size of the domains,p1 the probability of having
a constraint between two variables, andp2, the probability that a pair of values is forbidden
in a constraint. Notice that the variance in the type of problems generated with the same four
parameters can be large, since the actual number of constraints for two problems with the
same parameters can vary from one problem to another, and theactual number of forbidden
tuples for two constraints inside the same problem can also be different. Model B does not
have this variance. In model B, the four parameters are againN;D; p1, andp2, whereN
is the number of variables, andD the size of the domains. But now,p1 is the proportion of
binary constraints that are in the network (i.e., there are exactly = bp1 � N � (N � 1)=2
constraints), andp2 is the proportion of forbidden tuples in a constraint (i.e., there are exactlyt = bp2 �D2 forbidden tuples in each constraint). Problems classes in this model are denoted
by< N;D; ; t >. In [1], it was shown that model B (and model A as well) can be “flawed”
when we increaseN . Indeed, whenN goes to infinity, we will almost surely have aflawed
variable (that is, one variable which has all its values inconsistent with one of the constraints
involving it). Model E has been proposed to overcome this weakness. It is a three parameter
model,< N;D; p >, whereN andD are the same as in the other models, andbp�D2 �N �(N�1)=2 forbidden pairs of values are selected with repetition out of theD2 � N � (N � 1)=2
possible pairs. Note, however, that there is another way of tackling the problem of flawed
variables. In [14] it is shown that some properties on the relative values ofN , D, p1, andp2,
guarantee that the model is sound and scalable, for a certainrange of values of the parameters.

Search Trees

A search treeis composed ofnodesandarcs. A nodeu represents an ordered partial instan-
tiation I(u) = (xi1 = vi1 ; : : : ; xik = vik). A search tree is rooted at the particular nodeu0
with I(u0) = ;. There is an arc from a nodeu to a nodeu if I(u) = (I(u); x = v), x andv being a variable and one of its values. The nodeu is called a child ofu andu a parent ofu. Every nodeu in a treeT defines asubtreeTu that consists of all the nodes and arcs belowu in T . Thedepthof a subtreeTu is the length of the longest path fromu to any other node
in Tu. An inconsistent subtree (IST) is a subtree that does not contain any nodeu such thatI(u) is a solution. The depth of an inconsistent subtree is referred to as ISTD. We denote byT (A; P ) the search tree of a backtrack search algorithmA solving a particular problemP ,
which contains a node for each instantiation visited byA until it reached a solution or proved
inconsistency ofP . Once assigned a partial instantiationI(u) = (xi1 = vi1 ; : : : ; xik = vik)
for nodeu, the algorithm will search for a partial instantiation of some of its children. In the
case that there exists no instantiation which does not violate the constraints, algorithmA will
take another value for variablexik , and start again checking the children of this new node.
In this situation, it is said that abacktrackhappens. Thesearch costof an algorithmA on a
particular problemP is the number of total backtracks inT (A; P ).



Algorithms

In the following, we will use different search procedures, that differ in the amount of propaga-
tion they perform, and in the order in which they generate instantiations. We used three levels
of propagation: no propagation (backtracking,BT), removal of values directly inconsistent
with the last instantiation performed (forward-checking,FC), and arc consistency propaga-
tion (maintaining arc consistency,MAC). We used three different heuristics for ordering vari-
ables: random selection of the next variable to instantiate(random), variables pre-ordered by
decreasing degree in the constraint graph (deg), and selection of the variable with smallest
domain first, ties broken by decreasing degree (dom+deg).
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Figure 4: Survival functions of the number of backtracks forsome instances generated under model E and solved
using different algorithms. All the instances belong to theclassh20; 10; pi.
Pareto-like Distributions

The runtime distributions of backtrack search methods are often characterized by very long
tails or heavy-tails(HT). These non-standard probability distributions were first introduced
by Vilfredo Pareto in 1897 in the context of income distribution, and have recently received
much attention because of their suitability to model stochastic phenomena subject to extreme
fluctuations.

Given a general Pareto distributionF (x), the probability that a random variable is larger
than a given valuex, i.e., its survival function, is:1� F (x) = P [X > x℄ � Cx��; x > 0;



where� > 0 andC > 0 are constants. These distributions have infinite variance when1 < � < 2 and infinite mean and variance when0 < � <= 1. If 1 � F (x) (the survival
function) is plotted in a wide-ranged plot, a perfectL shape is observed. The log-log plot of
the survival function of a Pareto-like distribution shows linear behavior with slope equal to��.

3 Empirical Results

In the previous section we formally defined our models and algorithms, as well as the con-
cepts that are key in our study: the runtime distributions ofour backtrack search methods
and the associated distributions of the depth of the inconsistent subtrees found by the back-
track method. In this section we show how the behavior of these two distributions is highly
correlated.

The results presented in this paper concern mainly instances of Model E, using BT and
FC algorithms with different heuristics. Nevertheless, wealso show some results for harder
problems of model B, when using more sophisticated propagation (MAC). We present results
for the survival functions of the search cost (number of backtracks) of our backtrack search
algorithms. All the plots were computed with over at least 2000 independent executions of
a given problem instance. We also present the results for thecorresponding inconsistency
sub-tree depth distributions (ISTD). The ISTD distributions were computed according to the
following procedure:

1. At every node of the search, we translate our CSP problem inconjunction with the already
assigned variables, into a SAT problem, in order to use a fastcomplete SAT-solver. Then
we applysatz [9, 8] to determine if the remaining problem is consistent.1

2. If so, we proceed as in step 1. If not, we have found an inconsistent sub-tree (IST). In
order to compute its depth, we mark the current node and proceed with the backtrack
search procedure that is the focus of the stufy (e.g., pure backtrack search) until it reaches
inconsistency.

3. At this point one inconsistent sub-tree (IST) has been computed. Then, we backtrack up
to the marked node in step 2 and proceed as in step 1.

This procedure allows us to compute the ISTD independently of the CSP algorithm employed
and skipping all the search inside an IST.

Figure 4 plots the survival functions of the number of backtracks for different instances
generated under model E and solved using different algorithms (BT-random, BT-deg,
FC-random andFC-deg). All the instances for model E belong to the classh20; 10; pi.

The results in Figure 4 show that the threshold for heavy-tailed behavior (i.e., Pareto-
like behavior with power law decay) occurs at different levels of constrainedness, depend-
ing on how powerful the propagation and the heuristic are. For example, using a simple
BT-random algorithm, problems withp < 0:075 show Pareto-like distributions, whereas
the larger isp beyond this point, the clearer is the exponential drop of thedistribution. Con-
sidering nowFC-deg, the threshold for heavy-tailed (Pareto-like) behavior moves closer to
the phase-transition, aroundp = 0:085.

1Satz outperforms other available CSP solvers on these instances. One could use any fast CSP solver.
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Table 1: Model Eh20; 10; pi. Estimation of� and its corresponding mean square error.
Algorithm p � Error

BT-random 0.065 0.302 0.015
BT-random 0.075 0.318 0.009
BT-deg 0.070 0.418 0.004
BT-deg 0.075 0.448 0.026
FC-random 0.070 0.365 0.003
FC-random 0.100 0.506 0.053
FC-deg 0.085 0.517 0.009
FC-deg 0.120 0.588 0.068
FC-dom+deg 0.120 0.915 0.031
FC-dom+deg 0.140 0.833 0.080

We also observed such a clear separation of two distinct statistical regimes – Pareto-
like distribution of the run-time distributions vs. non-Pareto-like distributions – for instances
of model B, for different problem sizes and with more sophisticated algorithms. Figure 5
shows the survival functions of run time distributions of instances of model Bh50; 8; 150; ti,
for different levels of constrainedness, solved withMAC-random. Again, the two different
statistical regimes of the survival functions are quite clear.

In order to quantify the heavy-tailedness of our Pareto-like distributions we used a QQ-
estimator [11]. We estimate the paramter� of our distributions by estimating the slope of the
tails using a linear regression of the logarithmic value of the data against the logarithmic val-
ues of the probability. Table 1 summarizes the results for model E. The table shows instances
of model E in the classh20; 10; pi. This table illustrates the following behaviors:� The heavy-tailedness of the distributions decreases (� increases) as constrainedness in-

creases (p increases);� The heavy-tailedness of the distributions decreases (� increases) when using more so-
phisticated search algorithms (e.g.,BT-deg exhibits less heavy-tailed behavior (smaller�) thanBT-random.)

These results suggest that the existence of heavy-tailed behavior in the cost distributions
depends on the efficiency of the heuristic and the pruning mechanisms of the backtrack search
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Figure 6: Model E. Distribution of the ISTD for some of the instances plotted in Figure 4.

algorithm as well as on the level of constrainedness of the problem, and of course on the size
of the instances. Increasing the algorithm efficiency tendsto shift the heavy-tail threshold
closer to the phase transition.

A second set of results is related to the distributions of theinconsistency sub-tree detph
(ISTD). Figure 6 plots the ISTD distributions for some of theinstances plotted in Figure
4. It can be observed that when the cost distribution is Pareto-like, its corresponding ISTD
distribution shows an exponential decay. Preliminary studies (out of the scope of this paper)
explain this fact from an analytical point of view. On the other hand, as the cost distribution
is less Pareto-like, its ISTD distribution moves away from an exponential decay. This effect
can be observed clearly in Figure 7.

4 Conclusions and Future Work

We study the run time distributions of complete backtrack search methods on instances of
well-known random CSP binary models. Our results clearly reveal different regimes in the
runtime distributions of the backtrack search procedures and corresponding distributions of
the depth of the inconsistent sub-trees. In the first region (this region starts at the most under-
constrained area), randomized backtrack search solvers exhibit heavy-tailed behavior. The
boundary of this region corresponds to a threshold for a given backtrack search algorithm.
After this region, the instances become harder for the backtrack search algorithm, all the runs
become homogeneously long, and therefore the variance of the backtrack search algorithm
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Figure 7: Distribution of the ISTD for some model E instancessolved withBT-random.

decreases and the tails of its run time distribution decay exponentially. The location where the
transition from the heavy-tailed region to the non-heavy-tailed region occurs depends on the
constrainedness of the instances and the efficiency of the propagation and search heuristics of
the backtrack search algorithm. The more efficient the backtrack search algorithm, the closer
to the phase-transition is the heavy-tail threshold. We also show that there is a clear correla-
tion between the regime of the tail of the run time distributions and the distributions of the
depth of the inconsistent sub-trees encountered by the backtrack search method. We believe
that we can exploit this correlation to design more efficientrestart strategies of randomized
backtrack search methods.
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