
HAL Id: lirmm-00269780
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269780

Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Conflict-Set Based Framework for Partial
Constraint Satisfaction

Thierry Petit, Christian Bessiere, Jean-Charles Régin

To cite this version:
Thierry Petit, Christian Bessiere, Jean-Charles Régin. A General Conflict-Set Based Framework for
Partial Constraint Satisfaction. Soft Constraints, 2003, Cork, Ireland. �lirmm-00269780�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269780
https://hal.archives-ouvertes.fr

A General Conflict-Set Based Framework for

Partial Constraint Satisfaction

Thierry Petit1, Christian Bessière2 and Jean-Charles Régin3

1Ecole des Mines de Nantes,
4 rue Alfred Kastler, 44307 Nantes Cedex 3, France.

thierry.petit@emn.fr
2LIRMM,

161 Rue Ada, 34392 Montpellier Cedex 5, France.
bessiere@lirmm.fr

3ILOG,
1681 routes des Dollines, 06560 Valbonne, Sophia Antipolis, France.

regin@ilog.fr

Abstract. Partial constraint satisfaction [5] was widely studied in the
90’s, and notably Max-CSP solving algorithms [21, 20, 1, 10]. These algo-
rithms compute a lower bound of violated constraints without using prop-
agation. Therefore, recent methods focus on the exploitation of propaga-
tion mechanisms to improve the solving process. Soft arc-consistency al-
gorithms [11, 18, 19] propagate inconsistency counters through domains.
Another technique consists of using constraint propagation to identify
conflict-sets which are pairwise disjoint [16]; the number of conflict-sets
extracted leads to a lower bound. In this paper, we place this technique
in a more general context. We show this technique reduces to a polyno-
mial case of the NP-Complete Hitting Set problem. Conflict-sets are
chosen disjoint to compute the lower bound polynomially. We present
a new polynomial case where the conflict-sets share some constraints,
and a third case which is not polynomial but such that the cardinality
of the Hitting Set can be reasonably under estimated. For each one
we provide the algorithm and a schema to generate incrementally the
conflict-set collection. We show its extension to weighted CSPs.

1 Introduction

A Constraint Network R is a triplet (X ,D, C) where X is a set of variables and
D is a set of domains such that a domain D(x) is associated with each x ∈ X .
D(x) defines the values that can be assigned to x. C is a set of constraints.
Each constraint expresses a restrictive property on a subset of variables. The
Constraint Satisfaction Problem (CSP) consists of finding a complete assignment
of values to variables in X such that no constraint is violated.

However, it often happens that a CSP has no solution. In this case the goal
is to find a good compromise and some constraints can be violated according to
certain rules. The Maximal Constraint Satisfaction Problem (Max-CSP) consists
of finding an assignment of values to variables which minimizes the number of

violations (i.e., the number of constraints violated by the solution). The proposi-
tional logic formulation of this problem is Max-SAT [6]. Although this framework
is very simple, at least two strong arguments motivate the study of algorithms
for solving Max-CSP : 1. the existence of sub-problems of real-world applications
which correspond to Max-CSPs. 2. the ability to encapsulate these sub-problems
into global constraints where the solving algorithms are integrated as filtering
algorithms [15, 13].

Existing algorithms for Max-CSP are basically designed to follow a branch-
and-bound schema. Branch and Bound is not required and any search algorithm
can be adapted [16] but it is simpler to present the algorithms in this way. A
depth first exploration of the search tree is performed, where internal nodes rep-
resent partial assignments of values to variables. A leaf that ends a branch of
|X | nodes corresponds to a complete assignment. At each node, P (past) de-
notes the set of variables having a domain of size one (we call them instantiated
variables) and F (future) denotes X \ P . We call distance the number of con-
straints such that all the variables involved in these constraints are in P and
which are violated. The goal is then to minimize the objective UB which is the
best number of violations of a complete assignment found so far. If a node is
such that distance ≥ UB then it is not useful to continue the search below this
node. Any complete assignment extended from this current partial assignment
will not improve UB. This condition is improved by the computation of an un-
derestimation LB (lower bound) of the minimal distance of any leaf of depth |X |
located below the current node. Obviously LB ≥ distance, because distance is
the exact number of violated constraints which involve instantiated variables. If
LB ≥ UB then it is not useful to continue the search below the current node
because we will not improve the best solution found so far. Note that the lower
bound LB can also be used in filtering algorithms1 [10].

Recent works focus on the exploitation of propagation mechanisms to improve
the value of LB, through soft arc-consistency algorithms ([11, 18, 19], initially
introduced in [4]) or by using conflict-set based algorithms [16]. These methods
detect violations which are ignored by the previous reference algorithm PFC-
MRDAC [10]. The conflict-set based lower bound for Max-CSP was also proven
to be combinable with the lower bound computed by PFC-MRDAC.

In this paper, we propose new conflict-set based algorithms. Firstly, we recall
some definitions about conflict-sets in CSPs. We show that the technique initially
presented in [16] is a particular polynomial case of a NP-Complete problem.
Then, we present a second polynomial case which leads to a new lower bound
of the number of violations, computed from a matching algorithm. We propose
a third algorithm for a case which is not polynomial but such that a good
approximation can be computed. We show how to generate incrementally the
different collections of conflict-sets. We show the extension to weighted CSPs.

1 We define here a filtering algorithm as an algorithm which removes from the domains
of future variables the values which cannot belong to a solution.

2 Conflict-set Detection

A conflict-set is a set of constraints that leads to a contradiction [9]. No fea-
sible solution contains a conflict-set. In this paper we consider a sub-class of
conflict-sets, formed by the conflict-sets which can be identified by propagating
constraints. For sake of clarity, we assume that all the filtering algorithms of the
constraints enforce arc-consistency. In all definitions and theorems above we will
consider a constraint network R = (X ,D, C).

Notation 1 Let K ⊆ C. X [K] is the subset of variables in X which occur in at

least one constraint of K. The set of domains of variables in X [K] is denoted by

D[K].

Notation 2 D′ v D means ∀xik
∈ X , D′(xik

) ∈ D′ satisfies D′(xik
) ⊆ D(xik

).

Definition 1. Let C ∈ C defined on variables var(C) = {xi1 , . . . , xik
}. An ele-

ment of D(xi1) × . . . ×D(xik
) is called a tuple of var(C). Value v for variable

x is denoted (x, v). A tuple τ of var(C) is valid if ∀(x, v) ∈ τ, v ∈ D(x). Value

v ∈ D(x) is consistent with a constraint C iff x 6∈ var(C) or ∃τ valid such that

(x, v) ∈ τ . v is arc-consistent iff ∀C ∈ C, v is consistent with C. A domain

D(x) is arc-consistent iff D(x) 6= ∅ and all values in D(x) are arc-consistent.

Then we say that x is arc-consistent. R is arc-consistent iff all variables in X
are arc-consistent. R is arc-inconsistent iff ∀ D′ v D, R′ = (X ,D′, C) is not

arc-consistent.

Definition 2. Let K ⊆ C. K is a conflict-set of C iff R[K] = (X [K],D[K],K)
has no solution.

We will extract conflict-sets from a set of constraints by propagating successively
the constraints until a failure occurs (when a domain is emptied).

Definition 3. Let K ⊆ C. K is an AC-Conflict-set of C iff R[K] = (X [K], D[K],
K) is arc-inconsistent.

Now we define what is an AC-conflict-set minimum ”by inclusion”:

Definition 4. A minAC-Conflict-set K is an AC-Conflict-set such that ∀C ∈ K,

(K \ {C}) is not an AC-conflict-set.

It is possible to reduce an AC-Conflict-set to a minAC-Conflict-set with efficient
polynomial algorithms [7, 8]. The principle is described in section 4.1.

3 Conflict-set Based Lower Bounds for Max-CSP

In all this section we will consider only minAC-Conflict-sets.

3.1 Principle

From definition 2 we know that the existence of one minAC-conflict-set leads to
at least one violation. The intuitive idea is to identify several minAC-conflict-sets
to compute a lower bound of violations. Such conflict-sets will be extracted from
the constraints involving some future variables (for each constraint involving
only instantiated variables we know wether it is satisfied or not: either we have
a conflict-set of size one, either the constraint does not belong to a minAC-
Conflict-set. The constraint is taken into account in the distance).

It is not safe to use the cardinality of a set of minAC-conflict-sets as a lower
bound because of the constraints common to several conflict-sets. Consider the
following example :

Example 1. Let D(x1) = D(x2) = D(x3) = D(x4) = {0, 1, 2, 3}. C = {C1,
C2, C3, C4, C5} where: C1 = [x1 < x2], C2 = [x2 < x3], C3 = [x3 < x1],
C4 = [x3 < x4], C5 = [x4 < x2].

C5 = [x4 < x2]

x3

x4

x2

x1

C1 = [x1 < x2]

C2 = [x2 < x3]

C3 = [x3 < x1]

C4 = [x3 < x4]

Two minAC-conflict-sets have a common constraint, K1 = {C1, C2, C3} and
K2 = {C2, C4, C5}, and the CSP defined by R = (X ,D, C) has a solution which
violates exactly one constraint, C2 : {(x1, 1), (x2, 2), (x3, 0), (x4, 1)}.

In this example the necessary condition of existence of a solution which vio-
lates only one constraint is that C2 is common to the two minAC-conflict-sets.
If such a solution exists then the violated constraint is necessarily C2. More
generally, the problem of evaluation of the minimum number of violations LB
induced by a set of minAC-Conflict-sets is a hitting problem. We search for the
minimum number of constraints required to match all the minAC-conflict-sets.
This is the Hitting Set [6] problem: given a collection of subsets of a set E,
the goal is to find a cover E ′ ⊆ E of minimum size of the collection of subsets.
In our context this size is a lower bound.

The Hitting Set problem is NP-Complete but it would be wrong to con-
clude that this complexity forbids us to use conflict-set to compute a lower bound
of violations for Max-CSP. According to some particular properties of the col-
lection of minAC-Conflict-sets generated it is possible to compute polynomially
or to approximate the lower bound. This remark is enforced by the fact that the
number of conflict-sets can itself be huge: it is not reasonable to generate all of
them. Therefore, we can build a specific set of minAC-Conflict-sets that respects
some properties. In the remaining of this section we will present different col-
lections of minAC-Conflict-sets and the algorithms used to compute the lower
bound LB.

3.2 Disjoint Conflict-Sets

Régin et al. [15] suggested to guarantee the independence of violations counted
for each minimal AC-Conflict-set by considering a collection Ψ of conflict-sets dis-
joint one another. Since the conflict-sets have no constraint in common, the LB
is equal to the number of conflict-sets in the collection. The property of having
minimal AC-Conflict-set is not necessary but leads to a better lower bound: the
smaller are the conflict-sets computed, the greater is the set of constraints that
can be used to compute new ones. Finally the number of conflict-set generated
should also be greater. We denote by Ψ the collection of disjoint minAC-Conflict-
Sets.

computeLB(Ψ) {
return |Ψ |;

}

This technique has proven to detect inconsistencies ignored by the best
”non-propagating” algorithm PFC-MRDAC [10]. For instance, cycles of inequal-
ities that occur in scheduling problems (precedence constraints). They can be
detected because they form conflict-sets, whereas they are ignored by PFC-
MRDAC.

x1 x2

x3

C1 = [x1 < x2]

D(x1) = D(x2) = D(x3) = {1,2,3}

 Value 2 in each domain does not violate directly the

constraint. Propagation is required to detect the violation.

C2 = [x2 < x3]

C3 = [x3 < x1]

A method for combining this bound with the one of PFC-MRDAC is proposed
in [16]. The principle of this combination can be applied with no restriction to
all the other collections of minimal AC-Conflict-sets presented in this paper.

3.3 Constraints Common to At Most Two Conflict-sets

Assume that given two conflict-sets, no restriction is made on the total number
of constraints they share, but each of these constraints do not belong to a third
conflict-set. In this case we can represent the collection by a graph:

– Vertices are conflict-sets,
– Each edge represents a constraint or a set of constraints shared by two

conflict-sets (the two conflict-sets are represented by the two incident vertices
of the edge).

(C8, C11)

CS1 = {C1, C2, C3}

(C1, C2)

CS2 = {C1, C2, C4, C5, C6}

CS3 = {C6, C8, C11}

(C6)

(C5)

CS5 = {C14, C16}

(C16)

CS4 = {C5, C8, C11, C16}

The lower bound can be computed by a polynomial algorithm. Indeed, the prob-
lem consists of finding an Edge Cover of the graph. In the Edge Cover
problem the goal is to find the minimum number of edges required to cover all
the vertices. In [12, 6] the Edge Cover problem is mentioned to be solvable by
matching algorithms. Let us go further in details. We call d(x) the number of
edges incident to a vertex x in a graph G (the degree of x).

Definition 5. Let G = (X , E) be a graph. A matching is a subset E ′ ⊆ E such

that no two edges in E ′ have a vertex in common. |E ′| is called the cardinality

of the matching. A matching of maximum cardinality µ is called a maximum

matching.

Theorem 1. : Norman and Rabin, 1959 [14]
Let G = (X , E) be a graph. Let µ be the cardinality of a maximum matching in

G. |X | − µ is the cardinality of a minimum edge cover in G.

We propose a proof that gives the intuitive idea of the result:

Proof: let E′ be an edge cover of minimal cardinality |E′|. Let (u, v) ∈ E′. Con-

sider G′ = (X, E′). Then either d(u) = 1 or d(v) = 1 in G′. If it was not the case E′

would not be minimal, since by removing (u, v) we would obtain another edge cover. If

we remove from each vertex of degree > 1 all its incident edges but one then we obtain a

matching M of cardinality m. Each of the m edges of this matching covers two vertices,

so the matching covers 2 ∗m vertices. By definition to cover any vertex which does not

belong to M one edge is necessary, that is to cover all of them, |X| − 2 ∗ m edges are

necessary. So |E′| = m+ |X|− 2 ∗m = |X|−m. By definition of a maximum matching

of cardinality µ′ in G′ we have m ≤ µ′. Since G contains more edges than G′ we have

a fortiori m ≤ µ. Consequently, |E′| ≥ |X| − µ (1). Moreover, let M be a maximum

matching of cardinality µ. 2 ∗ µ vertices are covered by M and |X| − 2 ∗ µ vertices

remain. Select one edge incident to each vertex that does not belong to the matching.

The second vertex of such an edge necessary belongs to the matching. Indeed, if it was

not the case then the matching would not be maximum since by adding the edge we

would obtain a matching of cardinality µ+1. Finally, if we add the selected edges to the

ones of the matching we obtain an edge cover. Its cardinality is µ+|X|−2∗µ = |X|−µ.

We deduce |E′| ≤ |X| − µ (2). From (1) and (2) we know that |X| − µ is exactly the

cardinality of a minimum edge cover.

The following algorithm is stem from this theorem. Ψ = {K1, . . . ,K|Ψ |} denotes
a set of conflict-sets and E the set of edges, each one representing a non empty
intersection between two conflict-sets. If the graph has some isolated vertices,
we just need to count them and add their number to the lower bound, because
each one corresponds to a disjoint conflict-set.

computeLB(G = (Ψ, E)) {
LB ← 0
for each x ∈ Ψ s.t. d(x) = 0 do

LB ← LB + 1;
Ψ ← Ψ \ {x};

µ← cardinality of a maximum matching in G;
LB ← LB + |Ψ | − µ;
return LB;

}

Any number of constraints can be shared by two conflict-sets (violating one
of them is sufficient to cover the two conflict-sets). This property enforces the
interest of such a computation. The complexity for computing a matching on a
bipartite graph G = (Ψ, E) is O(|E| ∗

√

|Ψ |) [2]. When constraints are common
to more than two conflict-sets the problem is not polynomial.

3.4 Unary Intersection between Pairs of Conflict-Sets

The Hitting Set problem remains NP-Complete even when the considered
subsets have a size of at most 2 [6]. We deduce that, more generally, even in
the case where any intersection between two minAC-Conflcit-set is empty or
a singleton computing the lower bound remains NP-Complete. We propose to
under-estimate the cardinality of the minimum number of constraints required
to cover all the minAC-Conflict-sets.

Let G = ((C, Ψ), E) the bipartite graph2 such that an edge is defined between
a constraint C and a conflict-set K ∈ Ψ iff C ∈ K. Let us order the constraints by
decreasing degrees in G. The degree is the number of incident edges of a vertex.
Consider the subset C′ of the first constraints such that:

– The sum of degrees of constraints in C ′ is greater or equal than |Ψ |
– ∀ C” ⊂ C′ the sum of degrees is strictly less than |Ψ |.

2 A graph G = ((X, X ′), E) is bipartite iff ∀e = (u, v) ∈ E, either u ∈ X and v ∈ X ′

or u ∈ X ′ and v ∈ X.

In any graph the minimal possible number of constraints required to cover
all the conflict-sets cannot be less than |C ′|. Therefore the cardinality of C ′ is a
lower bound. This technique can be applied in the general case but it should be
precise only when (almost all) intersections are unary.

computeLB(G = ((C, Ψ), E)){
LB ← 0;
sumDeg← 0;
L← list of constraints ∈ C ordered by decreasing degree in G;
while sumDeg < |Ψ | do

pick and remove the first constraint C from L;
sumDeg ← sumDeg+ degree of C;
LB ← LB + 1;

return LB;
}

Given Ψ , the complexity of this algorithm is O(|C|). Note this approximation can
be related to the minimum constraint family algorithms presented by Beldiceanu
[3].

4 Generation of Collections

In this section we discuss the generation of the set Ψ of minAC-Conflict-sets
useful to compute the lower bound LB, according to the property we want to
maintain: disjoint conflict-sets, constraints shared at most once, unary intersec-
tions between pairs of conflict-sets. We present an incremental schema based on
the concepts presented in [17] for disjoint conflict-sets. We maintain two sets:

– A ⊆ C the set of constraints available to compute new conflict-sets.
– Ψ the current collection of conflict-sets.

Initially, when the search starts, Ψ = ∅ and A = C. The first function useful to
all the algorithms we present is the one used to maintain AC-Conflict-sets which
are min-AC-Conflict-sets.

4.1 Minimizing AC-Confllict-sets

Notation 3 Given a set of constraint A and a total order σ on the constraints,

we denote by Aσ the set containing all constraints in A ordered by σ.

The function computeAC-Conflict-Set(Aσ) returns the set K of the k first
constraints in Aσ such that the network R[Kσ] is arc-inconsistent and the net-
work obtained by considering Kσ but its last constraint Clast is arc-consistent
(this function will be described in section 4.2.2 because it depends on each col-
lection). K forms a conflict-set but it is not necessarily minimal. We only know
that Clast belongs to the minimal conflict-set we will finally extract from K.

Therefore, the following schema is then repeated successively : we consider
a new order σ′ on constraints deduced from the previous one by placing last
constraint in the conflict-set at the first position. K is assigned with the re-
sult of computeAC-Conflict-Set(Kσ′). The new conflict-set obtained may
be smaller than the previous one if a domain has been emptied by propagating
a smaller number of constraints, because the ordering has changed.

The schema stops when the last constraint in the conflict-set is again Clast. A
complete turn has been made. By construction the last AC-Conflict-set generated
cannot be reduced more. It is a minAC-Conflict-set.

4.2 Incremental Generation

At each node, we will first remove some constraints from Ψ and add them to A.
This step is required if we need to maintain conflict-sets which are minimal. The
principles are explained below.

4.2.1 Removal of Constraints from the collection Ψ When a minAC-
Conflict-set K is generated and added to Ψ , it is such that ∀C ∈ K, (K − {C})
is not an AC-conflict-set. However, when we continue the search, domains of
variables may be reduced. The previous AC-Conflict-sets remain AC-conflict-
sets but they are not necessarily minimal. From these two properties we can
update the previous set of conflict-sets Ψ instead of recomputing it from scratch.
In this section we focus on the constraints that can be removed from Ψ to be
re-added to A. Next section will focus on the generation of new conflict-sets from
the updated set A. We consider that minAC-Conflict-sets are required.

A. General Schema We first describe a general algorithm common to all col-
lections. This algorithm calls updateCtData, a function specific to each collec-
tion. This function is used to update some data required to maintain the property
defining the collection. It will described just after for each collection (see para-
graphs B., C., D.). The algorithm uses also the computeMinAC-Conflict-
Set function defined in section 4.1.

updateData(Ψ , A) {
for each K ∈ Ψ do

K′ ← computeMinAC-Conflict-Set(K);
Ψ ← (Ψ \ {K}) ∪ {K′};
for each C ∈ K \ K′ such that C /∈ A do

A ← A ∪ {C};
updateCtData(K, K′);

return (Ψ , A);
}

The complexity is |C|2 times the cost of propagating a constraint (the worst
case, when the size of A is negligible compared with Ψ). Indeed as we will

see the cost of the updateCtData procedure is not significant. Note that in
the case of a collection of disjoint conflict sets it is not required to have mini-
mal AC-Conflict-sets; to obtain a cheaper computation we may replace the call
to computeMinAC-Conflict-Set(K) by a call to computeAC-Conflict-
Set(K, σ) with any order σ. Now, let us define the updateCtData procedure
according to each collection.

B. Disjoint Minimal Conflict Sets In this case it is not required to store
anything concerning the constraints.

updateCtData(K, K′) { }

C. Constraints Shared at Most Once In this case we will maintain for
each C ∈ A the number of conflict-sets where it appears. For sake of clarity we
consider a global data structure such that for each constraint C ∈ C the value
#CS(C) is the number of conflict-sets K ∈ Ψ such that C ∈ K.

updateCtData(K, K′) {
for each C ∈ K \ K′ do

#CS(C) ← #CS(C) − 1;
}

D. Unary Intersection between Pairs of Conflict-sets In this case we
will maintain the bipartite graph G = ((C, Ψ), E) such that an edge is defined
between a constraint C and a conflict-set K ∈ Ψ iff C ∈ K. By removing edges
we keep stable on the property of having unary intersections. For sake of clarity
we consider the graph as a global structure.

updateCtData(K, K′) {
remove vertex K from G and all its incident edges;
add a new vertex K′ to G;
for each C ∈ K′ do

add (C,K′) in E;
}

4.2.2 Generation of Conflict-sets from the set A In this section we de-
scribe how to increase the size of the collection Ψ from the set of available
constraints A.

A. General Schema The algorithm uses a sub-routine that checks if a set of
constraint K is an AC-Conflict-set (by achieving arc-consistency). We call this
sub-routine isAC-Conflict-set. Each conflict-set detected in A is added to Ψ ,
and A and eventually the global structures are updated. The function used to
extract an AC-Conflict-set with respect to the properties required by the collec-
tion is called computeAC-Conflict-Set. The function used to update A and

the global data with respect to the collection is called updateAfterGener-
ate. It takes A and the current extracted conflict-set K as argument. These two
functions are specific to each collection and will be described later. Beforehand,
we define the common part, that is, the algorithm computeCollection used
to generate a collection of min-AC-Conflict-sets. The order σ on constraints is
arbitrary, but we keep it to have only one definition of computeAC-Conflict-
Set in the paper (see section 4.1).

computeCollection(Aσ , Ψ) {
K ← computeAC-Conflict-Set(Aσ);
while K 6= ∅ do

K ← computeMinAC-Conflict-Set(K);
Ψ ← Ψ ∪ {K};
Aσ ← updateAfterGenerate(Aσ , K);
K ← computeAC-Conflict-Set(Aσ);

return (Aσ , Ψ);
}

B. Disjoint Minimal Conflict Sets The constraints in Aσ are successively
added until a failure occurs.

computeAC-Conflict-Set(Aσ) {
K ← {first constraint C in Aσ}
Aσ ← Aσ \ {C}
while ¬ isAC-Conflict-Set(K) ∧ A 6= ∅ do

K ← K ∪ {first constraint C in Aσ}
Aσ ← Aσ \ {C}

if ¬ isAC-Conflict-Set(K) then return ∅;
return K;

}

All the constraints of the minAC-Conflict-set K are removed from A.

updateAfterGenerate(Aσ , K) {
Aσ ← Aσ \ K;
return Aσ ;

}

The complexity of the computeCollection algorithm is |Aσ |
2 times the cost

of propagating a constraint.

C. Constraints Shared at Most Once The function computeAC-Conflict-
Set(A, σ) is identical to the previous one. The condition for removing a con-
straint C from A depends on value of the accessor #CS(C), which gives the
number of conflict-sets K ∈ Ψ such that C ∈ K. #CS(C) (see section 4.2).

updateAfterGenerate(Aσ , K) {
for each C ∈ K do

#CS(C) ← #CS(C) + 1;
if #CS(C) = 2 then Aσ ← Aσ \ {C};

return Aσ ;
}

The order of complexity is the same as in the disjoint case.

D. Unary Intersection between Pairs of Conflict-sets In this case the
algorithm used to compute each conflict-set must verify that all intersections
with existing conflict-sets are unary. We use the bipartite graph G = ((C, Ψ), E)
such that an edge is defined between a constraint C and a conflict-set K ∈ Ψ iff
C ∈ K. It is defined as a global structure. This graph is useful to compute the
lower bound and in the algorithm below it is used to check if constraints belong
to conflict-sets.

computeAC-Conflict-Set(Aσ) {
K ← ∅;
C ← first constraint C in Aσ

Aσ ← Aσ \ {C}
add ← true;
while ¬ isAC-Conflict-Set(K) ∧ Aσ 6= ∅ do

for each C ′ ∈ K s.t. C ′ 6= C do

if ∃ K′ ∈ Ψ : C, C ′ ∈ K′ then

add ← false;
if add then K ← K ∪ {C};
C ← {first constraint C in Aσ}
Aσ ← Aσ \ {C}
add ← true;

if ¬ isAC-Conflict-Set(K) then return ∅;
return K;

}

The updateAfterGenerate function updates G with each new conflict-set.
Initially, when we start the search, G contains all constraints as isolated vertices.

updateAfterGenerate(Aσ , K) {
add a new vertex K to G;
for each C ∈ Kdo

add (C,K) in E;
return Aσ ;

}

The order of complexity of the computeCollection algorithm remains |A|2

times the cost of propagating a constraint.

5 Perspectives: Weighted CSP

We recall that Weighted CSP [5] is the framework where a weight is associated
with each constraint and the goal is to minimize the sum of weights of violated
constraints. Adapting the approach of disjoint conflict-sets to weighted CSPs
just consists of counting the weight of a constraint of minimal weight in each
minAC-Conflict-Set instead of counting one3. When constraints can be shared
by conflict-sets, it is also possible to adapt the framework to the weighted case.
Consider two minAC-Conflict-sets that share at least one constraint. To perform
the sum of weights, it is not safe to consider only the constraints common to these
two conflict-sets. Indeed, it may exist two constraints which do not belong to
the intersecting set and such that their sum of weights is less that the minimum
existing weight of a constraint in the common set. Therefore the contribution
of these two conflict-sets will be the minimum value obtained by comparing the
minimal weight of a constraint shared by the two conflict-sets and the sum of
the two minimal weights of constraints in the conflict-sets, one per conflict-set.
Since we only compute the cardinality of an edge cover, for each conflict-set we
will consider the minimum value over all the possible intersections. In this way
it is possible to obtain a lower bound of the sum of weights of any complete
assignment below the current node. Since we can only take the minimum weight
into account the LB may likely suffer. Experimentation is needed. Therefore this
extension should be considered as an interesting topic for future work.

6 Conclusion

We proposed a general conflict-set based framework for computing a lower bound
of violations in a Max-CSP that extends the algorithms proposed in [16]. We
presented a schema to generate incrementally the conflict-set collection and to
compute incrementally the lower bound. We discussed the extension to weighted
CSPs.

References

1. M. S. Affane and M. Bennaceur. A weighted arc consistency technique for Max-
CSP. Proceedings ECAI, pages 209–213, 1998.

2. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Networks flows: theory, algorithms,
and applications. Prentice Hall, Inc., 1993.

3. N. Beldiceanu. Pruning for the minimum constraint family and for the number of
distinct values constraint family. Proceedings CP, pages 377–391, 2001.

4. S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi. Labeling and partial local
consistency for soft constraint programming. Second International Workshop on

Practical Aspects of Declarative Languages, PADL’OO, pages 230–248, 1999.

3 Max-CSP can be encoded as a Weighted CSP where all the constraints have a weight
equal to one.

5. E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelli-

gence, 58:21–70, 1992.
6. M. R. Garey and D. S. Johnson. Computers and intractability : A guide to the

theory of NP-completeness. W.H. Freeman and Company, ISBN 0-7167-1045-5,
1979.

7. J-L. de Siqueira N. and J-F. Puget. Explanation-based generalization of failures.
Proceedings ECAI, pages 339–344, 1988.

8. Ulrich Junker. QuickXplain: Conflict detection for arbitrary constraint prop-
agation algorithms. IJCAI’01 workshop on modelling and solving problems with

constraints, pages 75–82, 2001.
9. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation

and conflict-based heuristics. Artificial Intelligence, pages 21–45, 2001.
10. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.

Artificial Intelligence, 107:149–163, 1999.
11. Javier Larrosa. Node and arc consistency in weighted CSP. Proceedings AAAI,

pages 48–53, 2002.
12. E. Lawler. Combinatorial optimization: Networks and matroids. Holt, Rinehart

and Winston, 1976.
13. M. Lemâıtre, G. Verfaillie, E. Bourreau, and F. Laburthe. Integrating algorithms

for Weighted CSP in a constraint programming framework. CP’2001 workshop on

soft constraints, SOFT’O1, Paphos, Cyprus, 2001.
14. R. Z. Norman and M. O. Rabin. An algorithm for minimum cover of a graph.

American Math. Soc., 10, 1959.
15. J-C. Régin, T. Petit, C. Bessière, and J-F. Puget. An original constraint based

approach for solving over constrained prolems. Proceedings CP, pages 543–548,
2000.

16. J-C. Régin, T. Petit, C. Bessière, and J-F. Puget. New lower bounds of constraint
violations for over constrained prolems. Proceedings CP, pages 332–345, 2001.

17. J-C. Régin, J-F. Puget, and T. Petit. Representation of soft constraints by hard
constraints. Proceedings JFPLC’02, 2002.

18. T. Schiex. Arc consistency for soft constraints. Proceedings CP, pages 411–424,
2000.

19. T. Schiex. Une comparaison des cohérences d’arc dans les Max-CSP. Proceedings

JNPC, pages 209–223, 2002.
20. G. Verfaillie, M. Lemâıtre, and T. Schiex. Russian doll search for solving constraint

optimisation problems. Proceedings AAAI, pages 181–187, 1996.
21. R.J. Wallace. Directed arc consistency preprocessing as a strategy for maximal

constraint satisfaction. Proceedings ECAI, pages 69–77, 1994.

