N
N

N

HAL

open science

One-Step Algorithm for Mixed Data and Task Parallel
Scheduling Without Data Replication

Vincent Boudet, Frédéric Desprez, Frédéric Suter

» To cite this version:

Vincent Boudet, Frédéric Desprez, Frédéric Suter. One-Step Algorithm for Mixed Data and Task
Parallel Scheduling Without Data Replication. IPDPS’03: 17th International Parallel and Distributed

Processing Symposium, Apr 2003, Nice, France. lirmm-00269808

HAL Id: lirmm-00269808
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269808
Submitted on 10 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269808
https://hal.archives-ouvertes.fr

AN

Laboratoire de I’ nformatique du Paral-
[élisme

Ecole Normale Supérieure de Lyon % CENTRE NATIONAL
Unité Mixte de Recherche CNRS-INRIA-ENS LYON 5668 D ERGLHLRCHE

One-Step Algorithm for Mixed Data
and Task Parallel Scheduling Without
Data Replication

V. Boudet,
F. Desprez, October 2002

F. Suter

Research Report N° 2002-34

Ecole Normale Supérieure de Lyon

I“ 46 Allée d'ltalie, 69364 Lyon Cedex 07, France 1 N 1 A
Téléphone : +33(0)4.72.72.80.37 ‘ R
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquelip@ens-lyon.fr

One-Step Algorithm for Mixed Data and Task
Parallel Scheduling Without Data Replication

V. Boudet, F. Desprez, F. Suter

October 2002

Abstract

In this paper we propose an original algorithm for mixed data and
task parallel scheduling. The main specificities of this algorithm are
to simultaneously perform the allocation and scheduling processes,
and avoid the data replication. The idea is to base the scheduling
on an accurate evaluation of each task of the application depending
on the processor grid. Then no assumption is made with regard
to the homogeneity of the execution platform. The complexity of
our algorithm are given. Performance achieved by our schedules
both in homogeneous and heterogeneous worlds, are compared to
data-parallel executions for two applications: the complex matrix
multiplication and the Strassen decomposition.

Keywords: Mixed—parallelism, Scheduling, Data Replication

Résumé

Dans cet article, nous proposons un algorithme original d’ordon-
nancement mixte. Les principales spécificités de cet algorithme sont
d’effectuer simultanément 1’allocation et I’ordonnancement, et d’in-
terdire la réplication de données. L’idée est de baser ’ordonnan-
cement sur une évaluation précise de chacune des taches de ’ap-
plication en fonction de la grille de processeurs utilisée. Aucune
hypothése concernant I'homogénéité de la plate-forme n’est donc
effectuée. La complexité de notre algorithme est donnée. Les per-
formances obtenues par nos ordonnancements, aussi bien en homo-
geéne qu’en hétérogéne, sont comparées a des exécutions utilisant le
parallélisme de données pour deux applications : la multiplication
de matrices complexes et la décomposition de Strassen.

Mots-clés: Parallélisme mixte, Ordonnancement, Réplication de données

Mixed Data and Task Parallel Scheduling 1

1 Introduction

Parallel scientific applications can be divided in two major classes: data—
and task—parallel applications. The former consists in applying the same
operation in parallel on different elements of a data set, while the latter is
defined to be concurrent computations on different data sets. These two
classes can be combined to get a simultaneous exploitation of data— and
task—parallelism, so called mized—parallelism. In mixed—parallel applications,
several data—parallel computations can be executed concurrently in a task—
parallel way. Mixed—parallelism programming employs a M—=SPMD (Multiple
SPMD) style which is the combination of both task—parallelism (MPMD)
and data-parallelism (SPMD). Such an exploitation of mixed—parallelism has
many advantages. One of them is the ability to increase scalability because
it allows the use of more parallelism when the maximal amount of data— or
task—parallelism that can be exploited is reached.

1.1 Related Work

Most of the researches about mixed—parallelism have been done in the area
of programming languages. Bal and Haines present in [1] a survey of sev-
eral languages aiming at integrating both forms of parallelism. To perform
such an integration, two approaches are possible. The former introduces con-
trol in a data—parallel language |6, 7, 13| while the latter add data—parallel
structures in task—parallel languages [4, 14].

One way to obtain a simultaneous exploitation of data— and task—
parallelism consists in considering task graphs whose nodes can be data—
parallel routines and then find a schedule that minimizes the total completion
time of the application.

In [11] Ramaswamy introduces a structure to describe mixed-parallel
programs: the Macro Dataflow Graph (MDG). It is a direct acyclic graph
where nodes are sequential or data—parallel computations and edges repre-
sent, precedence constraints, with two distinguished nodes, one preceding and
one succeeding all other nodes. MDGs can be extracted form codes written
in C, Fortran or even Matlab. A node is weighted by the computation cost
of the task, estimated using Amdahl’s law. This execution time also includes
data transfer latencies which depend on source and destination data distri-
butions. An edge between two nodes is weighted by communication times,
i.e., the total amount of data to transfer divided by the bandwidth of the
network. The scheduling algorithm proposed by Ramaswamy is based con-
vex programming, allowed by posynomial properties of chosen cost models,
and some properties of the MDG structure. The critical path is defined as

2 V. Boudet et al.

the longest path in the graph while the average area which provides a mea-
sure of the processor-time area required by the MDG. The first step of the
TSAS (Two Step Allocation and Scheduling) algorithm aims at minimizing
the completion time using these two metrics. An allocation is determined for
each task during this step. A list scheduling algorithm is used in the second
step to schedule the allocated tasks to processors.

Radulescu et al. have also proposed two-step mixed—parallel scheduling
algorithms: CPA [9] and CPR [10]. Both are based on the reduction of ap-
plication critical path. The main difference between these algorithms is that
the allocation process is totally decoupled of the scheduling in CPA. In the
allocation step, both algorithms aims at determining the most appropriate
number of processors for the execution of each task. The technique used is
first to allocate one processor per task and then add processors one by one
until the execution time increases or the number of available processors is
reached. Once again estimations of computation costs are based on Amdahl’s
law. The second step schedules the tasks using a list scheduling algorithm.

Rauber and Riinger [12| limit their study to graphs built by serial and /or
parallel compositions. In the former case, a sequence of operations with data
dependencies is allocated on the wole set of processors and then executed
sequentially. In the latter the set of processors is divided in an optimal
number of subsets. This number is determined by a greedy algorithm and
the optimality criterion is the reduction of completion time. The computation
costs of the parallel routines are estimated by runtime formulas depending
on communication costs and sequential execution times.

1.2 Our Contributions

The specificity of our algorithm is to base the scheduling on an accurate
evaluation of each task of the application. Thanks to a tool named FAST [§]
and its parallel extension [5], we are able to determine the size and the shape
of the best execution platform for a given routine. Moreover it is quite easy
with this tool to estimate the cost of a redistribution between two processor
grids by combining an analysis of the communication pattern to information
about current network status.

We aim at improving some aspects of mixed data and task parallel
scheduling algorithms presented before. First these algorithms dissociate
allocation and scheduling. Such a separation may lead to not detect a pos-
sible concurrent execution if less processors are allocated to some tasks. In
section 1.3 we give an example motivating the simultaneous execution of
allocation and scheduling processes.

To limit the multiple data copies, and thus the memory consumption

Mixed Data and Task Parallel Scheduling 3

induced by the use of mixed parallelism, we have forbidden data replication
in the conception of our algorithm. This constraint is not taken into account
in the previous algorithms. In the next section, we justify this policy by
presenting on a simple example, the gain in terms of execution time coming
from mixed parallelism and the evolution of memory consumption depending
on the chosen solution. Then we detail our algorithm in section 3. Finally, in
section 4 we present schedules produced by our algorithm for complex matrix
multiplication and the Strassen decomposition.

1.3 Motivating Examples

To show why it is mandatory to not separate allocation an scheduling pro-
cesses, we have considered the task graph presented by Figure 1 (left), in
which all tasks are dense matrix products involving matrices of same size.
The platform where the tasks have to be allocated is composed of 13 proces-
sors. The data-parallel execution of a matrix multiplication on such a number
of processors achieves poor performance. A schedule based on mixed paral-
lelism may be efficient in such a case. In that example, we considered three
sub-grids, respectively composed of 4, 9, and 12 processors, in addition to
the whole grid. Execution times achieved on each of these configurations are
given in Figure 1 (right).

& ® | Configuration | Time |
® ® 2 % 2 11,56
3% 3 3,44
P 34 6,54
< %13 16, 70

Figure 1: Example of task graph (left) and execution times of each of these
tasks on different processor grids (right).

When allocation and scheduling are dissociated, the first step aims at
allocating each task on the grid which achieves the best performance, i.e.,
the 3 x 4 grid. This solution implies that tasks will be serially scheduled in
the second step. In such a case the completion time will be 48 seconds.

But if allocation and scheduling are performed simultaneously, associat-
ing tasks to estimations of execution time, it is possible to find a solution
allocating less processors to some tasks to perform some others in parallel.

4 V. Boudet et al.

Our algorithm is thus able to produce a schedule whose completion time will
be 32,5 seconds. Then we obtain a gain of 30% with regard to the previous
solution.

To find this mixed parallel schedule, the studied algorithms use a min-
imization function, typically of the critical path, in their allocation step.
Several iterations are then needed to reach the optimal solution.

To justify our choice to forbid data replication, let us study the application
of mixed parallelism to the following complex matrix multiplication operation

C:{ CTZATXBT—AZ'XBZ'
Ci:ATXBi—l—AiXBT

Let us assume we dispose of two processor grids of size p for this exper-
iment. We also assume that the input data of that problem are distributed
as follows: A, and A; are aligned on the first p? processors while B, and
B; are distributed on the last p? processors. Finally we add an additional
constraint imposing on C,. and C; to be distributed on the same grid as A at
the end of the computation. Figure 2 shows completion times achieved using
respectively data-parallelism (a), mixed-parallelism with data replication (b)
and mixed-parallelism without replication (c).

time

Product
Product
Product Product
3] 3] °© k3]
=3 3 =] 3
Product ‘5 B 8 g
o a o a
Product Product
Product
processors
(@ (b) ()

Figure 2: Comparison between data-parallel, mixed-parallel with data repli-
cation and mixed-parallel without data replication scheduling for the complex
matrix multiplication.

On this figure shaded parts represent data redistributions between pro-
cessor grids. Both addition and subtraction operations are not reported on
that figure as their execution times are negligible with regard to the rest of
the application. Moreover we can see that, when data have already a source
distribution, replication increases the number of redistributions performed.

We compared the memory space needed by each of the studied solutions.
If each matrix involved is of size NV, the data-parallel version and our version

Mixed Data and Task Parallel Scheduling 5

without replication will both need 3N?/4 temporary elements per processor,
while the mixed-parallel version with replication will need 3N?/2 elements.
When data have already a distribution, we can thus claim that using mixed
parallelism without replication allows to reduce execution time and not in-
crease the memory consumption in a too large proportion.

2 Task Graph Model

Our one-step algorithm is based on a task graph structure close to the MDG
structure proposed by Ramaswamy [11]. An application is then described by
direct acyclic graph G = (V, E)) where nodes represent potentially parallel
tasks and edges shows dependencies between tasks. Two particular nodes
are added to this structure. The START node precedes all other nodes. Tasks
having this node for father involve initial data of the application. The STOP
node succeeds all other nodes. Tasks having this node for son involve terminal
data of the application.

Initial and terminal data of the application have fixed distributions the
schedule has to respect. For instance if an application uses two matrices, the
former distributed on one half of the available processors while the latter is
distributed on the other half, a data-parallel schedule will have to include
the redistribution costs needed to align those matrices on the whole set of
processors. The same rule applies for the results produced by the application.

As considered tasks correspond to ScaLAPACK routines, each of them
implies at most three input data. On the other hand the number of sons of
a task is not limited as a data can be used by several other tasks.

As mentioned before, our algorithm relies on information relative to each
task of the application which are integrated in our task graph structure as
follows. First a redistribution cost table is associated to each edge. We also
associate to each node a startup time, the location of task input data and a
list of couples {configuration; execution time}. Each of these configurations
is defined as a tuple {p,q, mb, nb,list}, where p and ¢ are respectively the
numbers of rows and columns of the processor grid employed; mb and nb are
the dimensions of a distribution block, as ScaLAPACK routines use block-
cyclic distributions on a virtual grid of processors; finally the last field of this
tuple is the [list of the processors composing the grid (See C, Cy and Cj in
Figure 3). We choose to use a list instead of coordinates of a distinguished
processor to be able to handle non contiguous grids as shown in Figure 3.
However we assume that contention is negligible.

Theses configurations allow us to avoid any strong constraint about the
homogeneity of the whole platform. Indeed, to achieve optimal performance

6 V. Boudet et al.

! C1=1{2,2,10,10, {0,1,5,6}}

C2 =1{2,3,32,32, {7,8,9,12,13,1}4}

C3={152.2,{2,3,4,10,11}}

Figure 3: Configurations and description samples associated.

in mixed-parallel execution, we only need homogeneity inside configurations.
Moreover if routines targeting heterogeneous platform exist, there is no more
assumption made about homogeneity. Finally we can take into account the
impact of the grid shape on performance using such configurations.

3 Description of the One-Step Algorithm

Our goal is to determine for each task whether it is better to compute it on
the whole set of processors in a data-parallel way or assign a subset of the
processors to this task. In the latter case some processors are available for
another task. We first describe the algorithm which determines the decision
to take when we are confronted to a set of tasks independent of another one.
Next we extend this algorithm to the case of a task graph representing a
whole application.

3.1 Mixed-Parallel Scheduling of Independent Tasks

Let us consider a task 7) and a set of tasks Z = {T5,---,T,} which are
independent of T;. Each task T; in T} U Z is associated to a subset of C; =
{C1,- -+, Cy}, the set of possible configurations. The computation time of a
task 7; on a configuration C; is denoted as ?; ;. This time does not include the
possible communications needed to transfer the input data to the processors
of the chosen configuration.

The main idea to determine if we assign 7 either to the whole set of
processors or one of its configurations associated is the following. We have
to compute #,,izeq and t,, which are respectively the mixed- and the data-
parallel execution times of a set of tasks. Assume that we assign 77 to a given
configuration C;. The time when all the processors of this configuration are
ready to receive the needed data is denoted as EST(C;)!. For each data
D; € D, where D is the set of data needed to execute 17, Cp, represents

IEarlier Startup Time

Mixed Data and Task Parallel Scheduling 7

the configuration where this data is distributed and R(D;) is the time to
transfer D; to ;. The Update algorithm 1 is then used to update the EST
of each configuration involved in this redistribution. This guarantees that a
processor can not begin to compute before it finished to participate to the
redistribution of the data it owns.

Algorithm 1 EST update algorithm.
Update (C, D)
t<«— EST(C)
For i =1 to ||D||
m <— max(t, EST(Cp,))
t =m+ R(D;)
For each C; in which at least one processor owns a part of D;
EST(Cj) = m+ R(D;)

When trying to schedule another tasks while executing 77 using mixed-
parallelism, we have to consider the subset U constituted of couples {task;
configuration} where each task is independent of T} and each configuration
involves only processors of P\C;. It has to be noticed that a same task can
appear several times in U if more than one of its configurations associated
involve no processor of C;. Elements of this set are sorted with regard to
the amount of redistribution they induce due to the mapping of 7T} on C;.
Moreover tasks which produce a terminal data are not included in /. If this
choice prevents us to execute more tasks in parallel of 77, it also simplifies
our algorithm.

Let us consider one of these couples {7}, C}.}. Task Tj is supposed to start
at EST(Cy). However it may happen that the communication needed to
execute T; on (Y involves some processors of C;. To prevent the serialization
of these tasks, we have to perform this communication before starting the
execution of T7. In such a case the ESTs of C; and each configuration
for which at least one processor owns a part of data to transfer have to be
increased as Figure 4 shows. The Update algorithm 1 is called again.

time A
Redistribution(s) for T1 Redistribution(s) for Tj

processors

Figure 4: Increase of EST(C;) due to the redistribution induced by 7j.

Intuitively the condition given in equation 1 ensures that the mapping

8 V. Boudet et al.

of T on C}, and the redistribution induced, do not increase the time of any
configuration such that it exceeds the execution time of 7} on Cj.

j

If this condition is preserved, then 7} is scheduled using mixed-parallelism
and the corresponding couple is added to S, the set of already scheduled
tasks. Moreover U is updated. Each couple involving T} is removed from the
set and if the scheduling of T; produces ready tasks which are independent
of T7, then the corresponding couples are added to U.

On the other hand, if the condition is no more true, the update of ESTs is
canceled, the couple {7}, Ci} is removed from U and the algorithm considers
the next candidate.

Once all couples in U have been considered, tizea = EST(C;) + t1,; is
the completion time of already scheduled tasks. It may happen that the only
task to schedule is 7;. In such a case the proposed mixed-parallel solution
will be to assign 77 on C; and leave the other configurations idle.

After reinitializing the EST of the whole set of processors, ignoring
the previous updates, it is possible to compute the completion time cor-
responding to the data-parallel execution of the same tasks , i.e., t,, =
>i(tip + redistribution cost associated to 7T;) where data needed by each T;
are respectively distributed on C;. If #,,,cq is less than ¢,, then the mixed-
parallel schedule is better than the data-parallel one. The algorithm then
returns S, ¢.e., T will be mapped on C; and each T} will be assigned on the
corresponding Cj%. Otherwise we try to assign 77 to another configuration.
If none of the configurations available for 77 produces a better schedule than
a data-parallel execution, T} is allocated on the whole set of processors.

The Decision algorithm 2 allows us to decide whether or not it is possible
to perform other tasks in a mixed-parallel way during the execution of a
given task 7). Let us denote by ¢ the maximum number of configurations
associated to a task. In the worst case, a mixed-parallel schedule will never
be better than the data-parallel solution. So all the configurations associated
to T} will be tested and the “for” loop will be executed ¢; times. In a given
iteration, each couple is only considered once. The maximum number of these
couples is ||7]| x ¢. As the number of data needed for a task is less than 3, the
complexity of the update algorithm is in O(c¢). Indeed each configuration has
only to be checked once. For each couple in U, we call the Update routine at
most twice, to compute the mixed- and the data-parallel solutions. Finally,
the complexity of the Decision algorithm is O(c x (||I|| x ¢) x ¢) = O(S3||1|]).
Practically, the maximum number of configurations ¢ will be often less than

Mixed Data and Task Parallel Scheduling 9

4 or 5, so the complexity of this algorithm is linear in the number of tasks.

Algorithm 2 Mixed-parallel execution decision algorithm.
Decision(73,7)
For each C}; associated to T}
ty) = EST(P)
S <+— {Tl, Cz}
Update (C;, D)
Construction of U
While U # ()
Let {7}, Cy} be the first couple of U
Update (Cy, D)
If maxy, (EST(Cy) + X5 tjx) < EST(C) + th,
Add {7}, Cy} in S and update U
Else
Cancel the EST update
Remove {T},C}} from U
tmized = EST(C;) + t1
EST(P) =1y
For each T; € S
Update (P, D)
t;) =1t +t;p + Time to redistribute terminal data
EST(P) = tyy
If tmized < t//
Return §
S«+— {1\, P}
Return (S)

3.2 Algorithm

Now, for a set of tasks Z independent of an other task 77, we are able to
decide if it is better to compute 77 in a data-parallel way or execute 7} in
parallel of a subset of Z.

Let us consider the task graph extracted from the application. At each
time, there exists a possibly large number of ready tasks. The idea of the
algorithm is to select a task and consider the set of tasks independent of it.
We apply the Decision algorithm 2 on these inputs. The criterion to sort the
list of ready task is the bottom level defined as the longest path from a task

10 V. Boudet et al.

to the STOP node. To determine the cost of this path, we use a data-parallel
configuration to compute the execution time of each task belonging to it.

Let 7 be the sorted list of ready tasks and 77 the first task of this list,
i.e., the task with the highest bottom level. The remaining tasks are flow-
independent of 77 but not necessary data-independent because they may use
a common input data. As data are not replicated, if two tasks share an input,
they can not be computed in parallel. So we have to compute the subset of
ready tasks that are independent of 7. For each task T; in 7T, if this task
shares a predecessor with 7; then 7T; is not independent of T7.

Our one-step mixed data- and task-parallel scheduling algorithm, pre-
sented in Scheduling algorithm 3, first builds the list of entry tasks, i.e.,
those having the START node as predecessor, and sorts it with regard to their
bottom level. The algorithm then determines the set of tasks independent of
the first task of the list and decides if some mixed-parallelism can be found
using Decision algorithm 2. If it is not the cases, this task is assigned to
the whole set of processors and the algorithm considers the next tasks until
the list of ready tasks becomes empty.

Algorithm 3 One-Step Mixed Parallel Scheduling Algorithm.
Scheduling (P, G)
Compute the bottom level of each task
T <— Sorted set of entry tasks
While T # ()
T, «— first task of T
T = T\Tl
7 <— set of independent tasks
(C,Ty) <— Decision(T1,R)
For each task T; € S
Assign T; to C
Update T

In the worst case, the One-Step Mixed Parallel scheduling algorithm pro-
duces a data-parallel schedule, i.e., only one task is assigned at each call to
the Decision algorithm. So this algorithm is called ||V|| times. The worst
case complexity is then O(c*||[V]|?).

4 Experimental Validation

To compare the schedules produced by our algorithm to data-parallel execu-
tions we studied two examples : the complex matrix multiplication (CMM)

Mixed Data and Task Parallel Scheduling 11

and the Strassen decomposition. The task graphs corresponding to these
applications are presented by Figure 5.

Figure 5: Task graphs for complex matrix multiplication (left) and Strassen
decomposition (right).

Experimental conditions are similar for both applications. Matrix A is
distributed on a 2 x 2 processor grid (Cy) while B is distributed on a grid of
same size but totally disjointed (Cy). A data-parallel product will then be
performed on a 2 x 4 grid (P). Finally, the result C has to be distributed on
the same grid as A.

We first scheduled these applications on an homogeneous platform. Then
we aimed at validating the behavior of our algorithm when the platform is
heterogeneous. The two following sections present some results for these two
kinds of platforms.

4.1 Homogeneous Mixed-Parallel Scheduling

Table 1 presents the execution times of the operations that compose the CMM
and Strassen task graphs. Each matrix involved in these computations is of
size 2048 x 2048. Table 2 presents transfer times of a 2048 x 2048 matrix
between the considered configurations.

a6 P
| [2x2]2x4 | C,l 0 [Li8|om
Product || 23,59 | 14,13 | Co | 1,18 0]0,75
Addition | 0,11 | 0,05 | P 10.7510.75] 0

Table 1: Execution times of the op- Table 2: Redistribution cost a matrix
erations used in CMM and Strassen. between the configurations.

12 V. Boudet et al.

A time

Ci= Tmp3+Tmp{4 0,11s
Redistribution of Tmp4
Cr= Tmpl—TmpP 0,11s
Redistribution of Tmp2
Tmp3 = Ai x Br| Tmp4 = Ar x Bi
Redistribution of Ar
Redistribution of Ai
Tmpl = Ar x Br| Tmp2 = Ai x Bi
Redistribution of Ai
Redistribution of Br
0 4! 8

Y

Figure 6: Mixed-parallel schedule for the CMM.

Figure 6 shows the schedule produced by our algorithm for the CMM. For
readability reasons, we do not have respected the scale between tasks. On the
other hand the shaded parts represent the idle time of a configuration. We
can see that products are performed by pair, while addition and subtraction
are computed serially on . This assignment comes from the fact that
these two tasks produce terminal data. Furthermore this solution is less
expensive than aligning matrices on P, performing the operation and then
redistributing the result.

Figure 7 shows the schedule produced by our algorithm for the strassen
decomposition. We can see that additions are mapped close to the data
they involve. The first six products are computed pairwise, using mixed-
parallelism. The seventh and last product is executed on the whole set of
processors, as there does not remain any “long” task to schedule in parallel of
it. Mixed-parallelism also appears in the execution of the additions needed to
compute C; and Cyy. Finally the four last additions which produce terminal
data are performed on Cf.

| | 1024 | 2048 | 3072 | 4096 |

CMM 14 9 - 8.3
Strassen | 23.7 15 17 -

Table 3: Gains of mixed-parallel schedules over data-parallel ones.

Table 3 presents the gain achieved by schedules produced by our algorithm
over data-parallel schedules. The decrease can be explained by the evolution

Mixed Data and Task Parallel Scheduling

A time
c2 | 011s
Redistribution of U4
ci2 | 011s
Redistribution of Q5
c1 | 011s
Redistribution of Q2
cit | 011s
Redistribution of U2
U3 | U2

Redistribution of Q5
Redistribution of Q7

U1 | U4
Redistribution of Q4
Q7
Redistribution of T5 and T10
QB | Q6
Exchange of T4 and B22
@B | o4
Exchange of T7 and A22
QL | Q2
Exchange of T2 and T6
T5 T10
T4 T9
T3 T8
T2 T7
T1 T6 o
0 4 gl

Figure 7: Mixed-parallel schedule for Strassen decomposition.

14 V. Boudet et al.

of the execution time of a product respectively on 4 and 8 processors. When
matrices get large, the ratio between these times tends towards two. The time
needed to compute two products using mixed-parallelism thus tends towards
the time to serially execute the same operations using data-parallelism.

4.2 Heterogeneous Mixed-Parallel Scheduling

As mentioned before, no assumption has been made about the homogeneity
of the execution platform during the design of our algorithm. We sched-
uled the Strassen decomposition on a heterogeneous platform composed of
two homogeneous clusters of different processing speeds connected through
a Fast Ethernet link. Denote C' as the “slow” configuration, C5 as the “fast”
configuration and P as the whole set of processors. Matrices A and B are
respectively distributed on C; and Cs.

Table 4 presents the execution times of the operations composing the
Strassen task graph. Each matrix involved in these computations is of size
1024 x 1024. Table 5 presents transfer times of a 1024 x 1024 matrix between
the considered configurations.

L lala [P]
| TG 16 [P] il 0 10.35]0,22
Produit [25,1] 5,7 | 23,1 Cy 10,35 0 0,22
Addition || 0,06 | 0,04 | 0,02 P 10,22]0,22] 0

Table 4: Execution times Of the op- Table 5: Redistribution cost, amatrix
erations used in Strassen. between the configurations.

We can see that a data-parallel schedule will achieve poor performance on
such a platform. Indeed the time to compute a product on the whole set of
processors is more than four times bigger than the execution time achieved
on the fast configuration.

Figure 8 shows the mixed-parallel schedule produced for the execution of
the Strassen decomposition on an heterogeneous platform. If this schedule
is far optimal — processors of C5 are idle more than 22 seconds — the gain
obtained over a data-parallel schedule is very good. Indeed the completion
time of our schedule is around 56 seconds while the data-parallel schedule
finishes in 165 seconds. So we have a gain of 66%. Furthermore, none of the
existing algorithms have been designed to schedules an application targeting
heterogenous platforms.

Concerning the specific matrix-matrix multiplication problem, a few work
has been proposed for the implementation of this numerical kernel on hetero-

Mixed Data and Task Parallel Scheduling 15

A time

c1 | 011s
Redistribution of Q5
Redistribution of Q3
ci2 | 011s
Redistribution of Q4
c2 | 011s
Redistribution of U3
ci1 | 01ils
Redistribution of U2
Redistribution of Ul
U4 | 0,11s
Redistribution of Q2
19,28s
U3
Q6 ul
u2
Q7
Redistribution of Q1
Exchange of T5 and T9
2,30s
Q5
Q1 Q4
Q3
Q2
Redistribution of T3
Redistribution of A22
Redistribution of A1l
Exchange of T2 and T6

T5 0,10s
T4 T10
T3 19
= T8
T7
T1 T6
0 4 8 -

Figure 8: Mixed-parallel schedule for Strassen decomposition on an hetero-
geneous platform.

16 V. Boudet et al.

geneous platforms. In [2, 3|, the authors prove the NP-completeness of the
data-distribution problem with different processors speed and present a poly-
nomial column-based heuristic. The algorithms presented are very efficient
but the distribution used is highly irregular and leads to high redistribution
costs when using other kernels before (and after) the matrix-matrix product.

5 Conclusion

In this paper, we have proposed an original algorithm using to schedule
applications mixed-parallelism when data can not be replicated. These ap-
plications are represented by task graphs and are composed of dense linear
algebra operations. The principle of this algorithm is to associate a list of
execution platforms to each node of the task graph. For each of these con-
figurations, we are able to estimate the execution time of the associate task.
We can then simultaneously perform the allocation and scheduling processes.
We applied this algorithm to two applications : the complex matrix multi-
plication and the Strassen decomposition. The produced schedules obtain
completion times 15% better than those achieved by data-parallel schedules.
On an heterogeneous platform this gain even raises up to 66%.

We plan to improve our algorithm to reduces idle times, by studying more
cases. In its current version, the algorithms stops at the first mixed-parallel
version which is better than the data-parallel one. But this solution may not
be optimal. However if we increase the search space, we also increase the
complexity of the algorithm. We also aim at better handling tasks which
produce terminal data. Indeed this kind of tasks can be scheduled using
mixed-parallelism only if the redistribution of the result is handled wisely,
i.e., delayed until all processors are available. But this delay should not
prevent us to map other on this configuration during the idle time induced.

References

[1] Henri Bal and Matthew Haines. Approaches for Integrating Task and
Data Parallelism. IEEE Concurrency, 6(3):74-84, Jul-Sep 1998.

[2] Olivier Beaumont, Vincent Boudet, Arnaud Legrand, Fabrice Rastello,
and Yves Robert. Heterogeneous Matrix-Matrix Multiplication, or Par-
titioning a Square into Rectangles: NP-Completeness and Approxima-
tion Algorithms. In EuroMicro Workshop on Parallel and Distributed
Computing (EuroMicro’2001), pages 298-305. IEEE Computer Society
Press, 2001.

Mixed Data and Task Parallel Scheduling 17

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert.
Matrix Multiplication on Heterogeneous Platforms. IEEE Transactions
on Parallel and Distributed Systems, 12(10):1033-1051, 2001.

Saniya Ben Hassen and Henri Bal. Integrating Task and Data Paral-
lelism Using Shared Objects. In Proceedings of the 10th Conference on
Supercomputing, pages 317-324. ACM Press, 1996.

Eddy Caron and Frédéric Suter. Parallel Extension of a Dynamic Perfor-
mance Forecasting Tool. In Proceedings of the International Symposium
on Parallel and Distributed Computing, lagi, Romania, July 2002.

Barbara Chapman, Matthew Haines, Piyush Mehrotra, Hans Zima, and
John Van Rosendale. Opus: A Coordination Langage for Multidisplinary
Applications. Scientific Programming, 6(2):345-362, 1997.

Ian Foster and K. Mani Chandy. FORTRAN M : A Language for Mod-
ular Parallel Programming. Journal of Parallel and Distributed Com-
puting, 26(1):24-35, 1995.

Martin Quinson. Dynamic Performance Forecasting for Network-
Enabled Servers in a Metacomputing Environment. In Proceedings of
the International Workshop on Performance Modeling, Evaluation, and
Optimization of Parallel and Distributed Systems (PMEO-PDS’02), Fort
Lauderdale, April 2002.

Andrei Radulescu, Cristina Nicolescu, Arjan van Gemund, and Pieter
Jonker. Mixed Task and Data Parallel Scheduling for Distributed Sys-
tems. In Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS), San Francisco, April 2001.

Andrei Radulescu and Arjan van Gemund. A Low-Cost Approach to-
wards Mixed Task and Data Parallel Scheduling. In Proceedings of the
15th International Conference on Parallel Processing (ICPP), Valencia,
Spain, September 2001.

Shankar Ramaswany. Simultaneous Ezploitation of Task and Data Par-
allelism in Regular Scientific Applications. PhD thesis, University of
[llinois at Urbana-Champaign, 1996.

Thomas Rauber and Gudula Riinger. Compiler Support for Task
Scheduling in Hierarchical Execution Models. Journal of Systems Ar-
chitecture, 45:483-503, 1998.

18 V. Boudet et al.

[13] Jaspal Subhlok and Bwolen Yang. A New Model for Integrated Nested
Task and Data Parallel Programming. In Proceedings of the Sixth ACM
SIGPLAN Symposium on Principles and Pratice of Parallel Program-
ming, pages 1-12, Las Vegas, June 1997. ACM Press.

[14] Emily West and Andrew Grimshaw. Braid: Integrating Task and Data
Parallelism. In Proceedings of the Fifth Symposium on Frontiers of Mas-
sively Parallel Computation, pages 211-219. IEEE CS Press, 1995.

