
HAL Id: lirmm-00269810
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269810

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed ubiquitous software services
Abdelkader Gouaich

To cite this version:
Abdelkader Gouaich. Distributed ubiquitous software services. IAT 2003 - IEEE/WIC Interna-
tional Conference on Intelligent Agent Technology, Oct 2003, Halifax, NS, Canada. pp.531-534,
�10.1109/IAT.2003.1241138�. �lirmm-00269810�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269810
https://hal.archives-ouvertes.fr


Distributed Ubiquitous Software Services

GOUAICH Abdelkader

Laboratoire Informatique, Robotique et Micro Electronic- UMR 5506

- Montpellier - France

gouaich@lirmm.fr

Abstract

This paper presents both theoretical and experimen-

tal results enabling the distributed implementation of

ubiquitous software services.

1 Introduction

The availability of new generation of computing and
communication technologies people are offered the op-
portunity to use software services anywhere and any-
time. These services are known as ubiquitous software

services. The ubiquity of a software service is defined as
its ability to provide its functionalities to other compo-
nents (clients) coherently and continuously everywhere
within a defined space. By contrast to most current
approaches that adopt a centralised vision by assum-
ing that the distributed software system composed by
the ubiquitous service and its clients are able to in-
teract everywhere, this paper presents a different ap-
proach enabling a globally coherent ubiquitous service
implemented by several distributed and disconnected
entities. These service instances use only local com-
munication technologies.

1.1 MIC∗ agent deployment environment model

In order to understand the environment surrounding
a multi-agents system an algebraic model, {Movement,
Interaction, Computation}∗, has been introduced in
[3]. It defines an abstract structure where autonomous,
mobile and interacting entities may be deployed.
Within this framework, agents interact by exchanging
interaction objects, found in a set represented as O,
through interaction spaces. The mobility of the agents
is described as the mobility of interaction objects over
interaction spaces. MIC∗ describes the dynamics of
the environmental structure as a composition of three

elementary evolutions: the movement, the interaction
and the computation.

2 Theoretical foundations

In this section some theoretical definitions are given
in order to prove that similarity among distributed and
disconnected components behave as a ubiquitous en-
tity. A dialogue represents a sequence of interactions.
Within the MIC* framework, a dialogue can be repre-
sented by a sequence of interaction objects generated
by the free monoid O∗ that is built using, . (dot), a non-
commutative law on interaction objects. The sequence
structure is used as an interaction object to encode the
memory of the conversation. The ubiquity property is
defined as an ability to be present everywhere within a
defined space [1]. Formally, this definition is expressed
as follows:

Definition 2.1. A computational entity p ∈ A is said

to be ubiquitous within a defined topology δ ⊂ ∆ iff:

∀x ∈ δ, π(p, x) = 1

∀o ∈ O∗, ∀x, y ∈ δ, γ(px, o) = γ(py, o)

Where ∆ represents a space. π : A × ∆ → {0, 1}
is a characteristic function that equals 1 when a pro-
cess p ∈ A is located in x ∈ ∆ and 0 otherwise.
γ : A × O∗ → O∗ is the calculus function presented
in MIC∗, that maps the perceptions of an agents to its
observable emitted interaction objects. The notation
px is used to identify the process p located at coordi-
nate x of the space. The first assertion of definition
2.1 expresses the fact that the entity has to be located
everywhere in δ. The second assessment expresses that
from an external point of view, the entity behaves as a
single process.
The mapping relation defines where the software pro-
cesses are actually located in the space. This is defined
formally as follows:



Definition 2.2. A mapping, m, is a relation defined

on A× ∆ that links processes to space coordinates.

An agent process p ∈ A is said to be similar to
another agent process q ∈ A when both are observed
similarly by an external observer. This definition is
formalised as follows:

Definition 2.3. Similarity σ : A×A relation is defined

as follows: σ(p, q) ⇔ ∀o ∈ O∗, γ(p, o) = γ(q, o)

Obviously, σ is an equivalence relation on A × A.
Thus, σ defines an equivalence class of an element p

as follows p̂ = {q ∈ A : σ(p, q)}. The notation, p̂,
represents then the set of processes that are similar to
p.

Definition 2.4. The covered topology δp̂,m of an equiv-

alence class p̂ according to the mapping m is defined as

follows: δp̂,m =
⋃

p∈p̂
{x ∈ ∆|(p, x) ∈ m}

δp̂,m represents the space covered by all the similar
processes according to a particular mapping m.

Proposition 2.5. Let ∆ be a space, A an agent set,

m a (A × ∆)-mapping. If p̂ is σ-equivalence class,

then p̂ is a ubiquitous entity on δp̂,m.

The first assessment of definition 2.1 is ver-
ified since all processes belonging to p̂ belong
to δp̂,m according to definition 2.4. Concern-
ing the second part of the ubiquity definition,
if p̂ is not a ubiquitous entity, this means that:
¬ubiquity(p̂, δp̂,m)
⇒ ∃o ∈ O∗, ∃x, y ∈ δp̂,m : γ(p̂x, o) �= γ(p̂y, o)
⇒ ∃p, q ∈ p̂ ∧ (p, x), (q, y) ∈ m : γ(p, o) �= γ(q, o)
⇒ ¬σ(p, q), which contradicts p, q ∈ p̂�

Proposition 2.5, theoretically proves that similarity
between independent and autonomous processes natu-
rally builds a ubiquitous entity spread over the space
occupied by all its processes. The next section shows
how to implement the similarity relation between
autonomous and disconnected processes.

3 Achieving similarity in distributed

and disconnected environment

In order to behave coherently, each instance of the
ubiquitous service p̂ should be able to continue coher-
ently any interaction that was initiated with another
σ-equivalent process. To achieve this, ubiquitous ser-
vice instances have to know about history of ongoing
interactions. This interaction memory can be shared
among the instances following different mechanisms.

0 1 2

3 4 5

Figure 1. Elementary situations between a
user agent (ua), light grey box, and several

ubiquitous service instances (s): dark grey

boxes

For instance, a common accessible storage space can
be used to share information. However, implementing
this mechanism is difficult in a disconnected and asyn-
chronous environment. Encapsulating the interaction
memory in the interaction itself seems to be an inter-
esting alternative. Hence, any instance of the service
is able to rebuild locally the memory of the ongoing
dialogue when needed. Having this memory of the di-
alogue, the service instance is then expected to react
similarly to other instances. According to proposition
2.5, this defines a virtual ubiquitous service. Using the
dialogue as an interaction object raises also some prob-
lems that are summarised as follows:

• ’Remember’ a dialogue-level communicative act:
The problem appears when the client agent in-
teracts with the ubiquitous service (situation 1 in
figure 1) and is suddenly disconnected while ex-
pecting a response (situation 0 in figure 1). When
reconnected to another instance of the ubiquitous
service (situation 1 in figure 1), the newly met
service instance has no knowledge about the on-
going dialogue and the client agent is waiting for
an answer. This creates a dialogue deadlock. This
deadlock is resolved by introducing a neutral com-
municative act about the conversation. Hence, the
client agent asks the service agent to remember

what was the last interaction stream.

• Ubiquitous service instances synchronisation :
Although ubiquitous service instances are dis-
tributed and autonomous, some critical actions
implying side effects have to be synchronised. For
instance, the payment action for a particular ser-
vice should be performed once by a service in-
stance and the user should not be charged again
by other instances. This is an important feature to
be guaranteed in order to meet ubiquitous service
definition. In fact, if the service’s client observes
any inconsistency then the ubiquity property pre-
sented in definition 2.1 is lost. Consequently, ser-
vice instances have to coordinate their side-effects



actions.

4 Experiments

In order to correctly simulate ubiquitous environ-
ment a three layers architecture has been used:

1. Movement simulator: The movement simulator
represents the low-level geometric communication
range of the entities and handles their movement
in a two dimensional space.

2. MIC* environment: a MIC* term represents the
deployment environment of agents. Thus, agents’
processes are deployed on MIC* terms that are
linked when their geometric representations over-
lap.

3. Agents: agents’ processes react to perceived inter-
action objects by emitting other interaction ob-
jects. Since agents interact only when they are in
the same deployment environment, the geometric
overlapping becomes a sine qua non condition to
agents’ interactions.

The experiment scenario simulates a virtual city where
both user agents and service agents move and may in-
teract. For this demonstration a single ticket buying
service has been implemented in the virtual city. The
user agent goal is to buy a ticket from a ticket sell-
ing service while moving in the city. Notice that ser-
vice agents also move which raises the dynamics of the
system. The user agent is expected to perceive a sin-
gle coherent ubiquitous service implemented by several
distributed and disconnected entities.

4.0.1 Ticket buying interaction protocol:

In order to validate the presented approach, a simple
interaction protocol has been defined in order to buy
a ticket from the ticket selling service. The notations
that are used to describe this interaction protocol are
the following: (a); (b) expresses a sequence between two
interactions a and b. This interaction is valid if and
only if a happens first followed by b. (a)∨(b) expresses
an exclusive choice between a and b. This interaction
is valid if and only if a or b hold. (a) + (b) expresses
parallel interactions that hold in an unordered manner.
Hence, this interaction is valid if and only if a and b

happen no matter which first. Having these notations
the ’ticket-buying’ interaction protocol is described in
figure 2. The user agent (C) initiates this protocol by
sending a request to the service (S). After this, the
service agent may agree to respond to the request or
not. When agreeing, the service agent asks the user

INFORM proposition_Set

;

v

REFUSE

AGREE

C S

CS

CS

C S C S

C SC S C S C S

+

;

v

REFUSE ;

;

v

;REFUSE

CS

REQUEST ?from

CS

REQUEST ?to

C S

C S

;

v

REFUSE ;

AGREE

CS

REQUEST ?age

REFUSE

AGREE

REFUSEREFUSE

C S

INFORM age

CS

;

C S

C S

;

v

REFUSE ;

AGREE

REFUSE

AGREE

REFUSEREFUSE

C S

CS

REQUEST ?card

INFORM card

CS

C S

REQUEST ?ticket

INFORM toAGREE AGREEINFORM from

INFORM ticket

INFORM selection

Figure 2. Ticket buying interaction protocol

between the user agent (C) and the service
(S)

agent some information about the starting point; the
destination of his travel and the traveller’s age. After
gathering these data, the service agent delivers some
propositions to the user agent. When the user agent
selects an offer, he informs the service agent about it.
After the payment procedure, the offer is acknowledged
and the dialogue is closed. The interaction protocol is
specified from the viewpoint of an external observer.
Having this specification a MIC*-deployment environ-
ment is generated. This process is discussed more on
details in [2]. All autonomous agents are executed as
concurrent processes that interact with the deployment
environment with explicit interaction objects sent via
low-level TCP/IP sockets. Despite disconnections due
to the mobility of the entities, the user agent succeeds
each time in buying a travel ticket. The debug traces
show also that several service instances have been in-
volved in the interaction with the user agent. The
user agent perceives a single coherent ubiquitous ser-
vice spread in the surface occupied by its instances.
The experimental work presented in this section vali-
dates the theoretical results presented in section 2.

5 Conclusion

This paper has defined the ubiquity of a software
entity as its presence, as a coherent whole, in a certain
spatial topology. The theoretical result has proved that
achieving similarity among software processes defines
a virtually distributed ubiquitous entity. Using the
composition property of the MIC* formal model and
defining dialogue structure, the similarity property has
been successfully implemented in a highly distributed
and disconnected context. The implementation of this
property has also raised some problems such as the
need of a neutral communicative, ’Remember’, act to



restart a freezed dialogue. Consistency of the memory
of the dialogue is also an important issue that has not
been specifically addressed in this paper and should be
handled by future works.

References

[1] Le Petit Larousse Illustré. LAROUSSE, 2001.
[2] A. GOUAICH. Interaction conformity in distributed

and disconnected multi-agents systems. In The
IEEE/WIC International Conference on Intelligent
Agent Technology, Halifax, Canada., 2003.

[3] A. GOUAICH, Y. GUIRAUD, and F. MICHEL. Mic∗:
An agent formal environment. To appear in the 7th
World Multiconference on Systemics, Cybernetics and
Informatics (SCI 2003), 7 2003. Orlando, USA.


