
HAL Id: lirmm-00269811
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269811

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MIC*: Algebraic Agent Environment
Abdelkader Gouaich, Yves Guiraud

To cite this version:
Abdelkader Gouaich, Yves Guiraud. MIC*: Algebraic Agent Environment. ISMIS: International
Symposium on Methodologies for Intelligent Systems, Oct 2003, Maebashi City, Japan. pp.216-220,
�10.1007/978-3-540-39592-8_30�. �lirmm-00269811�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269811
https://hal.archives-ouvertes.fr

MIC∗: Algebraic Agent Environment

Abdelkader Gouaich1,2 and Yves Guiraud1,3

1 LIRMM, Montpellier, France,
{gouaich,guiraud}@lirmm.fr

2 Centre de Recherche Motorola, Paris, France,
gouaich@crm.mot.com

3 Laboratoire Géométrie, Topologie, Algèbre – Université Montpellier 2 – France
guiraud@math.univ-montp2.fr

Abstract. This paper presents the MIC∗ algebraic structure modelling an envi-
ronment where autonomous, interacting and mobile entities evolve.

1 Introduction

Understanding and representing explicitly the deployment environment where software
processes or agents are deployed is a crucial issue especially for dynamical and open
software environment such as ubiquitous software systems. In fact, as mentioned by [2]
ignoring properties of the deployment environment may lead to dysfunctions that can-
not be explained when the software system is isolated from its deployment environment.
This paper presents an algebraic model, named MIC*, of such deployment environ-
ment where autonomous, interacting and mobile agents evolve. Multi-agents system
(MAS) considers a computational system as a coherent aggregation of autonomous en-
tities, named agents. The deployment environment has already been pointed out as a
fundamental concept for the design and implementation of MAS-based applications [8,
4]. However, few works have actually addressed the problem of studying the general
properties of this entity. By contrast to MAS, mobile computing [7] and coordination
communities have represented explicitly the deployment environment that joins respec-
tively mobile entities and coordinables in order to establish their interactions [5,1]. We
suggest generalising their concepts in order to define a deployment environment that
rules interactions among entities; their movement laws and how to react to their actions.
On the other hand, formal models of mobile and distributed calculus such as π-calculus
[6], Ambient [2] and Join calculus [3] present a formal programming language capturing
modern computing concepts such as mobility and distribution. MIC* adopts a different
view by clearly separating the calculus from its environment. Consequently, mobility,
interaction and observations of the entities’ computation are defined and studied at the
environmental level.

2 Informal Example: Ubiquitous Electronic Chat Scenario

In order to introduce the MIC∗ formal structure, this section extracts main concepts
starting from a simple ubiquitous application scenario. The ubiquitous electronic chat

N. Zhong et al. (Eds.): ISMIS 2003, LNAI 2871, pp. 216–220, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

MIC∗: Algebraic Agent Environment 217

application emulates verbal conversations between several humans about some specific
topics. Users are no longer connected permanently to a central network but own a small
device equipped with some ad hoc networking capabilities. Thus, when several users are
spatially joined they can converse together. The general description of the application
can be summarised as following: (i) each user participates in one or several discussions;
(ii) the interaction between the users are conducted by explicitly sending messages. The
first reflection concerns the interactions among agents. These interactions are materi-
alised by concrete objects that we identify as interaction objects. Interaction objects
are structured objects. For instance, they can be composed in simultaneous interactions.
Moreover, a special empty interaction object (the zero 0) can be abstractly identified to
express ’no interaction’. In the presented scenario, messages represent the interaction
objects and receiving simultaneous messages is viewed as receiving a sum (

∑
o) of

interaction objects. Interaction spaces are abstract locations where several entities inter-
act by exchanging explicitly interaction objects. An interaction space rules interactions
among agents and may alter the exchanged interaction objects. In the ubiquitous chat
scenario, each topic is represented by an interaction space, where several human agents
can exchange messages. Concerning the mobility over the interaction spaces, it is easy
to encode the agents’ desires to participate in certain topics as a logical movement inside
these interaction spaces. Agents perceive and react to external interaction objects by a
local computation and the emission of other interaction objects in interaction spaces.
These reactions are considered as attempts to influence the universe (others) that are
committed only when they are coherent with the deployment environment rules.

3 {Movement, Interaction, Computation}∗ (MIC*)

Due to space constraints this section presents semi-formally and briefly some aspect of
the {Movement, Interaction, Computation}∗ structure. The algebraic theoretical defini-
tions are omitted. Thus, a more intuitive view of the manipulated algebraic objects is
designed using matrices. In fact, matrix representations are familiar to computer scien-
tists and give spatial representation better than complex linear formulas. To present the
matrix view, the reader should assume the following minimal definitions:

– (O, +) represents the commutative group of interaction objects. This means that
interaction objects can be composed commutatively by the + law, and that the
empty interaction object exists (0 ∈ O). Furthermore, each interaction object x has
an opposite (−x) and x + (−x) = 0;

– A and S represent respectively the sets of agents and interaction spaces. S contains
a special element: 1 ∈ S representing the universe as a global interaction space.
Moreover, this special element has the following features: (i) no interaction between
the entities is possible; (ii) all the interaction objects can move inside or outside this
interaction spaces without restriction.

Each MIC∗ term is represented by the following matrices:

Outboxes Matrix: Rows of this matrix represent agents Ai ∈ A and the columns
represent the interaction spaces Sj ∈ S. Each element of the matrix o(i,j) ∈ O is
the representation of the agent Ai in the interaction space Sj .

218 A. Gouaich and Y. Guiraud

Inboxes Matrix: Rows of this matrix represent agents Ai ∈ A and the columns represent
the interaction spaces Sj ∈ S. Each element of the matrix o(i,j) ∈ O defines how
the agent Ai perceives the universe in the interaction space Sj .

Memories Vector: Agents Ai ∈ A represent the rows of the vector. Each element mi is
an abstraction of the internal memory of the agent Ai. Except the existence of such
element that can be proved using the Turing machine model, no further assumptions
are made in MIC∗ about this element.

MIC∗ terms model naturally ubiquitous environments. In fact, the union or split of
computational environments are simply represented as an addition + and a subtraction
− defined between the sub matrices representing sub environments.

3.1 MIC∗Dynamics

This section characterises three main transformations of environmental terms : the move-
ment, the interaction and the computation.

– Movement µ: A movement is a transformation µ, of the environment where both
inboxes and memories matrices are unchanged, and where outboxes matrix interac-
tion objects are changed but globally invariant. This means that interaction objects
of an agent can change their positions in outboxes matrix and no interaction object
is created or lost.

– Interaction φ: Interaction is characterised by a transformation φ that leaves both
outboxes and memories matrices unchanged and transform a row of the inboxes
matrix. Thus, interaction is defined as modifying the perceptions of the entities in a
particular interaction space.

– Computation γ: An observable computation of an entity transforms its representa-
tions in outboxes matrix and the memories vector. For practical reasons, the inboxes
of the calculating entity are reset to 0 after the computation.

Finally, the structure of MIC∗ is fully defined for a particular system by giving the
interaction objects group; the sets of processes and interaction spaces; the sets of trans-
formations defining its dynamics.

4 Ubiquitous Chat

4.1 Situation A

Each topic is represented by an interaction space. For instance, "sport" and "computing"
topics are represented by two interaction spaces (figure 1). When the user selects a chat
topic x, this is expressed as sending an interaction object gox. This interaction object
is absorbed by the correct interaction space. In fact, the interaction space controls its
local movement policy allowing certain interaction objects to enter and refusing access
to others. Here the movement policy of an interaction space x is to absorb gox and to
move outside −gox. Situation expressed in figure 1 is be described formally as follows:

MIC∗: Algebraic Agent Environment 219

Fig. 1. Agent ’A’ moving inside two interaction spaces

eoutbox
0 =

1 sport computing

A gosport + gocomputing 0 0
that evolves to :

µ(µ((eoutbox
0)) = eoutbox

1 =
1 sport computing

A 0 gosport gocomputing

After these two movements, agent A exists in both interaction spaces: sport and
computation.

Fig. 2. Union and disjunction of environments

Fig. 3. Interaction among agents

4.2 Situation B

As illustrated in figure 2, when two environments E1 and E2 are joined a new envi-
ronment E3 is defined. This environment, the interaction schema among the entities
is modified. On the other side, when the physical network link is disconnected, the
environment E3 is split into E1 and E2. This situation is formally described as follows:

1 sport computing

A 0 gosport gocomputing +
1 sport computing

B 0 gosport 0
→

1 sport computing

A 0 gosport gocomputing

B 0 gosport 0

220 A. Gouaich and Y. Guiraud

4.3 Situation C

Computation modifies the agent’s memory. Consequently, an agent can modify the sur-
rounding entities only by sending interaction objects. For instance, when a human agent
computes internally what he should write as message, the observation of this process is
the written message (interaction object). The surrounding entities receive this message
through the interaction space (see figure 3). For instance, when agent A writes a hello
message, the outboxes matrix is changed as follows:

1 sport computing

A 0 gosport gocomputing

B 0 gosport 0
→

1 sport computing

A 0 hello hello
B 0 gosport 0

Both agents A and B receive the hello message that was emitted in the outboxes matrix.

5 Conclusion

This paper has presented, semi-formally, the MIC∗ algebraic structure modelling com-
binable environments where mobile, autonomous and interacting entities evolves. Evo-
lutions of this environment are described as composition of three atomic evolutions:
movement, interaction and computation. The next step of our works is to generate spe-
cific environments and interaction spaces starting form the engineering specification of
a system. Following the MIC∗ approach, it would be possible to guarantee these speci-
fications in an unpredictable and dynamic environments such as ubiquitous systems.

References

1. Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Coordination in mobile agent
applications. Technical Report DSI-97-24, Dipartimento di Scienze dell Ingegneria Universitá
di Modena, 1997.

2. Luca Cardelli. Abstractions for mobile computation. Secure Internet Programming, pages
51–94, 1999.

3. Cedric Fournet. Le Join-Calcul: Un Calcul Pour la Programmation Repartie et Mobile. PhD
thesis, Ecole Polytechnique, 1998.

4. James J. Odell, H. Van Dyke Parunak, Mitch Fleischer, and Sven Brueckner. Modeling agents
and their environment. In AOSE 2002, AAMAS 2002, Bologna, 2002.

5. George A. Papadopoulos. Models and technologies for the coordination of Internet agents:
A survey. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf,
editors, Coordination of Internet Agents: Models, Technologies, and Applications, chapter 2,
pages 25–56. Springer-Verlag, March 2001.

6. Milner Robin, Parrow Joachim, and Walker David. A calculus for mobile processes, parts 1
and 2. Information and Computation, 100(1), 1992.

7. G.-C. Roman, G. P. Picco, and A. L. Murphy. Software engineering for mobility: A roadmap.
The Future of Software Engineerin,, pages 241–258, 2000.

8. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

	Introduction
	Informal Example: Ubiquitous Electronic Chat Scenario
	{Movement, Interaction, Computation}* (MIC*)
	MIC$^{*} Dynamics$

	Ubiquitous Chat
	Situation A
	Situation B
	Situation C

	Conclusion

