
HAL Id: lirmm-00271538
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00271538v1

Submitted on 9 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MatchPlanner: A Self Tuning Tool for Planning Schema
Matching Algorithms

Fabien Duchateau, Remi Coletta, Zohra Bellahsene

To cite this version:
Fabien Duchateau, Remi Coletta, Zohra Bellahsene. MatchPlanner: A Self Tuning Tool for Planning
Schema Matching Algorithms. RR-08011, 2008. �lirmm-00271538�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00271538v1
https://hal.archives-ouvertes.fr

MatchPlanner: A Self Tuning Tool for Planning Schema
Matching Algorithms∗

Fabien Duchateau
LIRMM - Univ. Montpellier 2

161 rue Ada 34000 Montpellier

duchatea@lirmm.fr

Remi Coletta
LIRMM - Univ. Montpellier 2

161 rue Ada 34000 Montpellier

coletta@lirmm.fr

Zohra Bellahsene
LIRMM - Univ. Montpellier 2

161 rue Ada 34000 Montpellier

bella@lirmm.fr

ABSTRACT

To improve the matching accuracy, most of the schema matching

tools aggregate the results obtained by several matching algorithms.

The quality of matches depends on the adequacy and of the num-

ber of match algorithms used, and their combination and aggre-

gation strategy. However, this aggregation entails several draw-

backs on the performance, quality and tuning aspects. In this paper,

we present a novel method for combining schema matching algo-

rithms, which enables to avoid these drawbacks. Unlike other com-

posite matchers, it is able to learn the most appropriate match algo-

rithms for a given schema matching scenario. Thus, the matching

engine makes use of a decision tree to combine most appropriate

match algorithms. As a first consequence of using the decision tree,

the performance of the system is improved since the complexity

is bounded by the height of the decision tree. For this purpose, for

a given domain, only the most suitable match algorithms are used

from a large library of match algorithms. The second advantage is

the improvement of the quality of matches.

1. INTRODUCTION
There are many algorithms that have been designed for schema

matching (refer to [10, 12] for a survey of the different approaches).

Most of the matching tools are assembled from multiple match al-

gorithms, each employing a particular technique to improve match-

ing accuracy and making matching systems extensible and cus-

tomizable to a particular domain. It has been pointed out in [6] that

the main issue is how to select the most suitable match algorithms

to execute for a given domain and how to adjust the multiple knobs

(e.g. threshold, performance, quality, etc.). The solutions provided

by current schema matching tools [1, 4] consist in aggregating the

results obtained by several match algorithms to improve the qual-

ity of the discovered matches. However, aggregation entails three

main drawbacks.

The first one is about performance in terms of matching pro-

cessing time. Indeed, all match algorithms are applied against

∗This work was partially supported by ANR Research Grant ANR-
05-MMSA-0007.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ’08 Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 0000000000000/00/00.

every couple of schema elements. Yet, a match algorithm may

be very efficient for a certain set of schema but really unsuitable

with another set. The following example shows that even a reliable

match algorithm, like the use of dictionary, may fail to discover

even simple mappings.

Example: Consider the two couples (author, writer) and (name,

named). Applying a string matching technique like 3-grams be-

tween (author, writer) would result in a very low similarity value

close to 0. On the contrary, such a string matching technique ap-

plied to (name, named) provides a similarity value equal to 0.5.

Then, if we apply a dictionary technique (based on Wordnet for

example), the labels (author, writer) are considered synonyms, im-

plying a high similarity value. While the same technique failed

to discover any match between (name, named). Thus, some tech-

niques can either be appropriate in some cases or they can be totally

useless. Furthermore, applying all match algorithms on every cou-

ple of elements involves a costly time and resource consumption.

The second drawback is related to the quality of matches. In-

deed, the aggregation function may influence the quality. For ex-

ample, the way of combining the match algorithms is performed by

means of a brutal aggregation function, for instance a linear com-

bination. Furthermore, the aggregation might give more weight

to closely-related match algorithms: using several string matching

techniques between the polysemous labels mouse and mouse leads

to a high similarity value, in spite of other techniques, like context-

based, which could have identified that one of the label represents

a computer device and the other an animal.

Finally, most sophisticated methods often require manual tun-

ing, which makes them not really flexible w.r.t. new match algo-

rithms contributions. To the best of our knowledge, there is a few

tools like eTuner [6], which have been designed to automatically

tune schema matching tools. In eTuner, a given matching tool (e.g.

COMA++ [1] or Similarity Flooding [7]) is applied against a set of

expert matches until an optimal configuration is discovered for the

matching tool. However, eTuner heavily relies on the capabilities

of the matching tool, especially for the available match algorithms

and its aggregation function. Besides, it does not improve the per-

formance since all match algorithms are computed for every couple

of elements.

In this paper, we present a new tool, MatchPlanner, which en-

ables to avoid the previously mentioned drawbacks. Indeed, unlike

other composite matchers, it is able to learn the most appropriate

match algorithms for a given domain. For this purpose, the match-

ing engine makes use of a decision tree to combine most appropri-

ate match algorithms. As a first advantage, the performance of the

Figure 1: Architecture of MatchPlanner

system is improved since the complexity in O(h) is bounded by the

height h of the tree. Thus, only a subset of these match algorithms

is used for matching from a large library of match algorithms. The

second advantage of our approach is the improvement of the qual-

ity of matches. Indeed, for a given domain, only the most suitable

match algorithms are used. Moreover, the decision tree is flexible

since new match algorithms can be added, whatever their output

(discrete or continuous values). Finally, MatchPlanner is also able

to tune automatically the system for providing the optimal config-

uration for a given matching scenario.

Contributions. We designed and implemented MatchPlanner, a

new tool for the schema matching task. The main interesting fea-

tures of our approach are:

• Introducing the notion of planning in the schema matching

process by using a decision tree.

• Learning the best strategy (decision) for a given domain

• A tool has been designed based on the planning approach

which also is self tuning.

The rest of the paper is organised as follows. Section 2 contains

an overview of our prototype. Section 3 focuses on the decision

tree to combine match algorithms. Section 4 describes the capacity

of MatchPlanner to learn the best sequence of match algorithms.

Finally, we conclude in section 5.

2. OVERVIEW OF MATCHPLANNER
Figure 1 shows the architecture of our MatchPlanner prototype,

with two main parts: (i) the schema matcher and (ii) the learner.

Both parts share a main component, the strategies, since the learner

is in charge of generating them while the matcher uses them as a

kernel.

As a schema matcher, it takes as input schemas and a strategy.

Note that the schemas are also stored in the knowledge base (KB).

This KB can be seen as a repository for schemas and expert map-

pings. A strategy is composed of a decision tree and a ratio be-

tween performance and quality. The decision tree is a plan (i.e an

Figure 2: MatchPlanner Menu

ordered sequence) of match algorithms. We use well-known match

algorithms from [11], and we add the neighbour context from [3],

an annotation-based measure and some dictionary-based technique

([13]). We explain in section 4 how our approach is flexible to

allow the integration of new algorithms. The matching process

mainly relies on the decision tree (see section 3) to generate a list

of mappings. The expert might decide to validate some discovered

mappings, which are then stored in the KB and used by the learner.

The learner part aims at generating one or more strategies from

the information stored in the KB: the schemas and the expert feed-

back (validated mappings). It is based on the C4.5 machine learn-

ing algorithm as described in section 4. The learned strategies can

then be used by the matching process to improve the quality and/or

performance.

Figure 2 shows the MatchPlanner’s main menu. The top part

enables to add schemas and to choose an appropriate strategy. Note

that some strategies are already provided with our tool. Once a

strategy has been selected, the plot enables to select one decision

tree according to expert requirements (quality and performance). In

the bottom part is displayed the selected decision tree and the list

of discovered mappings.

We would like to demonstrate two scenarios for showing the fol-

lowing features of MatchPlanner: (i) its self tuning capability in

section 3and (ii) its capability as a schema matcher that has been

enhanced with incremental mapping discovery in section 4.

3. PLANNING & SELFTUNING
To avoid previously mentioned drawbacks, we propose to use

machine learning techniques for discovering the best combination

of match algorithms. We then describe how an expert can intu-

itively select a decision tree which fulfills her needs.

3.1 Decision Tree for Combining Similarity
Measures

The idea is to determine and apply, for a matching scenario, the

most suitable matching techniques, by means of a decision tree.

Decision tree [8] is a machine learning method, especially well-

suited for the task of combining similarity measures. Indeed, it

is able to handle both numerical (3-gram, Levenhstein,..) and

categorical (data restriction, being synonyms, ...) attributes (i.e.

measures in our context). In addition, decision trees are robust to

irrelevant attributes. Thus the quality of the similarity measure pro-

duced by a decision tree is strictly growing up with the number of

similarity measure taken as input. We can also point out that the

tree structure avoids testing some potentially costly similarity mea-

sures. Moreover, a learned decision tree is computed only once,

and the learning process is performed in less than 1 second.

Figure 3: Example of a learned decision tree

Example: Figure 3 shows an example of a decision tree. Each

internal node in the tree represents a similarity measure while a

leaf node indicates if the couple should be a mapping (T) or not

(F). According to the value computed by a similarity measure, an-

other similarity measure might then be used if the constraint on the

edge linking both measures is satisfied. Such a decision tree en-

ables to efficiently combine match algorithms: only a subset of the

match algorithms are computed when matching 2 nodes. For in-

stance, consider the two couples of elements (author, writer) and

(name, named). When matching (author, writer), equality measure

is first used and it returns a 0 value, implying the label sum size

to be performed next. This measure computes the total size of the

labels (12). Thus, the next algorithm is 3-grams algorithm, which

returns a low similarity(0.11), implying the dictionary technique to

be finally used to discover a synonym relationship between (author,

writer). On the contrary, (name, named) is matched using equality

which returns 0, then label sum size computes a size of 9. Finally,

3-grams is performed and it provides an acceptable similarity value

(0.5). Thus, only 4 match algorithms have been selected to match

the couples of elements ((author, writer) and 3 for (name, named).

While, in aggregation approaches, all the match algorithms of the

library would have been applied for each couple of elements.

In conclusion, using such a decision tree optimizes both time and

resources, reducing the impact of previously mentioned problems.

Another advantage is that the time-costly measures, like the dictio-

nary measure, appear at the bottom of the decision tree, avoiding to

be used if not necessary. Finally, decision trees are able to handle

both numerical (3-gram, Levenhstein, etc.) and categorical (data

restriction, being synonyms, etc.) match algorithms.

The main drawback of such an approach is that a decision tree

may provide good results for a given domain, but it can reveal com-

pletely inappropriate for another one. In order to avoid such draw-

back, our approach is able to compute the best decision tree for a

given domain by using machine learning techniques as it will be

explained in more details in next section.

3.2 Selecting a Decision Tree
The first demonstration scenario aims at showing the self tuning

capability. Given some input schemas, the expert chooses an appro-

priate decision tree according to her requirements for discovering

the matches between the input schemas. To demonstrate this ca-

pability, we developed a very intuitive interface, which uses plots

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

pe
rf

or
m

an
ce

 (
%

 o
f d

is
ca

rd
ed

 a
lg

or
ith

m
s)

quality (f-score)

A

B

C

DDecision Trees

Figure 4: Intuitive interface to select a decision tree

like the one illustrated in figure 4. This figure shows some deci-

sion trees (labelled points from A to D), each with different quality

and performance ratios. For example, the tree A ensures good per-

formance, but a low quality, since this tree only uses a few string

matching measures. On the contrary, the tree D emphasizes on

the quality to the detriment of performance, because it includes all

measures, including the costly ones (dictionary-based or context).

Trees B and C can be seen as trade-offs between quality and per-

formance.

By clicking on a decision tree in the plot, the system will use the

corresponding decision tree to discover the matches. This scenario

demonstrates that MatchPlanner provides smarter mechanisms to

capture the expert requirements: the expert knows the impact of this

strategy on the performance and/or quality of the matches. Whereas

the others matchers allows a very poor tuning mechanism.

4. A MACHINE LEARNING APPROACH TO

CAPTURE THE EXPERT FEEDBACK
In spite of the recent improvement in automatic matching tools,

the matching process often remains a semi-automatic process. In-

deed, after executing a tool on her schemas to match, the expert has

to discard part of the proposed mappings and to look for the ones

missed by the tool. Depending on the schemas size and complexity,

this manual post matching may be a very long and difficult process,

and this effort is never re-used in standard matching tools. We pro-

pose here an approach to capture this expert feedback, in order to

improve our tool quality and to learn dedicated decision trees.

We propose to formulate the problem of determining, for a given

schema matching scenario, the most appropriate decision tree as a

machine learning task. The machine learning classification prob-

lem consists in predicting the class of an object from a set of its

attributes. In the context of schema matching, an object is a couple

of elements and its class represents its validity in terms of map-

ping relevance. The match algorithms represent the attributes of

this couple. And as training data, we use the mappings validated or

rejected by the expert.

Let us detail the learning process. We first apply the default de-

cision tree with a higher recall (to avoid missing mappings) and

present a subset of discovered mapping to the expert. We then inte-

grate the expert validation and refutation as new training-data into

our KB and re-generate a set of decision trees, using the C4.5 al-

gorithm [9], known to be one of the most efficient algorithm to

learn decision trees, especially when combining both continuous

and discrete attributes. It ensures some good properties: a high

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

pe
rf

or
m

an
ce

 (
%

 o
f d

is
ca

rd
ed

 a
lg

or
ith

m
s)

quality (f-score)

Default decision trees
Learned decision trees

Figure 5: Comparison of default and learned decision trees

classification score, which results in a good matching quality, and

it minimizes the height of the generated decision tree, implying

better performance. During the learning process, a whole forest of

decision trees is generated. The only trees which are kept as strate-

gies are the Pareto optimal [5] trees, which provide an advantage

(either on the quality or on the performance). Our tool then uses

the learned decision tree to discover the remaining mappings. This

capability is very useful in large scale context in which the user

should just initiate the schema matching process by giving some

mappings.

To evaluate our matching tool, we have chosen four real-world

domains composed of two schemas each. They are widely used

in the literature. The first one describes a person, the second is

related to university courses, the third one on a business order and

the fourth one on biology is detailled below. Their main features

are given by table 1. The set of relevant mappings for each domain

has been processed manually by an expert.

Person University Order Biology

NB nodes (S1 / S2) 11 / 10 18 / 18 20 / 844 719 / 80

Avg NB of nodes 11 18 432 400

Max depth (S1 / S2) 4 / 4 5 / 3 3 / 3 7 / 3

NB of Mappings 5 15 10 57

Table 1: Features of the different domains.

To illustrate this scenario, we will take as input large schemas

from biology domains (Uni-prot1 and GeneCards 2). We then ap-

ply a decision tree previously learned using the three first domains

(Person, University, Order) and tuned to provide a ratio recall

precision

equals to 100. We then present 100 resulting mappings for vali-

dation to the expert. Figure 5 depicts the learned decision trees,

compared to the default ones. We observe that the learned trees

provide better quality on this biology domain than the default ones.

They also provide better performance (they include less similarity

measures) to achieve a given quality.

Looking at the learned decision trees, we observe that Match-

Planner is able to detect that WordNet measure is not appropriate

because of the biology domain specificity. It also discards the de-

scription context algorithm since the schemas do not include any

annotation. Thus, our tool optimizes the matching process by learn-

ing appropriate match algorithms for a given domain. Contrary to

other matching tools, our approach is flexible since it enables to

1www.ebi.uniprot.org/support/docs/uniprot.xsd
2www.geneontology.org/GO.downloads.ontology.shtml

easily integrate any new measures: the learner takes this new mea-

sure into account by computing all similarities between all couples

of elements. Then the measure will be included (or not) in the de-

cision tree according to its effectiveness.

Machine learning techniques have already been used in the con-

text of schema matching. In [2], the authors proposed a full ma-

chine learning based approach called LSD, in which most of the

computational effort is spent on the classifiers discovery. As a dif-

ference, our approach enables to reuse any existing similarity mea-

sures and it focuses on combining them. Therefore, we avoid wast-

ing time in the learning process and we easily capture any previous

and future work on similarity measure.

5. CONCLUSION
In this paper, we present a novel method for improving com-

posite matchers both in terms of time performance and matching

accuracy. This method has been implemented as prototype named

MatchPlanner and experimented with real world schemas. Unlike

other composite matchers, MatchPlanner is able to learn the most

appropriate combination of match algorithms for a given domain.

Furthermore, MatchPlanner is enhanced with the capability of self

tuning the performance and quality parameters. Finally, it can also

simply be used as a benchmark for testing schema matching al-

gorithms for a given domain. A major future work is to enrich

the KB to improve the robustness. A demo version is available at

http://www.lirmm.fr/∼duchatea/MatchPlanner.

6. REFERENCES
[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.

Schema and ontology matching with coma++. In ACM

SIGMOD Conference, Demo paper, pages 906–908, 2005.

[2] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling

schemas of disparate data sources: a machine-learning

approach. In In Proc. of SIGMOD, pages 509–520, New

York, NY, USA, 2001. ACM Press.

[3] F. Duchateau, Z. Bellahséne, and M. Roche. A context-based

measure for discovering approximate semantic matching

between schema elements. In Proceedings of the RCIS, 2007.

[4] F. Duchateau, Z. Bellahséne, M. Roche, and M. Roantree.

An indexing structure for automatic schema matching. In

Proceedings SMDB Workshop ICDE 2007, 2007.

[5] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1983.

[6] E. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner:

Tuning schema matching software using synthetic scenarios.

volume 16, pages 97–122, 2007.

[7] S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding:

A versatile graph matching algorithm and its application to

schema matching. In Proc. of the ICDE, 2002.

[8] J. R. Quinlan. Induction of decision trees. Mach. Learn.,

1(1):81–106, 1987.

[9] J. R. Quinlan. Improved use of continuous attributes in c4.5.

In JAIR, volume 4, pages 77–90, 1996.

[10] E. Rahm and P. A. Bernstein. A survey of approaches to

automatic schema matching. VLDB J., 10(4):334–350, 2001.

[11] Secondstring. http://secondstring.sourceforge.net/.

[12] P. Shvaiko and J. Euzenat. A survey of schema-based

matching approaches. J. Data Semantics IV, pages 146–171,

2005.

[13] Wordnet. http://wordnet.princeton.edu, 2007.

