
HAL Id: lirmm-00271574
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00271574

Submitted on 9 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the Test of NoC-Based SoCs with Help of
Compression Schemes

Erika Cota, Julien Dalmasso, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Erika Cota, Julien Dalmasso, Marie-Lise Flottes, Bruno Rouzeyre. Improving the Test of NoC-Based
SoCs with Help of Compression Schemes. ISVLSI: IEEE Symposium on Very Large Scale Integration,
Apr 2008, Montpellier, France. pp.139-144, �10.1109/ISVLSI.2008.86�. �lirmm-00271574�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00271574
https://hal.archives-ouvertes.fr

Improving the Test of NoC-based SoCs with Help of Compression Schemes
Julien Dalmasso1 Érika Cota2 Marie-Lise Flottes1 Bruno Rouzeyre1

1LIRMM
Univ. de Montpellier / CNRS

161 rue ada, 34392 Montpellier CEDEX 5
France

{dalmasso,flottes,rouzeyre}@lirmm.fr

2PPGC – Instituto de Informática
UFRGS

Po Box 15064, 91501-970
Porto Alegre, BR
erika@inf.ufrgs.br

Abstract

Re-using the network in a NoC-based system as a
test access mechanism is an attractive solution as
pointed out by several authors. As a consequence,
testing of NoC-based SoCs is becoming a new challenge
for designers. However, the effectiveness of testing
methods is highly dependent on the number of test
interfaces with the tester. This paper proposes the use of
a test data compression scheme to increase the number
of test interfaces (thus increasing test parallelism)
without increasing the number of required Automated
Test Equipment (ATE) channels. We show that the
combination of compression and NoC-based test
scheduling allows a drastic reduction of the system test
time at the expense of a very small area overhead.

1. Introduction
Network-on-Chip (NoC) architectures are now

known as a good alternative to bus based. Systems-on-
Chip (SoC) architectures, providing efficient
communication among cores at lower design and power
costs. To become an industrial reality, this new design
paradigm also depends on the definition of feasible and
efficient test mechanisms. Such mechanisms must tackle
both the test of the network itself and the test of IPs or
user-defined logic connected to the NoC.

Concerning the test of the functional blocks (or
cores), reusing the NoC as a Test Access Mechanism
(TAM) is an attractive solution since it allows saving the
cost of extra test dedicated communications. However,
this alternative is very challenging since routers,
channels, interfaces, and cores placement in the system
are generally optimized in the first place for
communication in mission-mode, not for test.

Efficient test scheduling approaches have been
presented in the literature to tackle the test of IP cores
through embedded NoC [1-6]. Test time optimization is
achieved with the help of a better utilization of the
network channels at the price of more complex test
wrappers, design effort, area overhead, and, possibly,
power consumption during test.

A preemptive test scheduling is presented in [4]
where one test packet contains only one test vector or
one test response for a given core. Since no NoC’s path
is reserved for any core, the first available path is used
for the current unscheduled packet issued from an

ordered list. Test packets are scheduled individually and
core testing pipeline can be interrupted.

A non-preemptive scheduling is presented in [6]
where one test packet contains all test vectors (or all test
responses) of the Core Under Test (CUT). The scheduler
assigns one routing path to each core. All the resources
on the path (including input/output ports) are reserved
for the test of this core until the entire test set is applied.
Test vectors are routed from a system input to the core,
and test responses are routed from the core to a system
output in a pipelined way. The numbers of test inputs
and outputs are assumed to be equal in this case. While
apparently preemptive scheduling offers more
flexibility, non preemptive scheduling leads to better test
times in practice [4, 6].

The test packet format in the above cited NoC-based
approaches assumes that one packet contains the test
data (vector or response) of a single core under test but
recent works have proposed other packets formats
aiming at further reducing test application time by
increasing the network usage e.g. [1][2]. Despite a better
usage of the network channels, the design effort and area
overhead involved in the implementation of those
approaches are important drawbacks.

Note that if the system test time is related to the test
scheduling efficiency, it is also strongly correlated to the
usage of the test interface. Test ports are built in the first
place from functional inputs/outputs, but extra test pins
are eventually used for test time improvement since
increasing the number of test interfaces allows larger
test parallelism. However, the main drawback when
reusing the NoC for test purpose is precisely the limited
number of test interfaces. On the one hand, a small
number of test ports limits the possibilities of test
parallelism, and on the other hand, there is a cost
associated with the introduction of extra test ports: the
circuit level cost (extra pins) and the resource level cost
(extra ATE channels for test pin monitoring). It is clear
that a test strategy capable of increasing the test
parallelism without increasing the number of visible test
interfaces is highly desirable to make current NoC-based
test approaches actually feasible.

The paper is organized as follows: in Section 2 we
detail the consequences of test compression at system
level. Section 3 presents the application of a
compression technique during NoC-based test

IEEE Computer Society Annual Symposium on VLSI

978-0-7695-3170-0/08 $25.00 © 2008 IEEE
DOI 10.1109/ISVLSI.2008.86

139

scheduling. Test space exploration is presented in
Section 4, and Section 5 presents experimental results.
Conclusions are drawn in section 6.

2. Test Data Compression
Several Test Data Compression (TDC) techniques

aiming at reducing the number of visible scan chains
have been developed since the early 2000s. Concerning
test vector compression, they consist in compressing
original test data off line, storing the compressed data in
the ATE, and decompressing these data on-chip for
restoring the initial test vectors (Figure 1). TDC
techniques are built toward the compression of test
patterns for standalone cores and they rely on the fact
that test patterns originally contain don’t-care bits.
These don’t care bits do not have to be stored into ATE
but can be supplied on-chip in some other ways. LFSRs
[7,8], Xor networks [9,10], ring generator [11], RAM
[12,13], arithmetic units [14], and test pattern
broadcasting among multiple scan chains [15-17]
constitute a range of solutions for minimizing the
number of data to be stored in the ATE and the number
of visible test interfaces (scan chains in this case).

Note that for a fixed number of scan chains (N), the
reduction of the required number of ATE channels
(W<N) may result in additional test time compared to a
solution where the number of ATE channels equals the
number of scan chains (W=N). Indeed, compressing an
N-bit test vector on a W-bit word is not always feasible.
Non-compressible test data must either be serially
loaded in the core under test or substituted by additional
compressible test patterns in order to maintain the test
quality. In any case, a side-effect is an increase in the
test time of the core under test.

At system level, a first compression strategy can be
to build the system from plug-and-play cores including
dedicated decompression hardware in their wrappers,
but this solution may induce a large area overhead. A
second strategy consists in using a centralized
architecture where decompressors are shared between

several cores limiting thus the extra hardware. Note that
in this case, the decompressor structure must be
independent from the test sequences and the core
netlists.

Concerning test responses, several space compactors
have been recently proposed (e.g. [18, 19]). Such
compactors are designed to tolerate a given number of
Xs occurring in test responses. Conversely to the

compression of test patterns, spatial test response
compactors designed for a given X-tolerance do not
impact test time. This means that there is no penalty in
the test time when reducing the number of visible output
pins. Spatial and/or time response compactions of test
responses will not be further discussed in this paper.

We propose here a new strategy for testing cores in a
NoC-based architecture that combines a test data
compression scheme and a non-preemptive test
scheduling approach. We will show that a limited
number of system pins can be used in such a way that
test parallelism in the NoC during test is not precluded.

3. Application to NoC-based Testing
We propose to use a vector compression scheme [14]

to deal with a limited number of test interfaces. Let us
assume that functional I/O pins of the system are used
for connecting the system to the ATE. Let Ti be an N-bit
test interface (N is the NoC channel width). Without
compression and according to the number F of
functional I/O pins, a number T of test interfaces can be
defined by T=F/N. Using compression, we can
decrease the number of I/O pins dedicated to each test
interface and thus increase the total number of test
interfaces T. A higher number of test interfaces leads in
turn to higher test parallelism.

Figure 2 shows a typical NoC architecture with a
single input port Fi and a single output port Fo used as
test interfaces. Cores are connected to the NoC
infrastructure using standardized protocols, which can
be implemented as wrappers. Hereafter we give an
overview of the interfaces between cores and NoC and
between the SoC and the ATE.

router

N

N

N

NoC

router

router

router

N

core

wrapper

core

wrapper

core

wrapper

core

wrapper

Fi Fo

routerrouter

N

N

N

NoC

routerrouter

routerrouter

routerrouter

N

core

wrapper

core

wrapper

core

wrapper

core

wrapper

core

wrapper

core

wrapper

core

wrapper

core

wrapper

Fi Fo

Figure 2: NoC-based SoC architecture

The first role of the core wrappers is to adapt the
NoC interface to the core functional interface. When
reusing the NoC as TAM, this wrapper must also
implement new functions to connect not only the
functional interface, but also the test interface of the
core to the interconnect platform. Amory et. al. propose
in [20] and [21] a method to design IEEE 1500
compliant test wrappers when functional
interconnections are reused for test purpose. We assume
here that such wrappers are available for each core being
tested.

Test Data

Horizontal Compression

Compressed
Test Data

N

W <<N

On-Chip Decompression

N

W

CUT

Figure 1: Compression scheme

140

The NoC-based testing approach also assumes the
reuse of system functional pins to connect the TAM
(here the NoC) to an external tester. In this case, an
interface adapter is also required to perform a parallel-
to-serial conversion between the functional/test SoC
interfaces and the NoC as proposed by Amory et al. in
[22]. Figure 3 shows the modification entailed by
inserting a decompressor for test patterns. This
functionality can be embodied into the ATE interface
replacing the existing serial-to-parallel converter and
vice-versa. Thus, in mission mode, the connection
between the system pins and the NoC are as defined by
the system designer. During test, the ATE interface
formats the data coming from the tester and injects them
into the NoC as normal data. The core under test, with
its wrapper configured in test mode, receives N-bits data
(as in mission mode) generated by the on-chip
decompressor logic. Similarly, an ATE interface at the
system output receives the response data from the cores
and converts it to the ATE format, before sending it
back to the external tester.

Communication
channels

Input port

N

NN

decompressor

Fi

N

NoCFunctional
input pins

W

router

core

wrapper

W ≤ Fi ≤ N

ATE interface Communication
channels

Input port

N

NN

decompressor

Fi

N

NoCFunctional
input pins

W

routerrouter

core

wrapper

core

wrapper

W ≤ Fi ≤ N

ATE interface

Figure 3: ATE interface with compression

Data are transmitted through the NoC in the form of
messages called packets. A packet is composed of a
header giving among other information the address of
the target core, the body of the message called the
payload, and a tail indicating the end of the message.
The payload is composed of several pieces of
information called flits whose bitwidth equals the NoC
bitwidth. For test purpose, a test header is also added at
the beginning of the message.

Under the compressed vectors assumption, each flit
of the payload is compressed. But as explained in
Section 2, some original flits may not be compressible
and thus are split into several flits to fit with W. In the
same way, tail, packet and test headers are split into
narrower flits. As a result, the compressed test message
contains more flits than the non-compressed one. As a
consequence, the test time for individual cores is
increased.

The problem of minimizing the system test time
depends thus on two optimization procedures: i) one
must find the best partition of system input pins into
input test ports (called hereafter test architecture); and
ii) one must define which input port should be used by
which core (test scheduling). These two procedures are
detailed in the next section.

4. Test Space Exploration
4.1. Test Scheduling
In the non-preemptive test scheduling, an access path

is reserved during the whole test of a core, i.e., all test
patterns are sent serially while all test responses are also
sent back to the tester. To evaluate the core test time
within the NoC, one may consider thus a single input
test packet containing all test patterns traversing the
network from the test input port up to the core.
Similarly, a single output test packet contains all test
responses collected from the core. It must be noted that
within the network, both input and output test packets of
a given core have the same size (number of flits), which
is given by the length of the longest wrapper scan chain
of that core multiplied by the number of test vectors.

As mentioned before, the input packet coming from
the ATE might have more flits when compression is
used. It must be noted that the narrower the input port,
the longer the payload since it is more difficult to
compress the patterns. In addition, there is a latency to
inject this data in the network, which increases the core
test time. To sum up, the total system test time varies
with the number of input ports and the number of pins
available at each port of the system. However, as more
input ports are available, we expect that the increase in
the test parallelism compensates this increase in the size
of the test packet.

A NoC test scheduling algorithm that deals with the
compression scheme requires information regarding the
length of the test packets for each core with respect to
each available input port (i.e. with different numbers of
pins). The non-preemptive test scheduling algorithm
described in [6] was adapted to include the extra
compression information per port. The new scheduling
algorithm receives then, in addition to the cores test data
and NoC data: i) the number, location, and bitwidth of
available test input ports; ii) for each core, the size of the
input test packet per port. When selecting a test access
path to a core, the algorithm evaluates the time required
to transfer, decompress, and transmit all test patterns
from the ATE to the core, as well as the time required to
transmit all test responses back to the ATE. The access
path (input and output) is blocked until the last test
response is received by the ATE. In the new algorithm
we also improved the procedure that selects an I/O pair
for a core, since each path implies a different test time
increase for each core. Now, the free I/O pair assigned
to a core is the one that increases the least the core test
time. The pseudo-code of the test scheduling algorithm
is shown in Figure 4. More details on the algorithm can
be found in [6].

141

Procedure Compressed_NoC_schedule

1 Start with sorted cores in decreasing order of test time;
2 Define I/O pairs list;
3 For every possible permutation between Inputs and Outputs
4 While there are unscheduled cores
5 For each unscheduled core
6 Find a free I/O pair (at current time) that gives the

shortest core test time;
7 If no free I/O pair
8 Update current time, repeat from 4;
9 else
10 Check the corresponding routing path;
11 If path is blocked
12 If all cores have been attempted
13 Update current time, repeat from 4;
14 else
15 Try next core in the list;
16 else
17 Assign core to the path, update time labels;
18 Repeat from 2 for a user-defined number of cores permutations;

Procedure Compressed_NoC_schedule

1 Start with sorted cores in decreasing order of test time;
2 Define I/O pairs list;
3 For every possible permutation between Inputs and Outputs
4 While there are unscheduled cores
5 For each unscheduled core
6 Find a free I/O pair (at current time) that gives the

shortest core test time;
7 If no free I/O pair
8 Update current time, repeat from 4;
9 else
10 Check the corresponding routing path;
11 If path is blocked
12 If all cores have been attempted
13 Update current time, repeat from 4;
14 else
15 Try next core in the list;
16 else
17 Assign core to the path, update time labels;
18 Repeat from 2 for a user-defined number of cores permutations;
Figure 4 - Non-preemptive test scheduling

considering compression data

4.2. Test Architecture
The total system test time varies with the number of

input ports and the number of pins available at each port
of the system. On the other hand, the available ATE
channels can potentially be connected to any input pad
of the system. The ATE channels can be partitioned into
test input ports in many ways and only some partitioning
lead to minimal test time. It is important, thus, to
explore the space of possible partitions of available ATE
channels (or system input pins) into input test ports to
find the best one in terms of system test time.

The partition problem can be stated as follows: for a
number W of available ATE channels, and a number T
of required test input ports, find all possible partitions of
W into T. The number of test input ports T varies from 1
to R, the number of nodes in the network. For T=1, there
is a single partition and test parallelism is minimum. For
T=R, all cores have direct access to the ATE and no test
scheduling is necessary. In practice, T is ranging from 2
to R/2 input ports, as it will be detailed in the
experimental results.

Figure 5 presents the partitions space that must be
sought. For a given number W of ATE channels that
serve the test input pins, and for every configuration ki

of input ports (2 ≤ ki ≤ R/2), all distinct partitions of W
into ki is checked. For each partition, test scheduling is
run and the best test time among all partitions is
selected. We note that not all possible partitions are
tried. This is because the test scheduling algorithm
already checks a number of cores and I/O pairs
permutations, which allows different assignments
between cores and input ports. Moreover, the impact of
an input assignment to the core test time is very low
with the non-preemptive test scheduling since the path is
reserved for the core. Thus, the test time difference
between two partitions with the same pin distribution is
also very low, and does not justify the exploration of
that space dimension. Figure 6 presents the pseudo-code
of the algorithm for the test space exploration.

Figure 6 - Test space exploration algorithm

5. Experimental Results
The proposed scheme was implemented and results

were generated for three SoCs based on three ITC’02
benchmarks [23]. The original SoCs are systems d695,
g1023 and p93791, which will be called herein d695c,
g1023c and p9379c, respectively. For those systems, we
used random test patterns to generate the compressed
test data, since the test vectors are not provided by the
ITC’02 benchmark suite (only their number is given).
The random vectors contain around 80% of don’t cares
bits. Compression results were obtained using the
method presented in [14]. We note that uncompressed
vectors for industrial circuits usually contain more than
90% of don’t care bits, which allows better compression
results. However, we have considered a worst-case
scenario to evaluate whether the NoC parallelism is well
explored. For all systems, a NoC with 32-bit channels is
used, and each core is assumed to have at most 32
wrapper scan chains.

 The input payload per core depends on the number
of bits of each possible test input port, as explained
before. Table 1 presents an example of the payload
increase for system d695c. Column 2 presents the
original payload size for each core (in number of flits)
considering the 32-bit bitwidth of the NoC channels.
Columns 3, 4 show the payload size for the
configuration with three input ports 1, 2, 3 with 12, 10,
and 10 bits respectively.

Three initial experiments were performed on system
d695c to show that the compression scheme leads to a
better utilization of the network resources. For those

Procedure Compressed_NoC_Exploration

1 Inputs: R = number of NoC nodes, W = number of ATE channels
2 For T=2 to R/2
3 For all valid partitions ki of W into T
4 TestData = Define packet size for each core and each input port
5 Test_time = Compressed_NoC_Schedule(T, ki, TestData)
6 If Test_time < Best_Test_time
7 Best_Test_time = Test_time
8 Select partition (T, ki)
9 Repeat from 2;

Procedure Compressed_NoC_Exploration

1 Inputs: R = number of NoC nodes, W = number of ATE channels
2 For T=2 to R/2
3 For all valid partitions ki of W into T
4 TestData = Define packet size for each core and each input port
5 Test_time = Compressed_NoC_Schedule(T, ki, TestData)
6 If Test_time < Best_Test_time
7 Best_Test_time = Test_time
8 Select partition (T, ki)
9 Repeat from 2;

W-3 - cc
2 < c =W-1 – c

3

W-2 - bb
2 < b =W-1 – b

2

W-1 - aa
1 < a =W-1 – a

1

In Port
3

In Port
2

In Port
1

W-3 - cc
2 < c =W-1 – c

3

W-2 - bb
2 < b =W-1 – b

2

W-1 - aa
1 < a =W-1 – a

1

In Port
3

In Port
2

In Port
1

ATE

W

In Port 1

In Port 2

NoC

In Port 1
In Port 2

NoC

In Port 3

In Port 1
In Port 2

NoC

In Port N/2

ATE channels

Ports partitions

Ports bitwidth partitions

W

K1

K2

KN/2

ATE

W

In Port 1

In Port 2

NoC

In Port 1
In Port 2

NoC

In Port 3

In Port 1
In Port 2

NoC

In Port N/2

ATE channels

Ports partitions

Ports bitwidth partitions

W

K1

K2

KN/2

Figure 5 - Partitions space

142

experiments, no test space exploration was performed.
In addition, the number of output ports is always equal
to the number of input ports as required by the non-
preemptive test scheduling. However, all output ports
are assumed to be 32-bit wide (no output compaction).
Table 2 shows the resulting test time (column 2) and the
number of ATE input channels (column 3) required for
each system configuration. The percentages presented in
lines 3 and 4 indicate the difference between that
solution and the one presented in line 1.

Table 1 - Payload increase for system d695c

Core Original
Payload (32-bit)

Port 1
Payload (12-bit)

Port 2,3
 Payload (10-bit)

1 12 41 45
2 511 1207 1376
3 2400 2507 2507
4 5670 5829 5829
5 6050 13088 14960
6 9594 14270 15727
7 3230 5037 5577
8 4462 4605 4605
9 768 1704 1936
10 370 8171 9354

One can observe from Table 2 that without
compression, a 200% increase in the number of ATE
input channels is necessary to achieve 58% reduction in
test time. With compression, one can keep the number
of ATE channels of the original solution and still
increase the number of test interfaces. Thus, despite the
average increase of more than 300% in the payload size
of the cores, test time is reduced by 33% without
increasing ATE costs. Note that for this result a single
(and random) partition of the input pins has been
considered. With the exploration of all possible
partitions proposed in Section 4.2 even better test times
can be achieved while keeping the ATE costs constant.

Table 2 - Test time results for d695c
System

Configuration
Test time
(cycles)

number of
ATE input channels

1 32-bit ports 36588 32
3 32-bit ports 15293 (-58.2%) 96 (+200%)

3 ports of 12, 10,
and 10 bits 24395 (-33.3%) 32 (+0%)

Table 3 presents more detailed results for the three
SoCs considering the test space exploration. Let us
assume that the number of functional input pins of the
system defines the number of available ATE input
channels. For each system and for each number of I/O
pairs (column 2), we show the number of system input
pins (column 1), the test time (column 3) and the
number of ATE input channels (column 4) when no
compression is used. Similarly, columns 5 and 6 show
respectively the test time and the number of ATE input
channels for the best partition when compression is
used. Column 7 shows the number of bits per input port

for the partition that leads to the best test time. One can
observe that for a similar ATE cost, test time of the
compressed solution is always better (bold numbers in
Table 3). System p93791c is an exception, since for two
inputs and 118 available pins there is no need to use
compression. However, for a given number of ATE
channels, the solution that uses the compression scheme
achieves a much better test time. Let us consider system
p93791c, for example. For a budget of 118 ATE
channels, the proposed approach achieves a test time
improvement of 32%. Shaded cells in Table 3 show that
for a similar test time, the ATE cost is much smaller
when compression is used (around 50% for systems
d695c and g1023c, and around 30% for p93791c).

Note that test time improvement for systems g1023c
and p93791c saturates for a certain number of I/O pairs
(4 and 5, respectively). This happens because there is a
dominant core in the system that actually defines the test
time. In both cases, the dominant core uses a 32-bit
input, i.e., no compression is required, whereas the
remaining cores share the remaining input ports using
compression when necessary. Finally it is interesting to
notice in column 7 of Table 3 that in some cases the best
partition uses fewer pins than the maximum available. In
fact, the algorithm presented in Figure 6 stores the first
valid partition that gives the best test time. Information
on extra available pins can be further exploited to
combine the proposed technique with different packet
formats (e.g. [1]). The best partitions indicated in the
table also show that the number of decompressors in the
systems may be smaller than the number of input ports.
Again, dominant cores use the uncompressed ports
while less critical cores can increase their test time
without penalizing the system as a whole. In any case,
although the total number of ATE channels grows with
the number of 32-bit output ports, this growth is much
smaller when compression is used,

6. Final Remarks
We have proposed the combination of horizontal test

vector compression and test scheduling schemes to
tackle an important limitation of the NoC-based testing,
namely, the number of available test interfaces. A test
strategy composed of a test data compression
mechanism, a non-preemptive test scheduling algorithm,
and a test architecture exploration method was proposed
and implemented. Experimental results have shown that
for the same ATE cost, test times are improved by 23%
in average. On the other hand, for similar test times, an
ATE costs reduction as large as 50% can be achieved.
In this paper, only the benefit of test pattern
compression on ATE drive channels has been
questioned, compaction of test responses can be also be
explored as well to deal with limits on receive channels.

143

7. References
[1] M. Li, W. Jone, Q. Zeng. An efficient wrapper scan chain
configuration method for network-on-chip testing. IEEE
Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, 2006.
[2] C. Liu, J. Shi, E. Cota, V. Iyengar. Power-aware test
scheduling in network-on-chip using variable-rate on-chip
clocking. IEEE VLSI Test Symposium, 2005 pp:349 – 354.
[3] C. Liu, Z. Link, Z.; D.K. Pradhan. Reuse-based test access
and integrated test scheduling for network-on-chip. Design,
Automation and Test in Europe, 2006. pp:303-308.
[4] E. Cota, L. Carro, M. Lubaszewski. Reusing an on-chip
network for the test of core-based systems. ACM Transactions
on Design Automation of Electronic Systems (TODAES),
Volume 9, Issue 4 (October 2004) pp: 471–499.
[5] C. Liu, E. Cota, H. Sharif, D.K. Pradhan. Test Scheduling
for Network-on-Chip with BIST and Precedence Constraints.
IEEE Int. Test Conference, 2004, pp. 1369-1378.
[6] Cota, E.; Liu, C. Constraint-Driven Test Scheduling for
NoC-Based Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Volume 25, Issue
11, Nov. 2006 pp:2465 – 2478.
[7] A. Jas, B. Pouya, N.A. Touba. Virtual Scan Chains: a
means for reducing scan length in cores. IEEE VLSI Test
Symposium, 2000, pp: 73-78.
[8] L-T Wang et al. VirtualScan: a new compressed scan
technology for test cost reduction. IEEE Int. Test Conference
2004. pp: 916-924.
[9] I. Bayraktaroglu, A. Orailoglu. Test volume application
time reduction through scan chain concealment. ACM/IEEE
Design Automation Conference, 2001, pp: 151-155.
[10 K.J. Balakrishman, N.A. Touba. Reconfigurable linear
decompressor using symbolic Gaussian elimination. Design,
Automation and Test in Europe, 2005, pp: 1130-1135.
[11] J. Rajski et al. Embedded deterministic test for low cost
manufacturing test. IEEE Int. Test Conference 2002, pp: 916-
922.
[12] L. Li, K. Chakrabarty. Test data compression using

dictionaries with selective entries and fixed-length indices.
ACM TODAES, Vol. 8, No. 4, October 2003, pp: 470-490.
[13] A. Würtenberger, C.S.Tautermann, S.Hellebrand. Data
compression for multiple scan chains using dictionaries with
corrections. IEEE Int. Test Conference, 2004, pp: 926-935.
[14] J. Dalmasso, M.L. Flottes, B. Rouzeyre. Fitting ATE
Channels with Scan Chains: a Comparison between a Test
Data Compression Technique and Serial Loading of Scan
Chains, DELTA'06, pp: 295-300.
[15] N. Sitchinava et al. Changing the scan enable during shift.
IEEE VLSI Test Symposium 2004, pp: 73-78.
[16] H. Tang, S.M. Reddy, I. Pomeranz. On reducing test data
volume and test application time for multiple scan chain
designs. IEEE Int. Test Conference 2003, pp: 1079-1088.
[17] B. Arslan, A. Orailoglu. CircularScan: a scan architecture
for test cost reduction.. Design, Automation and Test in
Europe 2004, pp: 1290-1295.
[18] S. Mitra, K.S. Kim. X-compact: an efficient response
compaction technique for test cost reduction. IEEE
International Test Conference 2002, pp: 311-320.
[19] J. Rajski,et al. Finite memory test response compactors
for embedded test applications. IEEE Trans. on CAD, April
2005, Vol. 24-4, pp: 622- 634.
[20] A.M. Amory, K. Goossens, E.J. Marinissen, M.
Lubaszewski, F. Moraes. Wrapper Design for the Reuse of
Networks-on-Chip as Test Access Mechanism. IEEE
European Test Symposium, 2006, pp:213 – 218
[21] A.M. Amory, K. Goossens, E..J. Marinissen, M.
Lubaszewski and F. Moraes. Wrapper design for the reuse of a
bus, network-on-chip, or other functional interconnect as test
access mechanism. IET Comput. Digit. Tech., 2007, v. 1, Issue
3, pp. 197–206
[22] A.M. Amory; F. Ferlini ; M. Lubaszewski; F. Moraes.
DfT for the Reuse of Networks-on-Chip as Test Access
Mechanism. IEEE VLSI Test Symposium, 2007, pp: 435-440
[23] E.J. Marinissen, V. Iyengar, K. Chakrabarty. A set of
benchmarks for modular testing of SOCs. IEEE Int. Test
Conference 2002 pp:519–528.

Table 3 - Test time X ATE cost with and without compression

No Compression With Compression
System Number

of I/O Test time
(cycles)

of input
ATE channels

Test time
(cycles)

of input
ATE channels

Best partition

1/1 36588 32 n/a n/a n/a
2/2 19788 64 22737 32 4/28
3/3 15293 96 20945 32 2/15/15
4/4 9652 128 18067 32 1/1/4/26

d695c
(32 in)

5/5 9652 160 12853 32 1/1/1/2/27
2/2 23777 64 25453 52 20/32
3/3 16051 96 18883 56 12/12/32
4/4 14453 128 14865 50 6/6/6/32

g1023c
(56 in)

5/5 14453 160 14865 56 6/6/6/6/32
2/2 593225 64 593225 64 32/32
3/3 395818 96 458164 66 2/32/32
4/4 311520 128 332843 101 5/32/32/32
5/5 244550 160 268459 106 5/5/32/32/32
6/6 244550 192 268459 106 5/5/5/32/32/32

p93791c
(118 in)

7/7 244550 224 268459 106 5/5/5/5/32/32/32

144

