
HAL Id: lirmm-00273879
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00273879v1

Submitted on 16 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Drag-and-drop to New Interactive
Environments: a Multi-display, Multi-instrument and

Multi-user Approach
Maxime Collomb, Mountaz Hascoët

To cite this version:
Maxime Collomb, Mountaz Hascoët. Extending Drag-and-drop to New Interactive Environments: a
Multi-display, Multi-instrument and Multi-user Approach. RR-08012, 2008. �lirmm-00273879�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00273879v1
https://hal.archives-ouvertes.fr

Extending drag-and-drop to new interactive environments: a
multi-display, multi-instrument and multi-user approach
Research report RR-08012

Maxime Collomb, Mountaz Hascoët
Univ. Montpellier II – LIRMM – CNRS
161 rue Ada, 34 392 Montpellier Cedex 5 - France.
collomb@lirmm.fr, mountaz@lirmm.fr

Drag-and-drop is probably one of the most successful and generic representations of direct manipulation in
today’s WIMP interfaces. At the same time, emerging new interactive environments such as distributed display
environments or large display surface environments have revealed the need for an evolution of drag-and-drop to
address new challenges. In this context, several extensions of drag-and-drop have been proposed over the past
several years. However, implementations for these extensions are difficult to reproduce, integrate and extend.
This situation hampers the development or integration of advanced drag-and-drop techniques in applications.

The aim of this paper is to propose a unifying implementation model of drag-and-drop and of its extensions.
This model –called M-CIU– aims at facilitating the implementation of advanced drag-and-drop support by offering
solutions to problems typical of new emerging environments. The model builds upon a synthesis of drag-and-
drop implementations, an analysis of requirements for meeting new challenges and a dedicated interaction model
based on instrumental interaction. By using this model, a programmer will be able to implement advanced
drag-and-drop supporting (1) multi-display environments, (2) large display surfaces and (3) multi-user systems.
Furthermore by unifying the implementation of all existing drag-and-drop approaches, this model also provides
flexibility by allowing users (or applications) to select the most appropriate drag-and-drop technique depending on
the context of use. For example, a user might prefer to use pick-and-drop when interacting with multiple displays
attached to multiple computers, push-and-throw or drag-and-throw when interacting with large displays and
possibly standard drag-and-drop in a more traditional context. Finally, in order to illustrate the various benefits
of this model, we provide an API called PoIP which is a Java-based implementation of the model that can be used
with most Java-based applications. We also quickly describe Orchis, an interactive graphical application used to
share bookmarks and that uses PoIP to implement distributed drag-and-drop like interactions.

1. Introduction

Even though drag-and-drop has been inte-
grated widely, implementations vary significantly
from one windowing system to another or from
one toolkit to another (Collomb and Hascoët,
2005). This situation is worse for drag-and-drop
extensions such as pick-and-drop, drag-and-pop,
push-and-throw, etc. As far as these extensions
are concerned, very little support if any is usually
provided and implementations are hard to reuse,
generalize or extend as new needs arise.

As the number of drag-and-drop extensions
is increasing, it is important to propose a uni-
fied framework that clarifies the field and offers

benefits from at least three perspectives: user’s
perspective, design perspective and implementa-
tion perspective. From a user’s perspective, such
a unification will hopefully make it possible for
users to choose the type of drag-and-drop they
like best or that best suits some specific environ-
ment or task. From a designer’s perspective, a
unifying framework will help better understand
differences between the possible techniques and
the design dimensions at stake. Lastly, from the
programmer’s perspective, a unifying implemen-
tation model should save a lot of time and efforts
in the development of different of drag-and-drop
extensions in new emerging and challenging envi-
ronments such as large displays and distributed

1

2 M. Collomb, M. Hascoët

display environments. The aim of this paper is
to propose the basis for building such a frame-
work, including a unified and open implementa-
tion model.

In the following section, we discuss how emerg-
ing interactive environments bring new challenges
for the drag-and-drop paradigm, we review most
extensions proposed so far and propose a uni-
fied framework for comparing them. In the next
section, we present a new implementation model
that not only builds upon an analysis of re-
quirements for adapting to new emerging inter-
active environments but also accounts for imple-
mentation models of existing solutions in most
widespread windowing systems or toolkits (Col-
lomb and Hascoët, 2005). This model is based on
the definition of instruments (Beaudouin-Lafon,
2000) that embody interaction techniques. The
presentation of the implementation model at a
generic level is based on a generic type of in-
strument that embodies basic drag-and-drop in-
teraction styles. We further discuss how specific
emerging drag-and-drop extensions can be imple-
mented as specific instruments that are smoothly
integrated into the model.

2. New challenges for the drag-and-drop
paradigm

Most challenges that drag-and-drop has faced
recently can be attributed to the emergence of
new display environments such as wall-size dis-
plays or distributed display environments (DDE).
DDE have been defined (Hutchings et al., 2005)
as

“Computer systems that present out-
put to more than one physical dis-
play.”

This general definition covers a broad range of
systems. Consequently, systems that can be stud-
ied in this field can exhibit huge differences. An
example of such a huge difference is the difference
between two typical types of DDE: (1) multiple
displays attached to the same machine and (2)
multiple displays attached to different machines.
While both configurations can be considered as

DDE, the degree of integration of the distinct dis-
plays is very different. In the first case, the differ-
ent displays are handled within the same window-
ing system, offering a single workspace or desktop
with full communication capacities between win-
dows of the different displays. In the second case,
on the contrary, the two displays are handled by
two distinct and potentially heterogeneous win-
dowing systems, making it much more difficult to
offer similar single workspace spanning the differ-
ent displays. These two different configurations
lead to significantly different types of problems
when implementing drag-and-drop in these envi-
ronments.

2.1. Preliminary definitions

In order to better characterize the types of
problems that are most challenging for drag-and-
drop and its variants, preliminary definitions are
useful. In this paper, we use a generally agreed
definition of the term display : a physical device
used to display information. The term window is
used to refer to an area of a display devoted to
handle input and output from various programs.

Based on these definitions, we define a sur-
face as a set of windows. We further define the
term distributed surface as a surface with two ad-
ditional properties: (1) windows of the surface
potentially appear on different displays attached
to different machines handled through different
windowing systems, (2) interactions between win-
dows handled by different windowing systems is
transparent for the user, e.g it is similar to single
interactions that happen in a single workspace.

For example, a set of windows spanning three
different displays handled by three different ma-
chines, such as a laptop running MacOS, a PC
running X-Windows and a tablet PC running
Windows can be considered as a distributed sur-
face as soon as a system makes it possible to sur-
pass the boundaries of each windowing system to
support some interactions between different win-
dows on different displays. It is important to
stress that systems handling distributed surface
environments are de-facto potentially multi-user
systems. Indeed, each machine involved in the
surface can be controlled by a different user. To

Drag-and-drop evolutions: an implementation model 3

some extent they can be considered as a specific
type of groupware environment.

Our aim is to propose solutions for typical
problems arising when designing and implement-
ing a drag-a-drop like interaction in a distributed
surface environment. These problems can be
structured in three categories: (1) usability and
scalability problems, (2) multi-computer and in-
teroperability problems and (3) multi-user and
concurrency problems.

2.2. Usability and scalability issues

Usability problems derive from the complexity
of new environments and the usage variety: het-
erogeneity of displays both in terms of size, num-
ber and nature, heterogeneity of users in terms of
abilities, experience and style. Over years, drag-
and-drop basic paradigm has been extended with
new interaction styles. Most of these extensions
address specific needs for particular display envi-
ronments. Consequently, we now have interesting
alternatives to the drag-and-drop original style
that best suits some contexts. These alternatives
will be discussed in section 2. One benefit of our
approach is to support different styles of interac-
tion in a unified implementation model so that
shifting from one interaction style to another is
facilitated. This feature can be seen as a partic-
ular support for plasticity:

“the capacity of a user interface to
withstand variations of both the sys-
tem physical characteristics and the
environment while preserving usabil-
ity”

(Thevenin and Coutaz, 1999).
Other types of usability problems that arise

with emerging environments can be considered as
scalability due to the increasing space available on
large wall-sized displays: to what extent a tech-
nique originally designed to work on one single
and relatively low resolution display will adapt
to an increasing number, size and resolution of
displays? When such displays are used with di-
rect pointing devices, e.g in the iRoom (Stanford
University, 2008) or DynaWall (Fraunhofer insti-
tute, 2008), the original drag-and-drop paradigm

reaches its limits : interactions that involve drag-
ging objects tend to be particularly tedious and
error-prone (Collomb and Hascoët, 2004; Collomb
et al., 2005) and can be further complicated by
the bezels separating screen units (Baudisch et
al., 2003). Drag-and-drop might even fail when
targets are out of reach, e.g. located too high or
too low on a display. Further, user performances
in terms of time necessary to complete a task are
known to decrease as the size of displays increases
because they induce greater distances between
targets and sources and target acquisition time
is known to increase with distance (Fitts, 1992).

2.3. Distributed display surfaces: trans-
parently integrating multiple comput-
ers and multiple windowing systems

Multi-computer and multi-windowing system
problems are probably the most challenging prob-
lems that have to be addressed to handle dis-
tributed surfaces. Because of the difficulty in
surpassing the boundaries of windowing systems
associated with each display, there is still very lit-
tle support for making windows of a distributed
surface behave as if they were part of the same
workspace. Some systems (Shoeneman, 2008; Jo-
hanson et al., 2002; Lachenal, 2004) aim to sup-
port communication between displays based on
redirection of input/output mechanisms, but sup-
port is still at its early stage.

Other approaches like those found in dis-
tributed visualization environments provide
multi-head support for multiple displays at-
tached to different machines (Xdmx project,
2008; Humphreys et al., 2002). These systems
provide advanced support for distributed sur-
faces. However, they do not have the flexibility
needed to handle heterogeneous or dynamic dis-
tributed surfaces. Indeed, they impose strict
constraints on the architecture of clusters of ma-
chines used and on the windowing systems or
graphic toolkit that is run by these machines.
Clearly they are not aimed at handling evolving
sets of machines running heterogeneous window-
ing systems and graphical toolkits. Our model,
on the contrary, imposes no particular constraints
on the machines involved in distributed surfaces

4 M. Collomb, M. Hascoët

and it also supports evolving configurations so
that windows from new machines can be dy-
namically added or removed from a distributed
surface.

2.4. Multi-user issues

Amongst all problems that arise with new dis-
play environments, some multi-user problems are
typical of the field of computer-supported col-
laborative work (CSCW) and have been studied
over the past decades (Greenberg and Marwood,
1994). As far as drag-and-drop is concerned, the
important aspect of multi-user support is that
one is able to distinguish event streams from dif-
ferent users. By fulfilling this requirement, our
model can also be used by a programmer willing
to integrate advanced drag-and-drop features in
a CSCW context.

3. Drag-and-drop extensions

Problems listed in the previous section are par-
tially addressed by a set of drag-and-drop exten-
sions that have been proposed over the past 10
years. In this domain, it is possible to distin-
guish between different types of approaches de-
pending on whether the underlying interaction
model is target-oriented, source-oriented or undi-
rected. This section rapidly reviews the various
extensions proposed recently according to these
three categories. The next section further com-
pares these extensions according to more detailed
dimensions.

3.1. Target-oriented interaction

Hereafter target-oriented interaction refers to
an interaction style in which the main focus and
feedback is located around potential targets lo-
cations. In most cases, with target-oriented in-
teraction, users have to adjust their move con-
tinuously around potential target locations to fi-
nally acquire the right target at its real location.
These continuous adjustments may have marked
impacts on the systems since they imply high re-
fresh rates: a little lag between the user’s hand
movement and the feedback would significantly

decrease the usability of such interaction style.
Furthermore, to be effective, target-oriented in-

struments should be used with displays where
targets are all roughly equally within sight. In
very large wall-size displays it might be diffi-
cult to clearly distinguish targets very far away
from the source location. In such environ-
ments, target-oriented instruments would fail and
source-oriented instruments would be more suit-
able.

In this section, we quickly review most recent
extensions that belong to this category: throwing,
drag-and-throw and push-and-throw.

Figure 1. (Left to right, top to bottom) Exam-
ples of (a) hyperdragging, (b) stitching, (c) drag-
and-pop, (d) vacuum (black arrows are added),
(e) push-and-throw and (f) push-and-pop. (re-
productions with authors permission)

Geißler (Geißler, 1998; Streitz et al., 1999) pro-
posed three techniques to work more efficiently
on interactive walls. The goal was to limit phys-

Drag-and-drop evolutions: an implementation model 5

ical displacement of the user on a 4.5 x 1.1 m
triple display (the DynaWall (Fraunhofer insti-
tute, 2008)). The first technique is shuffling. It is
a way of re-arranging objects within a medium-
sized area. Objects move by one length of their
dimensions in a direction given by a short stroke
by the user on the appropriate widget. Next, the
author proposes a throwing technique. To throw
an object, the user has to achieve a short stroke
in direction opposite to which the object should
be moving, followed by a longer stroke in the cor-
rect direction. The length ratio between the two
strokes determines the distance to which the ob-
ject will be thrown. According to the author,
this technique requires training to be used in an
efficient way. The third technique, taking, is an
application of pick-and-drop (see section 3.3) tai-
lored to the DynaWall.

Drag-and-throw and push-and-throw (Hascoët,
2003; Collomb and Hascoët, 2004) are throwing
techniques designed for multiple displays (one or
more computers). They address the limitation
of throwing techniques (Geißler, 1998; Streitz et
al., 1999) providing users with a real-time pre-
view of where the dragged object will come down
if thrown. These techniques are based on visual
feedbacks, metaphors and the explicit definition
of trajectories (fig. 1–e). Three types of visual
feedback are used: trajectory, target and take-off
area (area that matches to the complete display).
Drag-and-throw and push-and-throw have differ-
ent trajectories: drag-and-throw uses the archery
metaphor (user performs a reverse gesture - to
throw an object on the right, the pointer has to
be moved to the left) while push-and-throw uses
the pantograph metaphor (user’s movements are
amplified). The main strength of these techniques
is that the trajectory of the object can be visual-
ized and controlled before the object is actually
sent. So users can adjust their gesture before val-
idating it. Therefore, contrary to other throwing
techniques, drag-and-throw and push-and-throw
have very low error rates (Collomb and Hascoët,
2004).

3.2. Source-oriented interaction

We use the term source-oriented to character-
ize drag-and-drop extensions where the focus re-
mains around the source object’s original loca-
tion. Contrary to target-oriented interaction, a
source-oriented interaction usually does not in-
volve continuous adjustments: a single fairly dra-
matic movement from the user is usually suffi-
cient to complete the task. However, in some
cases, e.g. in drag-and-pop, different drag direc-
tions cause the tip cluster to be a little different
every time, users might need to re-orient once or
twice to identify the correct tip icons. For such in-
teraction styles, additional feedback (e.g. rubber
bands) is usually provided to help in identifying
the real location of the objects that correspond
to the ghost.

In this section we review quickly most recent
extensions that can be considered target-oriented:
drag-and-pop, vacuum, and push-and-pop.

Drag-and-pop (Baudisch et al., 2003) is in-
tended to help drag-and-drop operations when
the target is impossible or hard to reach, e.g.,
because it is located behind a bezel or far away
from the user. The principle of drag-and-pop is
to detect the beginning of a drag-and-drop and to
move potential targets toward the user’s current
pointer location. Thus, the user can interact with
these icons using small movements. As an exam-
ple, the case of putting a file in the recycle bin,
the user starts the drag gesture toward the recycle
bin (fig. 1–c). After a few pixels, each valid target
on the drag motion direction creates a linked tip
icon that approaches the dragged object. Users
can then drop the object on a tip icon. When
the operation is complete, tip icons and rubber
bands disappear. If the initial drag gesture has
not the right direction and thus the target icon
is not part of the tip icons set, tip icons can be
cleared by moving the pointer away from them
but the whole operation has to be restarted to
get a new set of tip icons.

The vacuum (Bezerianos and Balakrishnan,
2005) (figure 1–d), a variant of drag-and-pop, is
a circular widget with a user controllable arc of
influence that is centered at the widget’s point of
invocation and spans out to the edges of the dis-
play. Far away objects standing inside this influ-
ence arc are brought closer to the widget’s center

6 M. Collomb, M. Hascoët

in the form of proxies that can be manipulated in
lieu of the originals.

Push-and-pop (Collomb et al., 2005) was cre-
ated to combine the strengths of drag-and-pop
and push-and-throw techniques. It uses the take-
off area feedback from push-and-throw while op-
timizing the use of this area (fig. 1–f): it contains
full-size tip icons for each valid target. The no-
tion of valid target and the grid-like arrangement
of tip icons are directly inherited from drag-and-
pop’s layout algorithm. The advantage over drag-
and-pop is that it eliminates the risk of invoking
a wrong set of targets. And the advantage over
push-and-throw is that it offers better readability
(icons are part of the take-off area), target acqui-
sition is easier (Collomb et al., 2005) and users
can focus on the take-off area.

3.3. Undirected interaction

Lastly, some interaction styles are neither
source-oriented nor target-oriented. We call them
undirected since feedback will not be concentrated
in one particular area of the display. Pick-and-
drop, stitching and hyperdragging are the main
examples of extensions that fall into this category,
and we review them in this section.

Pick-and-drop (Rekimoto, 1997) has been de-
veloped to allow users to extend drag-and-drop to
distributed environments. While drag-and-drop
requires the user to remain on the same computer
while dragging objects around, pick-and-drop lets
him move objects from one computer to another
using direct manipulation. This is done by giving
the user the impression of physically taking an ob-
ject on a surface and laying it on another surface.
Pick-and-drop is closer to the copy-paste interac-
tion technique than to drag-and-drop. Indeed like
the copy/paste operation, it requires two differ-
ent steps: one to select the object to transfer, and
one to put the object somewhere else. But pick-
and-drop and drag-and-drop share a common ad-
vantage over copy-paste techniques: they avoid
the user having to deal with a hidden clipboard.
However, pick-and-drop is limited to interactive
surfaces which accept the same type of touch-pen
devices and which are part of the same network.
Each pen has a unique ID and data is associated

with this unique ID and stored on a pick-and-drop
server.

Hyperdragging (Rekimoto and Saitoh, 1999)
(figure 1–a) is part of a computer augmented en-
vironment. It helps users smoothly interchange
digital information between their laptops, table
or wall displays, or other physical objects. Hy-
perdragging is transparent to the user: when
the pointer reaches the border of a given display
surface, it is sent to the closest shared surface.
Hence, the user can continue his movement as if
there was only one computer. To avoid confusion
due to multiple simultaneous hyperdragging, the
remote pointer is visually linked to the computer
controlling the pointer (simply by drawing a line
on the workspace).

Stitching (Hinckley et al., 2004) (figure 1–
b) is an interaction technique designed for pen-
operated mobile devices. The devices that allow
it to start a drag-and-drop gesture on a screen
and to end the gesture on another screen. De-
vices have to support networking. A user starts
dragging an object on the source screen, reaches
its border, then crosses the bezel and finishes
the drag-and-drop on the target screen. The two
parts of the strokes are synchronized at the end
of the operation and then bound devices are able
to transfer data.

4. Comparison of extensions

The extensions presented in the previous sec-
tion differ in several ways. The instrumental in-
teraction model (Beaudouin-Lafon, 2000) can be
useful to exhibit dimensions for a better compar-
ison of their interaction styles. In this section,
we quickly review the instrumental interaction
model. Based on this model, we exhibit dimen-
sions such as instrument feedback and instrument
coverage. By considering these dimensions and
others (drag-over and drag-under types of feed-
back), we further draw a comparison of previous
approaches which is summarized in Table of Fig-
ure 3.

4.1. Instrumental interaction

Drag-and-drop evolutions: an implementation model 7

Instrumental interaction consists of describing
interactions through instruments. An instrument
can be considered as a mediator between the user
and domain objects. The user acts on the instru-
ment, which transforms the user’s actions into
commands affecting relevant target objects. In-
struments have reactions that enable users to con-
trol their actions on the instrument, and provide
feedback as the command is carried out on target
objects (see figure 2).

Instrument

Domain object

reactionaction

command response

feedback

Figure 2. Interaction instrument mediates the
interaction between user and domain objects
(Beaudouin-Lafon, 2000).

Different extensions of drag-and-drop can be
embodied through different instruments. Interac-
tions between an instrument and domain objects
(commands/responses) are the same for drag-
and-drop and all the extensions presented previ-
ously, i.e. all instruments support primitive and
generic commands: source selection, target selec-
tion, specification of type of action, data transfer
(validation of the selected target) and cancella-
tion.

The most important part of typical drag-and-
drop interactions concerns interactions between
the user and the instrument (principally reac-
tions and feedback). Reactions and feedback of
instruments involve three types of feedback: drag-
under feedback, drag-over feedback and instru-
ment feedback. When a user needs to change

from one instrument to another, drag-under and
drag-over visual effects might roughly be pre-
served, but instrument feedback and reaction
vary significantly. For simplification, in the fol-
lowing sections we assimilate instrument feedback
and reaction into a single concept we refer to as
instrument feedback.

4.2. Drag-under and drag-over feedback

In regular drag-and-drop operations, feedback
is usually referred to as drag-under feedback and
drag-over feedback. Drag-over feedback consists
mainly of feedback that occurs on a source object.
Typically, during a regular drag on a source, the
pointer shape changes into a drag icon or ghost
that represents the data being dragged. This
icon can change during a drag to indicate the
current action (copy/move/alias). Hence, drag-
over feedback mainly consists of shape and color
of source ghost changes when the user changes
the type of action, or when drop becomes pos-
sible/impossible. Some windowing systems may
go a step beyond by providing animation, e.g. to
indicate that the action was canceled, they may
animate ghosts back to their original location. It
is interesting to note that even though the drag-
and-drop model is mature, not all windowing sys-
tems offer this feature. When no animation is
provided, it is significantly more difficult for the
user to follow the effect of a cancel operation.

Drag-under feedback denotes the visual effects
provided on the target side. It conveys informa-
tion when a potential target has a drag icon pass-
ing through it. The target can respond in many
ways: by modifying its shape and color or even in
more sophisticated cases by performing actions.
For example, when moving a file over a set of
folders, when the file remains above a particu-
lar folder a sufficient amount of time, the folder
might open up to let the user recursively explore
the file hierarchy to the desired target folder.

If drag-over and drag-under visual effects are
sufficient to describe feedback in the case of reg-
ular drag-and-drop operations, they are not for
most of its recent extensions. In the latter case,
more feedback is needed. This additional feed-
back is the instrument feedback mentioned previ-

8 M. Collomb, M. Hascoët

Issues primarily addressed Interaction style
 Distributed

surface
Multi-
User

Scala-
bility

Instrument
feedbacks

Instrument
Coverage Category

Pick-and-drop [20] � � Ghost Partial undirected

Hyperdragging [21] � � Line Full undirected

Stitching [14] � Trajectory, screen
frame, pie menu Partial undirected

Throwing [11] � None Full Target-oriented

Drag-and-pop [1] � � Rubber-bands, tip
icons Targets Source-oriented

Vacuum [3] � Arc of influence,
proxies Full Source-oriented

Drag-and-throw [13] � � Take-off area,
trajectory

Full Target-oriented

Push-and-throw [13] � � Take -off area,
trajectory Full Target-oriented

Push-and-pop [6] � � Take-off area, tip
icons Targets Source-oriented

Figure 3. Comparison of drag-and-drop extensions.

ously and will be described in the next section.

4.3. Instrument feedback

Instrument feedback is useful to provide users
with better control over their actions. Instrument
reactions or feedback can be considered as a spe-
cific type of recognition feedback. As suggested
by (Olsen and Nielsen, 2001),

“Recognition feedback allows users to
adapt to the noise, error, and miss-
recognition found in all recognizer-
based interactions”

. Such feedback includes, for example, the rub-
ber bands that are used in the case of drag-and-
pop to help users in locating/identifying potential
targets. Another example is the case of throw-
ing, where take-off areas as well as trajectories
are displayed to help users adjust target selec-
tion, etc. Such feedback is used in other exten-
sions and varies significantly from one particular
instrument to another. Table of Figure 3 summa-
rizes these differences.

4.4. Instrument coverage

All instruments described above do not support
full coverage. By coverage, we mean: areas of a
surface where an instrument can drop an object.

Some instruments have partial coverage. For
example, in wall-size displays with touch/pen in-
put, coverage is partial since some areas might be
out of reach e.g situated too high.

Other instruments, mainly target oriented in-
struments, may offer coverage limited to targets.
For example, with push-and-pop, only potential
targets can be reached. With such instruments,
source objects cannot be dropped to any other
area of the surface. There are many contexts of
drag-and-drop situations where no specific target
is aimed and where such instruments would fail,
so it is important to consider this issue.

Finally, instruments that make it possible to
reach all areas of the display will be considered
full coverage instruments. Table of Figure 3
shows the different types of coverage (partial cov-
erage, full coverage and coverage limited to tar-

Drag-and-drop evolutions: an implementation model 9

gets) of most existing drag-and-drop extensions.

5. M-CIU model and PoIP API

The implementation model we propose is called
M-CIU1 and addresses the different issues dis-
cussed in section 2. It offers a unified framework
that makes it possible to implement every drag-
and-drop extension discussed previously. Hence
shifting from one interaction style to another is
facilitated.

The M-CIU model is implemented as an
API (application programming interface) called
PoIP2. PoIP supports drag-an-drop like manipu-
lations in different environments and can be used
in the development of most Java-based appli-
cations. PoIP is implemented in Java3. Even
though we used PoIP to illustrate the M-CIU
model and to provide more details when useful,
we believe that our model is general enough to
be implemented at other levels or in other pro-
gramming languages or toolkits. PoIP is available
for download with an example of use (Collomb,
2008).

5.1. Overview of M-CIU model

The M-CIU model is based on four key en-
tities: instruments, drag-and-drop managers,
shared windows, distributed surface server and
topology manager. We quickly present these en-
tities in this section and will provide more details
in the next subsections.

Instruments embody interaction techniques. A
hierarchy of instruments (see section 5.2) is pro-
vided to factorize most common implementation
details shared by different interaction techniques.
In order to support distribution, each instrument
includes one master and several slave instruments
which will further be described in section 5.2.

Drag-and-drop managers play a central part as
they are used to coordinate all other main en-
tities of the model. Every computer involved
in a distributed drag-and-drop in our model has
1Multi-Computer, multi-Instrument, and multi-U ser
2Pointer Over IP
3PoIP relies on RMI (Remote Method Invocation) for net-
work communication and AWT for events

to run a drag-and-drop manager. These man-
agers are responsible for the registration of source
and target components (e.g. UI components in-
volved in the interaction), they handle the cre-
ation/destruction of slave instruments and also
help with the redirection of event streams. A
drag-and-drop manager is the single interface for
a set of instruments. Indeed, a master instrument
can change depending on the context, and slave
instruments are created and destroyed upon users
activities. The drag-and-drop manager provides a
stable interface for this set of instruments and fur-
ther simplifies communications between the main
model entities.

Shared windows are created to display most
feedback and will be described further in section
5.3.

Source and target components can be any basic
UI components involved in the interaction pro-
vided that they have the capacity of registering
to a drag-and-drop manager.

Distributed surface server and topology man-
ager are the entities responsible for handling
shared windows distributed over displays and
their associated topology. They will be described
in more detail in section 5.3.

5.2. Multi-instrument support and gener-
icity

Our approach to usability and scalability prob-
lems mentioned in section 2.2 consists of provid-
ing a unified implementation model that embod-
ies drag-and-drop-like interaction techniques in
instruments. Even though the instrumental in-
teraction (Beaudouin-Lafon, 2000) model is pri-
marily devoted to describing interactions, some
aspects of the model are well suited to structur-
ing implementations.

Hence, our approach consists of proposing a
multi-instrument model which meets the follow-
ing requirements:

• Instruments act upon objects transpar-
ently: objects are notified about the ma-
nipulation as usual but they are not aware
of the type of instrument in use. The ef-
fort needed to introduce new instruments is
minimal.

10 M. Collomb, M. Hascoët

• Users can choose the instrument they want
to use, depending on their preferences and
the context (touch display, large display,
small display). This choice can be part of
the user’s profile. It can also be made on
the fly to adapt to an evolving context.

• Several users can manipulate objects at the
same time with different instruments.

Practically, instruments are defined through a
hierarchy of classes, all inheriting from a very
generic instrument class in the same way that in
most UI toolkits all widgets or graphical compo-
nents usually inherit from a generic window class.

It is important to note that an instrument em-
bodies the implementation of both the interaction
and the distribution (multi-computer support).

Interaction

An instrument receives an input stream (e.g.
events from a mouse and a keyboard) and pro-
cesses them to implement interactions. Figure 4
presents two state diagrams (Muller and Gaert-
ner, 2003) that depict interaction models for
push-and-throw and push-and-pop. Actually, the
first state diagram could also stand for the drag-
and-drop and drag-and-throw interaction models
and the accelerated push-and-throw interaction
model is very close to the second diagram.

drag-and-drop-like state diagrams share several
common points due to the actual nature of the in-
teraction techniques that they embody. However,
some differences between instruments are visible
in these diagrams, e.g. an additional state for
push-and-pop. The most important differences
between instruments concerns the processing of
input events and associated feedbacks.

5.3. Multi-computer support and interop-
erability

In order to address the multi-computer issues
discussed in section 2, one preliminary require-
ment is to support some sort of interoperability
between windowing systems. In our model, in-
teroperability is based on (1) implementation of
distributed surfaces and (2) slave instruments.

idle

inactive

dragging
(push-and-pop)

mouse-
Dragged(x, y)

mouse-
Down(xs, ys)

mouseUp()

[sourceAccept-
Action = false]

[sourceAccept-
Action = true]

m
ou

se
U

p(
)mouse-

Dragged(x, y)
[dist(xs, ys, x, y)
< threshold]

dragging
(acc. push-and-throw)

mouseDragged(x, y)

[dist(xs, ys, x, y)
< threshold]

mouseUp()

m
ou

se
U

p(
)

mouse-
Dragged(x, y)

[dist(xs, ys, x, y)
> threshold]

[dist(xs, ys, x, y)
> threshold]

idle

inactive

dragging

mouse-
Dragged(x, y)

mouse-
Down(xs, ys)

[sourceAccept-
Action = false]

[sourceAccept-
Action = true]

mouse-
Dragged(x, y)

[dist(xs, ys, x, y)
< threshold]

mouseUp()

[dist(xs, ys, x, y)
> threshold]

mouseDragged(x, y)

mouseUp()

Figure 4. State diagram for the push-and-throw
(top) and push-and-pop (bottom).

Distributed surfaces

As defined previously, a distributed surface is
a set of windows possibly displayed by different
windowing systems and behaving as if they were
part of the same workspace. In particular, a drag-
and-drop interaction can transparently start with
one window of the distributed surface handled in
one windowing system and ends on another win-
dow operated on another windowing system.

Drag-and-drop evolutions: an implementation model 11

Shared windows

So far we have used the term window in a gen-
eral way. We now need to refine the concept
and introduce the term shared window to provide
more details on implementation. A shared win-
dow is used to make it possible for a given com-
mon window or graphic component to be part of a
distributed surface. A shared window has a name
and a unique ID. Shared windows act on their as-
sociate windows or components in two ways:

• Redirection of input events received in
the associated window4. This mechanism
allows a pointer to move across the dis-
tributed surface, thus transparently sur-
passing windowing system boundaries.

• Rendering feedbacks. A transparent
pane is laid on top of the window in order
to render multiple pointers. This pane is
also made available for instruments to im-
plement different types of feedbacks, espe-
cially to perform drag-over feedback and in-
strument feedback.

Distributed surface Server

A distributed surface is useful for establish-
ing connections between the different shared win-
dows independently of their associated window-
ing system. Shared windows make a contin-
uous workspace using a given topology. This
workspace can be distributed between multiple
computers, used by multiple users, each with dif-
ferent input devices (i.e. multi-computer, multi-
user).

The distributed surface server is used to:

• manage windows IDs. An ID identifies both
windows and associated input devices. An
ID is assigned to a window when the win-
dow is registered on the server.

• maintain a list of shared windows to ensure
4Input redirection is the transmission of an input stream
so it can be treated on a remote window. Input redirec-
tion involves (1) capturing events on a source window (2)
transmitting events from the source window to the target
window and (3) analyzing events on the target window.
Source and target windows can be the same window.

that each time a shared window registers or
unregisters all other windows are notified.

• handle the topology of windows within the
surface according to a topology manager.

Master and slave instruments

In order to support multi-computer environ-
ments, instruments are decomposed into one mas-
ter instrument and several slave instruments. The
number of slave instruments depends on the con-
text and more specifically on the number of dif-
ferent computers potentially involved in the dis-
tributed surface. Most generic levels of commu-
nication between slaves and masters are handled
at the most abstract classes of instruments, but
more specific communication is left to more spe-
cific classes of instruments. Indeed, communica-
tions between masters and slaves may vary a lot
both in terms of nature and of frequency from one
instrument to another.

A given drag-and-drop manager handles one
and only one master instrument and a variable
number of slave instruments, depending on the
number of running drag-and-drop interactions.
As shown in figure 5, a master instrument is
mainly devoted to dispatching input events and
handling associated slave instruments, while slave
instruments do the real job, e.g. find which com-
ponent is at a given location or perform adequate
feedback in the relevant shared window. A master
instrument requests the creation of slave instru-
ments when a drag-and-drop-like manipulation is
detected and asks for their destruction at the end
of the manipulation. Thus, a master instrument
handles n slave instruments during manipulation
where n is the total number of shared windows in
the distributed surface.

5.4. Multi-user support and concurrency

The M-CIU model allows multiple users to
interact simultaneously on a distributed sur-
face5. This can be achieved by augmenting event

5The number of users cannot be higher than the num-
ber of computers involved since only one input stream is
managed on each computer.

12 M. Collomb, M. Hascoët

Window #1 Window #2

Push-and-throw slave #2

Drag-and-drop slave #2

Push-and-throw master

RMI communication

DndManager #2

Push-and-throw slave #1

Drag-and-drop slave #1

Drag-and-drop master

DndManager #1

Complete instrument Input events stream

Figure 5. Example of two concurrent drag-and-
drop-like manipulations on a distributed surface
containing two windows.

streams with the ID of the input device from
which they originally started. This feature cer-
tainly enables multiple users to interact using sev-
eral different instruments to perform drag-and-
drop-like operations but it does not solve all prob-
lems that should be handled at the level of each
application to ensure that concurrency results in a
coherent behavior. Handling further concurrency
issues is beyond the scope of this work.

5.5. A complete example of a typical
multi-instrument, multi-display and
multi-user interaction with the M-
CIU model

Lets consider an example where two users are
discussing a project and meeting in a room where
a wall-sized display with touch capacities is avail-
able. User A is using his own laptop and user
B is using the wall-sized display and the associ-
ated computer. At one point, user A wants to
give user B data displayed on the screen of his
laptop. Conversely, user B wants to give user
A data displayed on the wall-sized display. With
his laptop, user A uses a simple regular drag-and-
drop interaction style while user B, on the con-
trary, prefers to use a push-and-throw interaction
style with the wall-sized touch display. To han-
dle drag-and-drop-like operations between both
users, two different computers are involved with
two different applications and two different in-
teraction styles. User A starts a drag-and-drop
from computer A and the target component is

handled by application B running on computer
B. At the same time, user B starts a push-and-
throw with his pen from computer B toward an
application running on laptop A. This example
of a typical distributed drag-and-drop like oper-
ation is depicted in figure 5. Using the M-CIU
model, all interactions are handled through the
main entities of the model described in the pre-
vious sections and involve 5 steps: initialization,
drag detection, drag, drop, finalization.

Initialization

Before any drag-and-drop-like operation starts,
application A and B are launched and a few el-
ements needed for drag-and-drop-like operations
are created once: the source listener, the target
listener, and the master instruments. While these
operations are required only once, it is still pos-
sible to change these elements later, e.g. a mas-
ter instrument can be changed dynamically ac-
cording to user preferences. In this initialization
step, source and target components have to reg-
ister themselves on the drag-and-drop Managers.

Drag detection

The beginning of the drag-and-drop of user A
is detected by the master instrument of computer
A (which receives all input events of computer
A). Respectively, the beginning of the push-and-
throw of user B is detected by the master instru-
ment of computer B. When the beginning of the
interaction is detected, associated source compo-
nents are notified and respond. Once source com-
ponents have accepted the operation, the master
instruments ask for the creation of all necessary
slave instruments. As a result, each drag-and-
drop manager handles two slave instruments: one
for drag-and-drop of user A and one for push-and-
throw of user B.

Drag

During the drag process, master instruments
notify slave instruments that the pointer is mov-
ing. This type of redirection ensures that the the
slave instrument can perform adequate feedback
wherever the pointer moves. When the pointer
moves over a potential target component, both

Drag-and-drop evolutions: an implementation model 13

the source and target component are notified.

Drop

At the end of the operation targets are noti-
fied and data transfer from source to target can
take place. At this stage, master instruments also
ask for the destruction of all slave instruments in
the same way as they previously asked for their
creation.

Finalization

When application A and B are closed, source
and target components unregister themselves
from associated drag-and-drop Managers. This
happens only once per session whereas creation
and deletion of slave instruments happens every
time a new drag-and-drop-like operation is per-
formed.

6. An application: Orchis

Orchis is an interactive and collaborative
graphical application designed to share bookmark
collections. Its architecture is client/server and
most data is stored on the server side. Other
web-based bookmarking clients have been imple-
mented as well to access the same data. However,
Orchis offers most graphical features associated
with more direct manipulation style. Hence we
consider Orchis as a good place to illustrate the
use of our multi-instrument, multi-user, multi-
computer model.

6.1. Scenario

Let’s consider the situation where several users
gather bookmarks that deal with web site design,
for example. Each of them owns a laptop and
they regularly meet and use an interactive wall-
sized display to compose a common repository.

In this context, one distributed surface server
runs on the computer associated with the wall-
sized display and Orchis runs on every computer
involved in further interactions (e.g. all laptops
and the computer associated with the wall-sized
display). Orchis displays windows such as the
windows depicted on Figure 6. The topology of
shared windows determines how one pointer can

move from one window on one computer to an-
other window on another computer and is shown
on Figure 7 for two users and one wall-sized dis-
play.

1

2

3
11 22 33

Figure 7. Topology of three Orchis windows (1)
in the meeting room and (2) as managed by the
distributed surfaces server.

At one point, one user using regular drag-and-
drop copies his bookmarks dealing with web de-
sign to the wall-sized display. Using accelerated
push-and-throw, another user does the same (Fig-
ure 6).

Further, one of the users organizes bookmarks
gathered on the wall-sized display by directly us-
ing the touch device associated with the display.
Accelerated push-and-throw is defined as the pre-
ferred technique for the wall-sized display so this
user operates using accelerated push-and-throw.
By using the mouse of his laptop, another user
can bring his pointer on the shared window of
the wall-sized display and occasionally helps the
first user in the organization task.

At the end of the process, the resulting book-
mark collection is saved in the database so it can
be reused later by both Orchis and all other con-
nected web clients.

6.2. Discussion

Orchis is an excellent example of what can be
done with PoIP API:

14 M. Collomb, M. Hascoët

Figure 6. Three users working with Orchis on which two bookmark are copied using accelerated push-and-
throw and regular push-and-throw. A view of the right user’s window is added to render the workspace
as seen by the right user.

• Several windows from different computers
can set up a seamless distributed surface.

• This surface can be used simultaneously by
several users.

• Each user can choose his preferred drag-
and-drop-like interaction technique. Note
that Orchis only uses instruments that of-
fer full coverage (see table of Figure 3).

One limitation is that only one input stream is
managed on a computer. The number of simulta-
neous user is limited to the number of computers
involved in the distributed surface.

7. CONCLUSION

In this paper, we have shown the necessary
changes to drag-and-drop to meet requirements
of new emerging interactive environments. We
have pointed out issues that arise with these new
environments. We have further reviewed, com-
pared and discussed recent drag-and-drop exten-
sions that partially address these issues. Finally,
we have proposed the M-CIU model, which is

an implementation model that builds upon these
analyses to meet the challenging requirements of
new emerging interactive environments and to
make it possible for a programmer to support
most extensions of drag-and-drop in a single uni-
fied framework.

We provide an API called PoIP that imple-
ments the M-CIU model and that can be used in
the development of most Java-based applications.
The API has been used in the development of a
collaborative bookmarking application called Or-
chis. Overall, PoIP was found to be robust, and
even though PoIP uses a layered pane to display
pointers and feedbacks, we did not notice any sig-
nificant reduction in performances with the Java
applications tested.

However, the question of the level at which the
model should be implemented is left open. Our
approach with PoIP was to implement the model
at the toolkit level. However, considering lower
levels (windowing system level, window manager
or middleware level) would certainly be costly but
also most likely to provide great benefits. Even
though our model is implemented at the toolkit
level, we made it general enough to be imple-

Drag-and-drop evolutions: an implementation model 15

mented at other levels as well.
Our model proposes a multi-instrument ap-

proach which is important to address problems
of usability and scalability mentioned in section
2. In that context, modularity and genericity
were used to minimize the cost of introducing new
drag-and-drop extensions as new needs arise. Our
model further supports multi-computer environ-
ments transparently. This is useful to ensure that
drag and drop operations will be able to occur
on distributed surfaces displayed over several dis-
tinct computers that are possibly running differ-
ent windowing systems. Multi-computer support
is achieved thanks to the combination of shared
surface management and slave instruments. Fi-
nally, our model supports multiplexing of input
streams thanks to input device ID. Hence, we
make it possible for multiple users to perform dif-
ferent types of drag-and-drop operations simulta-
neously.

References

P. Baudisch, E. Cutrell, D. Robbins, M. Czer-
winski, P. Tandler, B. Bederson, and A. Zier-
linger. Drag-and-pop and drag-and-pick: tech-
niques for accessing remote screen content on
touch and pen-operated systems. In Proceed-
ings of Interact 2003, Sep. 1–5 2003.

Michel Beaudouin-Lafon. Instrumental interac-
tion: an interaction model for designing post-
wimp user interfaces. In ACM CHI ’00 proceed-
ings, pages 446–453, ACM Press, 2000.

A. Bezerianos and R. Balakrishnan. The vacuum:
facilitating the manipulation of distant objects.
In ACM CHI ’05 Proceedings, pages 361–370,
ACM PRESS, 2005.

M. Collomb and M. Hascoët. Speed and accuracy
in throwing models. In HCI2004, Design for
life, Volume 2, pages 21–24. British HCI Gr
oup, 2004.

M. Collomb PoIP: an API for implement-
ing advanced drag-and-drop techniques In
http://edel.lirmm.fr/dragging/.

M. Collomb, M. Hascoët, P. Baudisch, and B.
Lee. Improving drag-and-drop on wall-size dis-
plays. In Proceedings of Graphics Interface
2005, Victoria, BC, 2005.

M. Collomb, M. Hascoët. Comparing drag-and-
drop implementations. Technical Report RR-
LIRMM-05003, LIRMM, University of Mont-
pellier, France, 2005.

Joëlle Coutaz, Stanislaw Borkowski, and Nicolas
Barralon Coupling Interaction Resources: an
Analytical Model. In EUSAI’2005, pages 183–
188, 2005.

Fraunhofer institute. The dynawall project.
http://www.ipsi.fraunhofer.de/ambiente/-
english/projekte/projekte/dynawall.html. 2008.

Paul M. Fitts The information capacity of the hu-
man motor system in controlling the amplitude
of movement. In Journal of Experimental Psy-
chology, volume 47, number 6, June 1954, pp.
381-391. (Reprinted in Journal of Experimental
Psychology: General, 121(3):262–269, 1992).

J. Geißler. Shuffle, throw or take it! working ef-
ficiently with an interactive wall. In ACM CHI
’98 proceedings, pages 265–266, ACM Press,
1998.

S. Greenberg, and D. Marwood. Real time group-
ware as a distributed system: concurrency con-
trol and its effect on the interface. In ACM
CSCW ’94 proceedings, pages 207–217, ACM
Press, 1994.

M. Hascoët, M. Collomb, and R. Blanch.
Evolution du drag-and-drop : du modèle
d’interaction classique aux surfaces multi-
supports. revue I3, 4(2), 2004.

M. Hascoët. Throwing models for large displays.
In HCI2003, Designing for society, Volume 2,
pages 73–77. British HCI Group, 2003.

K. Hinckley, G. Ramos, F. Guimbretiere, P.
Baudisch and M. Smith. Stitching: Pen Ges-
tures that Span Multiple Displays. In Proceed-
ings of AVI’04, pages 23–31, ACM PRESS,
2004.

http://edel.lirmm.fr/dragging/
http://www.ipsi.fraunhofer.de/ambiente/english/projekte/projekte/dynawall.html
http://www.ipsi.fraunhofer.de/ambiente/english/projekte/projekte/dynawall.html

16 M. Collomb, M. Hascoët

G. Humphreys, M. Houston, R. Ng, R. Frank, S.
Ahern, P. D. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for
interactive rendering on clusters. In Proceed-
ings SIGGRAPH ’02. Pages 693–702, ACM
Press, 2002.

D. R. Hutchings, J. Stasko, and M. Czerwinski.
Distributed display environments. In interac-
tions 12, 6 Nov. 2005, pages 50–53.

Brad Johanson, Greg Hutchins, Terry Wino-
grad, and Maureen Stone. Pointright: experi-
ence with flexible input redirection in interac-
tive workspaces. In ACM UIST ’02 proceedings,
pages 227–234, ACM Press, 2002.

C. Lachenal. Modèle et infrastructure logicielle
pour l’interaction multi-instrument multisur-
face. PhD these, Université Joseph Fourier,
Grenoble, France, 2004.

P.A. Muller, and N. Gaertner. Modlisation objet
avec UML. Edition Eyrolles. 2003.

Dan R. Olsen and S. Travis Nielsen. Laser pointer
interaction. In ACM CHI’2001 proceedings,
pages 17–22, ACM PRESS, 2001.

Jun Rekimoto. Pick-and-drop: a direct manipula-
tion technique for multiple computer environ-
ments. In ACM UIST ’97 proceedings, pages
31–39, ACM Press, 1997.

Jun Rekimoto and Masanori Saitoh. Augmented
surfaces: a spatially continuous work space for
hybrid computing environments. In ACM CHI
’99 proceedings, pages 378–385, ACM Press,
1999.

B. Shneiderman. Direct manipulation: A step be-
yond programming languages. In Proceedings of
the Joint Conference on Easier and More Pro-
ductive Use of Computer Systems. (Part - II):
Human interface and the User interface - Vol-
ume 1981, ACM Press, 1981.

C. Shoeneman. Synergy.
http://synergy2.sourceforge.net/. 2008.

N. A. Streitz, J. Geißler, T. Holmer, S. Konomi,
C. Mller-Tomfelde, W. Reischl, P. Rexroth, P.
Seitz, R. and Steinmetz. i-LAND: an interac-
tive landscape for creativity and innovation.
In ACM CHI ’99 proceedings, pages 120–127,
ACM PRESS, 1999.

Sony Japan. Flyingpointer.
http://www.sony.jp/products/consumer/-
pcom/software 02q1/flyingpointer. 2002.

Stanford University ComputerScience. The stan-
ford interactive workspaces project.
http://iwork.stanford.edu/. 2008.

D. Thevenin and J. Coutaz. Adaptation and Plas-
ticity of User Interfaces. In Workshop on Adap-
tive Design of Interactive Multimedia Presenta-
tions for Mobile Users, 1999.

Xdmx project. Distributed multihead X.
http://dmx.sourceforge.net/. 2008.

http://synergy2.sourceforge.net/
http://www.sony.jp/products/consumer/pcom/software_02q1/flyingpointer
http://www.sony.jp/products/consumer/pcom/software_02q1/flyingpointer
http://iwork.stanford.edu/
http://dmx.sourceforge.net/

	Introduction
	New challenges for the drag-and-drop paradigm
	Preliminary definitions
	Usability and scalability issues
	Distributed display surfaces: transparently integrating multiple computers and multiple windowing systems
	Multi-user issues

	Drag-and-drop extensions
	Target-oriented interaction
	Source-oriented interaction
	Undirected interaction

	Comparison of extensions
	Instrumental interaction
	Drag-under and drag-over feedback
	Instrument feedback
	Instrument coverage

	M-CIU model and PoIP API
	Overview of M-CIU model
	Multi-instrument support and genericity
	Multi-computer support and interoperability
	Multi-user support and concurrency
	A complete example of a typical multi-instrument, multi-display and multi-user interaction with the M-CIU model

	An application: Orchis
	Scenario
	Discussion

	CONCLUSION

