N

N

Learning Bayesian Network Structure from Incomplete
Data Without Any Assumption

Céline Fiot, G. A. Putri Saptawati, Anne Laurent, Maguelonne Teisseire

» To cite this version:

Céline Fiot, G. A. Putri Saptawati, Anne Laurent, Maguelonne Teisseire. Learning Bayesian Network
Structure from Incomplete Data Without Any Assumption. DASFAA: Database Systems for Advanced
Applications, Mar 2008, New Delhi, India. pp.408-423, 10.1007/978-3-540-78568-2_30 . lirmm-
00273888

HAL Id: lirmm-00273888
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00273888
Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00273888
https://hal.archives-ouvertes.fr

Learning Bayesian Network Structure from
Incomplete Data without any Assumption

Céline Fiot!, G.A. Putri SaptawatiZ,

Anne Laurent!, and Maguelonne Teisseire!

L LIRMM - Univ. Montpellier II, CNRS
161 rue Ada, 34392 Montpellier, France
{fiot, laurent, teisseire}@lirmm.fr

2 Institut Teknologi Bandung
J1. Ganesha 10, Bandung 40132, Indonesia
putri@informatika.org

Abstract. Since most real-life data contain missing values, reasoning
and learning with incomplete data has become crucial in data mining
and machine learning. In particular, bayesian networks are one machine
learning technique that allow for reasoning with incomplete data, but
training such networks with incomplete data may be a difficult task.
Many methods were thus proposed to learn bayesian network structure
with incomplete data, based on multiple structure generation and scor-
ing of their adequacy to the dataset. However this kind of approaches
may be time-consuming. Therefore we propose an efficient dependency
analysis approach that uses a redefinition of probability calculation to
take incomplete records into account while learning BN structure, with-
out generating multiple possibilities. Some experiments on well-known
benchmarks are described to show the validity of our proposal.

1 Introduction

Graphical models [1] are tools combining two different areas: graph theory and
probability theory. They are often used to illustrate and work with conditional
independencies and probabilistic relationships among variables in a given prob-
lem. Among graphical models, bayesian networks are often involved in tasks
requiring to reason under uncertainty. In particular, many approaches allow for
reasoning with incomplete data. But the task of training bayesian networks with
incomplete datasets is more complex.

In fact, there are two classes of methods for building the graphical structure
of bayesian networks from complete datasets. Scoring-based algorithms consist
in generating many likely structures and then scoring them using a fitness func-
tion measuring how well each possible graph fits the data. On the other hand,
constraint-based algorithms — also called dependency analysis approaches — build
the graph directly from the data thanks to probability calculations and condi-
tional independency tests.



Some approaches tackle the problem of missing values either by deleting
observations with missing values or using ad-hoc techniques to impute missing
information. Such procedures may however lead to biased results, and in case
of imputing a single value for unassigned attributes, to an overconfidence in
the results of the analysis. Some specific algorithms have also been shown to
be successful for learning bayesian network structure from complete data, and
learning parameters for a fixed network. Other scoring-based algorithm have
finally been developed using an estimation of the missing observations on the
basis of available information and data distribution. However this may be time-
consuming and resource-demanding.

Since very few methods are capable of using incomplete cases as a base to
determine the structure of a bayesian network by a constraint-based approach,
we propose in this paper an efficient dependency analysis approach to handle
incomplete records while learning BN structure. Our proposal consists in a re-
definition of probability calculation that allows for information incompleteness
without missing value imputation. Then we adapted the efficient Three Phase
Dependency Analysis algorithm proposed by [2] to make it use our new proba-
bility definitions, while computing conditional independency tests. Some experi-
ments on classical benchmarks are described to show the validity of our proposal
for generating bayesian network structure underlying incomplete datasets.

This paper is organized as follows: in Section 2, we introduce the definition
and principles used in the context of bayesian network learning; then in Section
3, we detail the basis of our approach and our new definitions for probability
calculation. Finally, before concluding in Section 5, some results of experiments
are developed by Section 4.

2 Bayesian Network and Incomplete Data

Regarding a data set, a bayesian network gives both a qualitative and quanti-
tative description of the dependencies existing between data attributes. First,
these dependencies are visually described by a directed acyclic graph (DAG). In
this graph, each vertex, or node, corresponds to an attribute in the database and
directed edges between nodes show the dependencies between related attributes.
Then, each node is associated with a conditional probability table, which gives,
for each value of the node attribute, its probability considering the value of the
attribute parent nodes.

2.1 Directed Acyclic Graph (DAG)

A graph, or undirected graph, can be defined as a set of nodes, also called vertices,
and a set of edges, also called arcs, each being a pair of nodes. If the two vertices
within each edge are ordered, then the edges have a direction assigned to them;
this is called a directed graph. A chain is a series of nodes where each successive
node in the chain is connected to the previous node by an edge. A path is a chain
with the further constraint for directed graphs that each connecting edge in the



chain has a directionality going in the same direction as the chain. A cycle is a
path that starts and ends at the same node. A directed acyclic graph, or DAG,
is a directed graph that has no cycles.

The terms parent and child define the relationship between two vertices con-
nected by a directed edge from the parent to the child. Two vertices are said to
be adjacent when they are connected by an undirected edge.

2.2 Bayesian Network

A bayesian network is a specific graphical model that is a concise representation
of the joint probability distribution for a large set of attributes in a database.
Each attribute can be considered as a random variable associated with several
values. Then, for a set of variables V), a bayesian network consists of a directed
acyclic graph that encodes a set of conditional dependence and independence
assertions about variables in V), and a set of local probability distributions asso-
ciated with each variable. Together, these components define the joint probability
distribution for V.

In [3], Pear]l defines a bayesian network as a triplet [V, G, P(V;|P,(V;))],
where:

-V ={W,...,V,.} is the set of random discrete variables;

— G is a directed acyclic graph whose nodes represent variables V;, and whose
arcs encode the conditional dependencies between the variables;

— P(Vi|pa(V;)) describes the conditional probability distribution of each vari-
able V; considering its immediate parents pa(V;) in the graph G.

The edges in the bayesian network encode a particular factorization of the
joint distribution. In general, the joint probability function for any bayesian
network representing the set of nodes V is given by

n
PY) = [[P(Vilpa(Vi))
i=1
This means that the joint probability of all of the variables is the product of the
probabilities of each variable given its parents’ values. Then, the graph describes
these dependencies. For any given edge between variables V; and V}, if there is a
causal relationship between variables, the edge will be directional, leading from
the cause variable to the effect variable. If there is just a correlation between
the two variables, the edge will be undirected [4]. Two variables that are condi-
tionaly independent have no direct impact on each other’s values. However, any
path through intermediary variables that separates two conditionally indepen-
dent variables shows how these two conditionally independent variables affect
each other.

2.3 Learning Bayesian Networks

As a bayesian network is constituted of one qualitative component, the DAG,
and one quantitative component, the conditional probability distribution, learn-
ing bayesian network consists in two tasks. First the structure describing the



dependencies is designed, then the conditional probabilities of each node are
calculated. Two approaches are generally used to learn the structure. The first
one is based on scoring an a priori designed structure. The second one uses
constraints and conditional independence tests to build the graph.

Scoring-based approaches [5,6,7,8] select the DAG that best fits the data
among several ones a priori designed. The objective of learning is then to evaluate
each previously designed structure regarding the dataset. These methods require
to specify scoring functions that are used to evaluate how well each network
matches the training data. In the approaches based on model selection, some
criterion is used to measure the degree to which a network structure (equivalence
class) fits prior knowledge and data. A search algorithm is then used to find an
equivalence class that receives a high score by this criterion.

Constraint-based algorithms, also called dependency analysis algorithms, build
the DAG structure by identifying the conditional independence relationships
among the variables [9,10,11,12]. These methods are based on the causal suf-
ficiency hypothesis: for every pair of measured variables in the training data,
all their common parents are also measured. Thus, the graph is built thanks
to the set of data, without external knowledge. Vertices of the DAG are built
from the variables within the dataset and the edges are built from the observed
dependencies between variables within the data.

Once the structure has been designed, each node of the DAG is associated
with a table of conditional probabilities that give for each value of each variable
the path to follow in the DAG.

Depending on the problem that is defined, either the topology or the probability
distributions or both may be pre-defined by hand or may be learned from the
data.

In this paper, we will consider that the structure is unknown but that all
the variables can be identified (i. e. there is no hidden variables [13]). Within a
context where some variables are randomly unassigned, we tackle the problem
of learning the structure of a bayesian network given data, using an approach
based on the information theory.

2.4 Handling Missing Values

In data mining and machine learning, missing value handling is a significant
problem as most real-life data contain unassigned variables. One advantage of
belief networks is that they allow reasoning with incomplete data [13]. Many in-
ference algorithms can indeed be used to calculate the probability of any variable
that has not been measured conditionally to the values of measured variables.
But complete data are often required for training such networks.

As described in the previous section, there are two different problems related
to the presence of missing values while learning bayesian network. One consists
in the evaluation of the probability parameters despite unassigned variables, the
second consists in assessing the dependencies and learning the graph structure
in spite of incomplete observations.



Some approaches tackle the problem of missing values either by deleting
observations with missing values or using ad-hoc techniques to impute missing
information. Such procedures may however lead to biased results, and in case
of imputing a single value for unassigned attributes, to an overconfidence in the
results of the analysis.

Therefore specific algorithms have been developed and several methods have
been shown to be successful for learning both network structure and parameters
from complete data, and learning parameters for a fixed network [14]. But very
few methods are capable of using incomplete cases as a base to determine the
structure of a bayesian network by a constraint-based approach.

Most of techniques that determine the bayesian network structure from in-
complete data are indeed based on model scoring and selection: these proposals
use an a priori known structure and compare it to the observed distribution. Well-
known methods typically involve the use of the EM algorithm [15] or Markov
Chain Monte-Carlo methods, such as Gibbs sampling [16]. The basic strategy
underlying these methods is based on the Missing Information Principle [17]:
fill in the missing observations on the basis of the available information.

Thus [18,19,20] propose different algorithms based on extensions of the expec-
tation-maximization algorithm for model selection problems. [21] and [22] de-
scribe approaches based on stochastic search and evolutionary algorithm that
approximates a maximum likelihood approach to score the network by evolving
samples of incomplete data. Unfortunately, these processes are usually highly
resource demanding, their convergence rates may be slow, and their execution
time heavily depends on the number of missing values.

Therefore [23] uses an entropy maximization procedure to incorporate infor-
mation regarding the nature of the missing data mechanism and thus consider-
ably saving in computation time when compared to Gibbs sampling.

Other scoring-based approaches use estimation of missing data for both pa-
rameter and structure learning. [24,25] introduces a deterministic method to
estimate the conditional probabilities defining the dependencies in a bayesian
network which does not rely on the Missing Information Principle and proposes
the Bound and Collapse algorithm for parameter estimation and model selection
from incomplete data. However this algorithm also relies on an assumed pattern
of missing data that may be either provided by an external source of informa-
tion or may be estimated from the available information under the assumption
that data are missing at random. This approach is extended in [26] to learn the
graphical structure of a bayesian network from a possibly incomplete database,
using estimation of missing data.

More recently, [27] describes an imputation-based approach for model learn-
ing from incomplete data, where possible completions of the data are scored to-
gether with the observed part of the data. [28,29] describes an algorithm based
on extended evolutionary programming method. It uses fitness function based on
expectation, which converts incomplete data to complete data. [30] introduces



an approach for assessing the predictive distribution of missing values that is
then combined to any learning algorithm.

2.5 Objectives

The main disadvantage of scoring-based approaches is that they rely on deter-
mining among numerous structures the one that best fit the data. So this kind
of approaches requires a priori expert knowledge to design few structures to be
tested or to generate every possible structures from the data. This processes are
thus highly resource demanding and in the case of incomplete data, the runtime
may become very high.

Therefore in this paper we propose a constraint-based approach to learn
bayesian network from a randomly incomplete dataset without assessing or delet-
ing missing values nor generating several possible structures. We use observed
data without requiring any external information or estimation of missing value
distribution.

Our method is based on a redefinition of the probability functions taking into
account that some variable values are unknown. We developed our algorithm
for learning bayesian network structure by adapting the efficient Three Phase
Dependency Analysis (TPDA) algorithm proposed in [2] to make it use our own
probability definitions. Finally, we ran several experiments to show the feasibility,
validity and robustness of our approach.

In the following section, we introduce the principles we based our approach
on. Then, we detail our new definitions and prove that they hold all the con-
ditions required to define a probability measure. Last, we describe the overall
learning algorithm and run a brief example. In Section 4, we present the results
of our experiments.

3 TPDA for Incomplete Databases

Our approach is based on the same principles as the ones used by the RAR
algorithm [31] for association rule mining [32] in incomplete databases. The
data formalism of association rules is indeed quite similar to the one of bayesian
network: the dataset is a relational table consisting in records in which values are
associated with attributes, that correspond to random variables in the context
of bayesian networks.

The main idea of our approach is based on the RAR method. It consists in dis-
abling incomplete elements, within our context, incomplete records. As the RAR
algorithm for association rules mining, we will only regard complete records to
compute the conditional probabilities. In other words, when an incomplete record
is scanned, only filled-in attributes will be considered for probability calculation.
Thus each conditional probability will be computed on a partial database, but
the whole dataset will be used to find the whole set of dependencies.



3.1 Overall Principle

The RAR algorithm (Robust Association Rules), proposed by [31], allows the
user to consider incomplete data while association rule mining within incom-
plete relational databases, thanks to partial and temporary omission of such
incomplete records. The main idea consists in taking only filled-in attributes in
incomplete records into account. The whole database is not used to discover each
rule but the whole set of rules.

This technique is based on the valid database concept, which is a complete
dataset for a given itemset, i.e. a set of attributes or variables. The remaining
part of the database is temporary ignored. In order to consider this dataset par-
titioning, definitions of support (percentage of records in database that include
the rule items) and confidence (probability for a record to contain the right part
of the rule knowing it contains the left part) were reformulated.

Learning the structure of a bayesian network by a constraint-based approach
such as TPDA algorithm requires to compute conditional probabilities and prob-
abilistic conditional independence tests. We here apply the formalism of the RAR
algorithm to define a new probability measure. This measure will then be used
by our implementation of the TPDA algorithm to run the conditional indepen-
dence tests and thus to build the DAG structure.

So, let us consider a set of random variables V' each associated with one of
their values v, the set R of records r in the database D B can be divided into three
disjoint subsets (Figure 1). The set of records filled in with the corresponding
value v; for each variable V; of V' is denoted by Ry . The set of records filled in
with at least one value different from the set v is denoted by Ry-. And the set of
records for which at least one value v is unfilled, i. e. is missing and we do not
know if 7(V;)=wv; or not, is denoted by R7.

[X1 X2 X5 Xa X5

Rv {‘ Records including V/ ‘ Ri|? y y n n
Ryly n n 7 y
Ry {‘ Records that may include V' ‘ Rsly v n y n
Ry {‘ Records not including V/ ‘ Rijfy m n y n
Rsln 7 y y ¥y

Fig. 1. Partition of the database depending
on V inclusion. Fig. 2. An incomplete dataset

For each set of variables V, only the subsets Ry U Ry will be kept to deter-
mine the conditional probabilities on V. This subset represents the valid database
for V. Incomplete records are disabled for V.

Definition 1. A valid database is a database only containing complete records
for a given set of random variables, i.e. each value of each record in the data
corresponds to an identified values v of Dom(V).



Definition 2. A record is disabled for an instanciation of a set of variables V
if it is incomplete for V' (i.e. we cannot decide whether it includes V or not).
The set of records disabled for a set V is denoted by Dis(V).

For instance, considering the dataset described by Fig. 2, the valid database
for X7 is composed of records Ry to Ry and Dis(X;) = {R;}. The valid database
for V = {X17X4} is {R37R4,R5}, and DZS(V) = {Rl,Rg}.

Building a valid database leans on temporary disabling records that con-
tain missing values for variables in the set of random variables. This implies a
redefinition of the probability calculation to consider the database partial deac-
tivation.

3.2 Redefining Calculation of Probabilities

The probability definition is modified in order to consider the valid database
concept, and thus that only one part of the dataset is used for each probability
calculation.

Definition 3. The probability of an event v; is the appearance rate of this event
among the records that can include it. It is defined as the ratio of the number of
records T such that r(V;) = v; by the number of records that are filled in for V;
(complete records for V;). It is given by:

card ({r € R|r(V;) = v;}) (1)
card(R) — card(Dis(V;))

P(Vi=wv;) =

Considering a set of random variables V.= {V1,..,V,} CV and a joint prob-
ability function P defined on V, the probability of a joint event P(v1,...,vy) 1S
computed considering the set of records that are complete for all the variables
V1,.. V. Then the previous formula can be expressed as follows:

card m {re RIr(V;) =v;}
i€[1,n]

card(R) — card(Dis(V1, ..., V3))

Py, v, (1, 0n) = (2)
For instance on Fig. 2, to compute P(X; = y), we find Dis(X;) = {R1},
then P(X; = y) = card({Ra, R3, R4})/5 — card(Dis(X1)) = 3/(5 — 1) = 0.75.
If we compute P(X; =y, X2 = n), then Dis(X;,X3) = {R1,Rs} and P(X; =
y, X9 =n) = card({Rz, R4})/(5 — card(Dis(X1, X2))) = 2/(5 — 2) = 0.67.

Proposition 1. Given a random variable V; of values v; in domain D(V;), the
redefinition of the probability P calculation defines a joint probability function
over the variable set V.

Proof. A probability function P must satisfy the following properties:



1. for every event A€ A, 0 < P(A) <1;
2. for the impossible event @ and the certain event 2, P(&) = 0 and P({2) = 1;
3. if the events A; € A are finite or countably many mutually exclusive events

(AiAy = @ for i # k), then P(|_JAi = T, P(A;)
i=1
We will denote r(V;) the value of attribute/variable V; in the record r and
card(S) will denote the cardinality of a subset S of records.

1. Considering the database partitioning, {r € R|r(V;) = v} C R\Dis(V;),
which implies that card({r € R|r(V;) = v}) < card(R) — card(Dis(V;)).
Then, as a cardinality is necessarily greater than or equal to zero and as-
suming that at least one record in the database is complete for V;, we obtain

< card({r € Rlr(V;) =v})
~ card(R) — card(Dis(V;))

<1 = VYo,0< Py (v)<1

2. A record necessarily contains a value, missing or not, for a variable V;
then card({r € R|r(V;) = @}) = 0 and Py,(&) = 0. Then we show that
Py, (Uvep(vy)Vi = v) = 1:

. card(U,, AreR|r(Vi)=v})
UUED(Vi){T € R|T(‘/Z) = 1)} = R\D’LS(M) = card%g)(i/c)ard(Dis(Vi)) =1
= Py, (Upepvy)Vi=v) =1

3. VA; € Vi|Vj # k, A; N Ay = @, Py, (UjA)) ZPVZ

Within our context, such an event A4; corresponds to a set of values v for a
random variable V;. In other words, it can be expressed by the formula

VAJ‘, E'DJ - D(%”AJ = U'UEDj {T S R|T(‘/Z) = ’U}

We use this formulation to prove that the last condition is satisfied.

card(U;Uye b, {reR|r(Vi)=v})
card(R)—card(Dis(V;))

Py, (UjAj) = Py,(UjUpep, Vi = v) =

card( ’UED]{TERIT(‘/'L =v})
_Z card(R)—card(Dis(V;))

=Y Puia)

So the last condition is satisfied, for all random variables V;, the new measure
P; defines a probability measure on each variable.

As the events A; are disjoint,

a

Proposition 2. Given a set of random variables V', every function defined by
Pwev(Mw,ew Wi = wi), computed by the formula 2, is a joint probability func-
tion.



Proof. We have to prove that for all set W of random variables such that W C V|
the function Py defined by

card(Nw,ew {r € R|r(W;) = w;})

P (Nwiew We = wi) = card(R) — card(Dis(W))

is a joint probability function. Dis(W) denotes the set of records disabled for
W, i.e. the set of records for which at least one variable in W is unassigned.

First we show that Py (Nw,ewW; = w;) is in [0,1]. As {r € R| Nw,ew
r(W;) = w;} € R\Dis(W), we can simply show that Py (Nw,ew W; = w;) < 1,
using the same proof as previously. Moreover, as it is defined by set cardinalities,
it is necessary greater than 0.

Then we prove that Z Mw (Nw,ew Wi = w;) = 1.
’leD(W»L)

Uw,epwi{r € Rl Nw,ew r(Wi) = w;i} = R\Dis(W)

= card(Uy, epwiir € Rl Nw,ew 7(W;) = wi} = card(R) — card(Dis(W))
events Nw,ew Wi = w; being mutually exclusive,

= Z card ({r e Rl Nw,ew r(W;) = w;}) = card(R) — card(Dis(W))

w; €ED(W,
card {rer|Nn r(W;)=w;})
= Z e AR —eard (D)) = Z Mw (Nw,ew Wi = w;) =1
w; €D (Wy) w; €ED(W;)

3.3 Learning Algorithm

The proposition 2 allow us to apply all the formalisms defined for bayesian net-
work learning methods with complete data. Our approach is based on the generic
principle of constraint-based learning methods. More precisely, we implemented
our algorithm from the Three Phase Dependency Analysis algorithm developed
by [2], using the probability formulae introduced in the previous section for com-
puting the conditional independency tests. The overall algorithm lays on three
elementary steps:

1. conditional independencies are uncovered from the data using statistical
tests,
2. then, these independencies are used to build a partially directed acyclic graph
(PDAG) in two steps,
— edges X—Y of an undirected fully connected graph are deleted for each
pair of independent variables (X, Y),
— the undirected graph then obtained is partially directed using the dis-
covered conditional independencies;
3. last the PDAG is completed applying the following rules:



— if there is an edge such that X — Y and Z is adjacent to Y but not
to X, then if there is an undirected edge between Y and Z, this edge is
directed from Y to Z (Y — Z),

— if there exists a directed path from X to Y and an undirected edge
between X and Y, then this edge should be oriented from X to Y (X —
Y) to avoid building cycle.

4 Experiments

Our experiments were done to compare network structures generated by TPDA
with complete data with the one obtained running TPDA adapted for handling
missing values (TPDAID), using our own definitions for probability calculations,
detailed by section 3. The goal was to show the validity of our redefinition of
probabilities within the context of training bayesian network with incomplete
data. We also aimed at measuring the robustness of our proposal to various
incompleteness rate of the datasets.

4.1 Datasets

The results detailed here were obtained on several standard benchmarks often
used by the bayesian network community. The characteristics of these datasets
created from the various belief networks are described by Table 1.

From these complete datasets we generated incomplete ones. Missing values were
randomly inserted in the database, replacing some attribute values. For each
complete database, we thus created six incomplete datasets respectively con-
taining 5%, 10%, 20%, 30%, 40% and 50% of missing values.

Table 1. Characteristics of the datasets

Dataset # of attributes # of records

Fire Network [33] 6 10,000

Asia / Chest Clinic Network [34] 8 5,000

Alarm Network [35] 37 10,000
4.2 Results

For each complete dataset and then incomplete datasets, we ran TPDA or TP-
DAID and so for each dataset we generated the bayesian network structure. Then
we compared the graphs resulting from training with incomplete data to those
resulting from training with complete data. To do so we analyzed the number of
missing or additional edges and the number wrong directions.

Figure 4(a) shows the comparison between the graphs obtained for the Fire
dataset according to the incompleteness rate. The original bayesian network con-
tains five edges, it is described by Figure 3(a).
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Fig. 3. (a): The Fire bayesian network structure (taken from [33]); (b): The Fire
bayesian network structure obtained from 20% of missing values dataset.

For 5% and 10% of missing values, the graphs resulting of TPDAID are ex-
actly the same as the complete database graph. Then the number of additional
edges increases to 1 for 30 to 50% of missing values. On the Fire dataset it
seems that the incompleteness rate influences more the number of wrong di-
rections. Indeed, the graphs contain at least one wrong direction from 20% of
missing values, as shown by Figure 3(b); the dashed arrows are the same as in
the original network, the boldfaced one is the one modified.
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Fig. 4. (a): Results for the Fire dataset; (b): Results for the Asia dataset.

50

Figure 4(b) shows the comparison between graphs obtained for the Asia
dataset according to the incompleteness rate. We can observe that results are
not as good as with the Fire dataset for low incompleteness rates. However the




quality of the graph remains stable as the percentage of missing values increases.

Last, applying TPDAID on the Alarm incomplete datasets gives us interest-
ing results for incompleteness rates below 30% of missing values. Indeed with
these proportions of missing values — from 5 to 20% — the resulting structure is
still close to the one obtained from TPDA on the complete dataset. From 30%
of missing values the graph contains half of badly-oriented or additional edges,
however half of the graph remains correctly built.

4.3 Synthesis and Future Work

Through our experiments, we observed that the data distribution and the in-
completeness rate have an influence on how well our approach returns interesting
results. Analysing the different results, we consider that our approach is robust
until around 25% to 30% of missing values in the training dataset. However,
there are important differences if we compare the results obtained on datasets
with many or few variables and the number of records also influences the results.

Therefore, we are now working on improving the quality of the graph trained
on incomplete datasets using our approach and reducing the influence of the
data distribution. We plan to define a parameter, based on statistical proper-
ties, to bound the minimum number of complete records that should be used for
computing each conditional independence test. Thus each probability should be
computed on significant-enough valid databases.

Besides the second step for learning BN, i. e. learning the probability table
for each node of the structure, should be tested. These experiments will aim
at assessing how well our redefinition of probabilities is adapted to learn the
parameters from an incomplete dataset. If these results are conclusive we will be
able to propose a global dependency analysis algorithm for efficiently learning
bayesian network structure and parameters from incomplete databases.

5 Conclusion

In this paper, we introduced a new method for learning bayesian networks from
incomplete data. On the contrary to existing algorithms that are based on model
scoring and selection, or on assessing or imputing missing values, our approach is
based on dependency analysis and a redefinition of the probability calculations.

Thus while the other approaches are resource-demanding or time-consuming
because of multiple iterations, our algorithm generates the graph computing
conditional independence tests using a reformulation of probabilities. This re-
definition is based on the principle that incomplete records contain some certain
information that is exactly regarded, assigned attributes, and an uncertain part
of information that should be ignored, missing values. This hypothesis enables us



to compute probabilities without multiple iteration for estimating missing values
nor a biasing a priori imputation and without requiring external knowledge.

As the preliminary experimental results show, this new approach leads to

quite good results for databases containing up to 30% of missing values. How-
ever, it can be improved by taking data distribution and statistical results into
account to refine the probability calculation. We thus plan to develop a global
algorithm that will both learn structure and parameters for bayesian network
from incomplete datasets, based on our redefinition of probabilities that handle
uncertainty contained in incomplete data.
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