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TED and EVA : Expressing Temporal Tendencies among
Quantitative Variables using Fuzzy Sequential Patterns

Céline Fiot, Florent Masseglia, Anne Laurent, and Maguelonne Teisseire

Abstract— Temporal data can be handled in many ways for
discovering specific knowledge. Sequential pattern miningis
one of these relevant approaches when dealing with temporally
annotated data. It allows discovering frequent sequences embed-
ded in the records. In the access data of a commercial Web site,
one may, for instance, discover that “5% of the users request the
page register.php 3 times and then request the page help.html”.
However, symbolic or fuzzy sequential patterns, in their current
form, do not allow extracting temporal tendencies that are
typical of sequential data. By means of temporal tendency
mining, one may discover in the same access data that “an
increasing number of requests to the register form preceedsan
increasing number of accesses to the help page a few seconds
later” . It would be easy to conclude that the users either quickly
succeed in registering or make several attempts before theylook
at the help page within a few seconds. In this paper, we propose
the definition of evolution patterns that allow discoveringsuch
knowledge. We show how extracting evolution patterns thanks
to fuzzy sequential pattern mining techniques. We introduce
our algorithms TED and EVA , designed for evolution pattern
mining. Our proposal is validated by experiments and a sample
of extracted knowledge is discussed.

I. I NTRODUCTION

Many applications – network watching, web log analysis,
customer management – record temporally annotated data
that should be mined using specific data mining techniques,
such as sequential pattern discovery algorithms, for instance.

Sequential patterns [1] are frequent sequences that can be
found in sequence databases, i.e. datasets containing ordered
sets of timestamped records, each of them consisting of a
set of values. From a web server watching application, one
could extract thatIn 10% of sessions, identification failure
preceeds request to forgpwd.php followed later by access to
my account.php.

As most of databases do not only contain binary attributes,
but also numerical attributes such as connection duration,
number of visitor per webpage, or download rate, general-
izations ofsequential patternswere designed.
Based on a discretization of numerical attribute domains into
fuzzy sets,fuzzy sequential patterns[2], [3], [4] contain in-
formation about the numerical values frequently observed in
the data and their correlations according to time. Thus these
fuzzy sequences contain additional knowledge compared to
crisp ones. For instance, the previous symbolic pattern could
be more explicitly described byIn 10% of sessions, a lot of
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identification failures preceed one request to forgpwd.php
followed later by few requests to myaccount.php.

But these patterns model neither the evolution of the
numerical values of the attributes in the dataset nor the
correlations between evolutions of attribute values (what
we will call co-evolutionin this paper). Moreover a fuzzy
sequential pattern describing thatID fail.htm has been re-
peatedly visited and then little visiteddoes not inform the
end-user about the duration of the decrease nor about the
dynamics or the intensity of change.

For this reason we introduce in this paper a method that
mines for temporal trends using fuzzy sequential patterns,in
order to extract rules likeFirst A quickly increases, then
B slowly decreases whileC increases, defining evolution
patterns.

Some works were done to describe such trends using lin-
guistic summaries within the context of univariate time-series
[5], [6], showing trends like “Afirst quickly increases then
slowly decreases”. Other ones extract common or recurrent
patterns in multivariate time-series [7], [8], describingthat
several time-series have exactly the same profile. To the
best of our knowledge there does not exist a data mining
method that allows the discovery of typical co-evolutions,not
necessary following the same trends, in sequence database.
Within the previous context, analysis of access logs from
a website, such patterns could be for instance thatAn
increasing number of requests to registration.php during a
short period preceeds an increasing number of requests to
faq.html, after a very short period. This knowledge would
be explicit for the end-user (is the registration-form easy to
fill-in?).

However, modeling such temporal knowledge requires to
handle a very large number of elements – both in terms of
attributes and records – during the mining task. Searching
for evolution patterns indeed requires to compare each record
of a data sequence to the following ones which leads to a
combinatorial space complexity. So our goal is to design a
tool that efficiently extracts temporal trends in quantitative
data sequences.

The reminder of the paper is organized as follows. In the
next section, we define the fundamental concepts associated
with fuzzy sequential patterns and trend discovery in time-
series. In Section III we introduce our approach, first defining
evolution patterns, then detailing how to implement their dis-
covery. Thus Section IV describes the algorithms underlying
our approach. In Section V, we present some experiments on
web access logs, showing the benefits of evolution pattern
discovery. We finally conclude in Section VI.



II. PATTERNS AND TRENDS

Sequential patterns are often introduced as an extension
of association rules in [9]. Initially proposed in [1], they
highlight correlations between database records as well
as their temporal relationships. Some generalizations were
proposed to handle numerical attributes using fuzzy sets.
In this paper we use fuzzy sequential patterns to mine
evolution within quantitative data sequences.

A. Sequential Patterns

Sequential patterns are based on the idea ofmaximal
frequent sequences.
Let R be a set of object records where each record R
consists of three information elements: an object-id, a
record timestamp and a set of attributes/items in the record.
Let I = {i1, i2, ..., im} be a set of items or attributes.
An itemsetis a non-empty set of attributesik, denoted by
(i1i2 . . . ik). It is a non-ordered representation. Asequence
s is a non-empty ordered list of itemsetssp, denoted by
〈s1s2...sp〉. An n-sequenceis a sequence ofn items (or of
sizen).

Example 1:Consider an example of market basket
analysis. Objects are customers, and records are the
transactions made by each customer. Timestamps are
the dates of transactions. If a customer purchases
products e, a, k, u, and f according to the sequence
s = 〈(e) (a k) (u) (f)〉, then all items of the sequence
were bought separately, except productsa and k which
were purchased at the same time. In this example,s is a
5-sequence.

A sequenceS = 〈s1 s2...sp〉 is a subsequenceof another
oneS′ = 〈 s′1 s′2 ...s′m〉 if there are integersl1 < l2 < ... < lp
such thats1 ⊆ s′l1 , s2 ⊆ s′l2 , ..., sp ⊆ s′lp .

Example 2:The sequences′ = 〈(a) (f)〉 is a subsequence
of s because (a)⊆ (a k) and (f)⊆ (f). However,〈(a) (k)〉 is
not a subsequence ofs.

All records from the same objecto are grouped together
and sorted in increasing order of their timestamp, constituting
a data sequence. An object supportsa sequences if it is
included within the data sequence of this object (s is a
subsequence of the data sequence).

Example 3:Within the context of web usage mining, an
object would be for instance one IP and the data sequences
would be the click sequences associated with each IP. Each
URL would be encoded into an item.

The frequencyof a sequence (freq(s)) is defined as the
percentage of objects supportings in the whole set of objects
O. In order to decide whether a sequence is frequent or not,
a minimum frequency value (minFreq) is specified by the

user and the sequence is said to be frequent if the condition
freq(s) ≥ minFreq holds.

Given a database of object records, the problem of
sequential pattern mining is to find all maximal sequences
of which the frequency is greater than a specified threshold
(minFreq) [1]. Each of these sequences represents a
sequential pattern, also called a maximal frequent sequence.

Several extensions were proposed to handle numerical
and quantitative values [2], [3], [4], to generalize sequential
patterns with respect to various temporal parameters (time-
interval between events of a sequence, grouping several
records into a single itemset...) [10], [11], or even to deal
with missing values [12].

B. Fuzzy Sequential Patterns

In order to allow for handling numerical or quantitative
information several works proposed to partition each
numerical attribute into several fuzzy sets. The quantitative
database is thus converted into a membership degree
database, which is then mined for fuzzy sequential patterns.

The item and itemset concepts have been redefined
relative to classical sequential patterns. Afuzzy item is
the association of one item and one corresponding fuzzy
set. It is denoted by[x, a] wherex is the item (also called
attribute) anda is the associated fuzzy set.

Example 4: [candy, lot] is a fuzzy item wherelot is a
fuzzy set defined by a membership function on the quantity
universe of the possible purchases of the itemcandy.

A fuzzy itemset is a set of fuzzy items. It can be denoted
as a pair of sets (set of items, set of fuzzy sets associated to
each item) or as a list of fuzzy items. We use the following
notation:(X, A), whereX is a set of items andA is a set
of corresponding fuzzy sets.

Example 5:([candy, lot][soda, little]) is a fuzzy itemset
and can also be denoted by((candy, soda)(lot, little)).

Last a g-k-sequenceS = 〈s1 · · · sg〉 is a sequence
constituted byg fuzzy itemsetss = (X, A) grouping
togetherk fuzzy items[x, a].

Example 6:The sequence 〈([soda, lot] [candy, lot])
([videogames, little])〉 groups together 3 fuzzy items into
2 itemsets. It is a fuzzy2-3-sequence.

In the next sections of this article, we use the following
notations: letO represent the set of objects andRo the set
of records for one objecto. Let I be the set of attributes
or items and̺ [x] the value of attributex in record̺. One
record ̺ in a fuzzy sequence database (or membership
degree database) consists of the membership degrees of
attributes to each fuzzy set, e.gr(x, a) = µa(̺[x]) is the



value of recordr for the fuzzy item[x, a]. It represents the
membership degree of the quantity̺[x] of item/attributex
to the fuzzy seta in recordρ.

The frequency of a fuzzy sequenceS is then computed by
the formula 1:

FFreq(S) =

∑

o∈O

ϕ(S, o)

|O|
(1)

whereϕ(S, o) gives the degree to whichS is included into
the objecto data sequence.

This degree is computed by considering the best appear-
ance – i.e. the appearance with the highest degree – of the
ordered list of itemsets ofS. It is computed by formula 2:

ϕ(S, o) = ⊥ς⊆ζo|S=ς=〈s1...si...sk〉⊤s1...sk
(⊤j∈si

µ(j)) (2)

where k is the number of itemsets inS, ζo is the set of
sequences included in the data sequence of objecto and⊤
and ⊥ are the t-norm and t-conorm operators generalized
to n-ary cases. In practice, we use the Zadeh t-norm and
t-conorm,min andmax.

C. Modeling Trends in Time-Series

Evolution and trend discovery within temporal data is an
important research area, since it as lots of industrial applica-
tions. Thus, linguistic summaries or time-series segmentation
and representation [13], [14] have led to interesting work.In
particular, [5], [6] identify trends in time series to make them
understandable for a human being.

In [15], as in many works, time-series are analysed to
detect anomalies. Regarding multi-variate time-series, most
of approaches aim at analysing parallel evolution of several
time-series, each related to one numerical attribute using
clustering or multiple alignments.

However the data we mined, web access logs, cannot be
considered as time-series even multi-variate ones, since they
are discontinuous and irregularly collected. Actually allthe
records do not necessary contain values for every attributes.
Moreover time periods between events may be irregular and
timestamps may be different from one object to the other.

Therefore we more specifically focused on proposals
that discuss methods for trend discovery in data sequences.
Apart from [16] that mines for emerging patterns and [17]
that highlights trends in sentences of textual databases,
there does not exist an approach for discovering frequent
evolutions or duration analysis, within sequential data.

III. T ED: MODELLING TRENDS IN QUANTITATIVE

ATTRIBUTES

The objective of this work is to discover and express
evolutions among the quantitative attributes of different
objects in a sequence database. For instance, an evolution
pattern could beThe number of requests to registration.php

increases followed later by an increasing number of requests
to faq.html. Moreover we propose to use the fuzzy data
sequence formalism to discover an additional information,
expressing in the previous example what should be“later”
for this pattern:few minutes, half an hour,...

In order to mine such evolution patterns we thus propose
to process the original quantitative sequence database into a
trend database that will be mined by our algorithm EVA . In
this section, we describe the concepts of evolution sequences
and detail our approach for evolution pattern mining.

A. Overall Principle

The global process can be described by figure 1.

Qdb

1TED

∆db

2

EVA

Variation strength

fuzzy sets

Duration fuzzy sets

Evolution

Patterns

Fig. 1. Overall principle of our approach

First the quantitative database (Qdb, e.g. Table I) is
converted into avariation database. Then, such as it is done
for fuzzy sequential pattern mining, this dataset is converted
into a membership degree database (∆db on Figure 1, e.g.
Table III), using predefined fuzzy sets – automatically or
from expert knowledge designed. There are two fuzzy sets
partitions: one gives the linguistic terms describing variation
strength, the second describes the duration of the trend. These
steps are detailed in subsections III-C and III-D.

This membership degree database∆db is the trend
database. It is the dataset mined for evolution patterns (step
3 in Figure 1) as it is described in subsection IV-A.

Example 7:〈([x, 4])([x, 3][y, 5][z, 8])([x, 2][y, 4][z, 10])
([y, 6])〉 is a sequence characterizing the number of
connections to URLx, y and z during successive sessions
of one identified IPo. Table I represents this sequence as a
quantitative database,Qdb. It contains four ordered records
for the IPo.

TABLE I

A QUANTITATIVE DATA SEQUENCE.

date x y z
d1 4 4 r1

d2 7 3 5 8 r2

d3 8 2 4 10 r3

d4 10 6 r4



Then Table III, in Subsection III-C, gives the trend
database∆db drawned from Table I, after step 1, the
execution of the algorithm TED.

B. Evolution Patterns

We propose to mine for evolution patterns. So data
sequences are modelled such that each item will express a
variation, for instance“increasing number of requests”.

Each record in this trend database represents the evolution
that actually happened between two records related to the
same object within the original dataset. Records in the trend
database contain items that were created from the same start
and end records of the initial quantitative dataset. We define
a trend datasetas a set of data sequences made ofevolution
items. An evolution item denote a trend – increase, decrease
or constancy – of a quantitative attribute. The variation
strength may be considered using fuzzy sets: an evolution
item is defined as a fuzzy item[x, v] in which x is a
quantitative attribute of the original dataset andv a fuzzy
set representing both trend and strength of the variation ofx
value. For instance, using the trends granules described by
Figure 2, from [5], an evolution item[nb faq.html, quickinc
would for instance mean thatthe number of requests to
faq.html page quickly increases. Each evolution item is
associated with a membership degree that more precisely
describes the strength of the variation. Details are given in
the next subsection.

Then an evolution itemset can be defined as a non-
ordered, non-empty set of evolution items. It represents
the co-evolutionof several attributes, i.e. the variation of
several attributes over a given time-period. And anevolution
sequenceis an ordered list of evolution itemsets. It describes
successive trends in the original quantitative dataset. An
evolution itemset is denoted by parenthesis ([x, inc][y, dec])
and a sequence by angles〈([x, inc][y, dec]) ([z, q inc])〉.

Thus a trend database is a membership degree database in
which fuzzy items describe variation strength of quantitative
attributes. However this dataset cannot be exactly considered
as a sequence database that could be mined using fuzzy
sequential pattern algorithms, as described in [2], [3], [4].
Each record is related to one object and to two different
timestamps. One timestamp corresponds to the starting date
of the observed variation, the second is the ending date.
Moreover there can be several records that have the same
starting date, since the evolution dataset stores the evolution
between each pair of records ofQdb that have common
quantitative attributes.

Example 8:Consider for instance the evolution of the
number of requests to URLy in Tab. I, starting from d2:
two variations will be observed, one between d2 and d3, the
second between d2 and d4.

For this reason mining for evolution patterns is not a
mere application of fuzzy sequential patterns after a tricky

data preprocessing. In the next subsection, we describe how
the evolution dataset is built using the algorithm TED, that
handles trends and durations, and in section IV we detail
the algorithm, EVA , that mines for evolution patterns.

C. Trend Databases

Each evolution item[x, v] in the evolution database∆db
represents the variation of one quantitative attribute between
two successive recordsr1 andr2, related to a same objecto
in the quantitative databaseQdb. Then each record in∆db
is built by the combination of two records of the initial
Qdb dataset. More specifically, for each ordered pair of
recordsri and rj of one data sequence, such thatri(xi)
and rj(xj) are filled-in, a trend record∆rrirj is created
in ∆db containing the evolution item[x, T rendGran],
where TrendGran is the trend granule corresponding to
the variation strength.

Example 9:From recordsr1 and r2 in Table I, an
evolution record ∆rr1r2 containing the evolution item
[x, decreasing] can be created as the quantity recorded
in database forx in r1 is greater than the one recorded inr2.

The temporal order initially existing within the quantitative
database is kept, for each objecto, by chronologically
ordering the trend records according to the timestamps of
ri andrj .

Example 10:Consider once again the variations of the
number of requests to URLy in Tab. I. Three evolution
records can be created for this item: one combining d2 and
d3, the second from d3 and d4, the last from d2 and d4.
These evolution records will be ordered first considering
their starting date, then their ending date. So the evolution
records fory would be ordered as follows : first the one
combining d2 and d3, then the one combining d2 and d4,
last the one combining d3 and d4.

To define the trend between two records, we assimilate
a pair of recordsri, rj to two points and we evaluate the
slope of the line going frori, defined by (ri[xi], di), to rj ,
defined by (rj [xj ], dj). Then the linguistic terms representing
the trend are chosen considering the trend granules on Figure
2, and the associated membership degrees are given by fuzzy
sets, for instance described by Figure 3.

Note that there are many methods for constructing
fuzzy granulation of directions [18]. The user may also
define membership functions of particular linguistic terms
depending on his/her needs.

Example 11:From recordsr1 and r2 in Table I, the
evolution item created in Example 9 is actually associated
to the trendslowly decreasingas the slope betweenr1 and
r2 is equal to 3−4

7−4
= −1/3. Moreover, from Figure 3, this

slope corresponds to a membership degree of 0.8 for slowly
decreasing and of 0.2 for constant.



Fig. 2. Trend granules

Fig. 3. Trend fuzzy sets

From records r3 and r4 in Table I, the evolution
item created for attributey corresponds to the slope
6−4

10−8
= 1. The trend record created in∆db is then

∆rr3r4([x, increasing]) = 1.
Table II is the trend database obtained from Table I.

TABLE II

EVOLUTION DATA SEQUENCE OBTAINED FROMTABLE I.

x y z
dec s.dec cst dec cst s.inc inc inc q.inc

d1 d2 0.8 0.2 δ1

d1 d3 0.15 0.85 δ2

d2 d3 1 1 0.3 0.7 δ3

d2 d4 0.2 0.8 δ4

d3 d4 1 δ5

Having this set of records for each data sequenceo in O,
we could then go to the mining step. However one type of
information, still available in a sequence database, would
be lost. We are indeed in a context of temporally annotated
records. So comparing two records to generate an evolution
item with a membership degree could lead to an additional
entry in the trend dataset: timestamps of both records may
also be compared thus creating an additional fuzzy item in
∆rrirj describing duration betweenri and rj . We express
this duration item by linguistic terms computed from the
difference between timestamps ofri andrj .

Example 12:Considering the fuzzy sets given by Figure
4 for duration, the final trend database obtained from Table
I is described by Table III.

TABLE III

TREND DATA SEQUENCE OBTAINED FROMTABLE I.

x y z duration
dec s.dec cst dec cst s.inc inc inc q.inc sh. m. lg.

0.8 0.2 0.25 0.75
0.15 0.85 0.25 0.75

1 1 0.3 0.7 1
0.2 0.8 0.25 0.75

1 0.75 0.25

Fig. 4. Duration linguistic terms

Finally, the trend database consists of a set of trend records
∆rrirj , each consisting of:

• one object-ido, corresponding to the id ofri andrj ,
• ri timestamp, denoted byt(ri),
• rj timestamp, denoted byt(rj),
• a set of evolution items[x, v]
• fuzzy duration items

∆rrirj (δ) = µd(t(r
j) − t(ri))

D. The AlgorithmTED

The process described in the previous paragraphs (step 1
on figure 1) is done using the algorithm TED, described by
figure 5.

It parses the records of the quantitative dataset. For each
of them,r, the following records in the same data sequence
are parsed to find the attributes ofr. For each pair of records
containing common attributes, a record is created in the trend
database, consisting of the evolution items and fuzzy duration
items. Each of them is associated with a membership degree.

TED Main - Input: Qdb
Ouput: ∆bd

∆db.initialize();

For each data sequenceo ∈ Qdb do
For each recordr ∈ Ro do

For each recordr′ ∈ Ro / t(r′) > t(r) do
∆r.initialize();
For each attributea do

If ((r[a] != NULL) AND (r′[a] != NULL)) Then
∆r.add(a, v, µv(r[a]− r′[a]));
[where v gives the variation strength of the trend]

End If
End For
∆db.add(o,∆r, t(r), t(r′), d, µd(t(r′) − t(r)));
[where d gives the duration length fuzzy set]

End For
End For

End For
return ∆db ;

Fig. 5. TED algorithm



The algorithm TED creates the trend database within
a temporal complexity ofO(n2), with n the number of
records in the quantitative database. In the worst case, the

trend database contains
∑

o∈O

|Ro|(|Ro| − 1)

2
records.

IV. EVA : AN ALGORITHM FOR EVOLUTION PATTERN

M INING

We chose to implement our algorithm on the ground of a
level-wise principle. This kind of algorithm uses the frequent
sequences of sizek to generatecandidate– possibly frequent
– sequences of sizek + 1. Then the frequency of these
candidate sequences is calculated, only the frequent ones
being stored. Mining the trend database for evolution patterns
would then be done on the principles of TOTALLY FUZZY

described in [4], for fuzzy sequential patterns.
However, the direct application of this algorithm or of

any sequential pattern mining algorithm is not possible
due to the specific format of the trend data. Therefore we
designed the algorithm EVA to mine for evolution patterns.

In this section we first explain why the specific format of
trend data does not allow us to use existing algorithms. Then
we introduce our solution to handle the record chronology.
Last we detail the overall mining algorithm EVA .

A. About duration

Since each trend record∆rrirj has been built from two
records of the initial dataset, it contains two timestamps
t(ri) and t(rj) that describe a duration. Since we search
for sequences we need to define an order and/or constraints
to be satisfied between trend records, taking into account the
original timestampst(ri) and t(rj).

Several trend records may have the same starting
timestampt(r1), so they cannot be included into the same
sequence. But they correspond to the same object in the
dataset. Moreover, one record covering the time-period from
t(r1) to t(r3) does not preceed or follow a record including
r2 that happened betweenr1 and r3 in the original Qdb
[19]. Example 13 illustrates these cases based on Table III.

Example 13:Figure 6 represents each gradual record of
Table III. The second trend record overlaps the first and
third ones and the fourth record overlaps the third and fifth
ones.

To take into account the possible overlaps of itemsets,
the sequence database∆db should be parsed with lots of
forward and backward phases during examination of data
sequences. To avoid such expensive parsing of the data, we
designed a method that skips overlapping itemsets for one
candidate sequence.

time

δ
1

t(r1)) t(r2))

δ
2

t(r1)) t(r3))

δ
3

t(r2)) t(r3))

δ
4

t(r2)) t(r4))

δ
5

t(r3)) t(r4))

Fig. 6. Overlapping gradual records

B. Handling Record Chronology

Our approach uses a graph structure to represent allowed
sequences in a data sequence. The principles of this model
are quite similar to those developed in [11] to handle
time constraints in sequential pattern mining. Vertices in
the sequence graph are trend records and edges represents
sequences.

Thus before extracting the evolution patterns, EVA

preprocesses each data sequence of the trend database into
a sequence graph. Then these sequence graphs are parsed to
discover evolution patterns.

For each objecto in ∆db, the sequence graph is built
by the function createGraph, Figure 7, called by EVA

main function. The records in∆db are chronologycally
ordered according to their start timestamp then to their end
timestamp. The functioncreateGraph scans the ordered
list of records. First one vertex is created for each record
within the data sequence; the functionsv.end() andv.start()
respectively return the end and start timestamps of the
record associated to vertexv.

During the second step edges are created. For each vertex
in the graph,createGraphcreates the edges that correspond
to allowed sequences, i.e. for two verticesvi andvj , an edge
is built from vi to vj iff vj .start()> vi.end().

For this reason, when they are created, vertices are
attached to one set according to their start-time. Thus for
creating edges,createGraphonly links each vertexv to the
vertices in the first setl whose stat-timel.start is greater
than or equal tov.end().

Figure 8 represents the sequence graph obtained from the
trend sequence given by Table III. From the data sequences
in Table III we can build four longest sequences to mine
evolution patterns:〈δ1δ3δ5〉, 〈δ2δ5〉 and 〈δ1δ4〉.

Once the sequence graphs are created, the extraction of
evolution patterns starts.



createGraph - Input: δs, one data sequence ofQdb
Ouput: (GV,GE), the sequence graph forδs

GV.initialize();

GE.initialize();

L.initialize();

r ← δs.first();

L.start time← start(r);

While (δs.hasNext())do
r ← δs.next();
If (start(r) == L.start time) Then
L.addVertex(new Vertex(r));

Else
GV.add(L);
L.initialize();
L.start time← start(r);
L.addVertex(new Vertex(r));

End If
End While
GV.add(L);

For each vertex u ∈ GV do
tmpL ← u.getSet();
While (tmpL.start time < u.end())do

tmpL ← GV.getNextSet();
End While
If (tmpL.notEmpty())Then

For each vertexv ∈ tmpL do
GE .addEdge(u,v);

End For
End If

End For
return (GV ,GE);

Fig. 7. createGraphfunction
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Fig. 8. Sequence graph for the data sequence in Table III.

C. The AlgorithmEVA

The global algorithm for mining EVolution pAtterns, Fig-
ure 9, can be described as follows.

Once the trend database has been generated by TED, the
functioncreateGraphis called to process each data sequence
into a graph, thus handling time constraints due to duration.

Then the sequence graphs are parsed to discover frequent
evolution items, according to one user-defined minimal
frequency thresholdminFreq. After this step, the frequent
elements of sizek are combined into candidate sequences of
sizek + 1. These sequences are searched within the graphs
and EVA computes their frequency using the algorithm
TotallyFuzzy from [4] that implements the formula 1 given
in section II. EVA stops when no more candidate sequences
has been found frequent.

EVA Main - Input: minFreq, ∆db
Ouput: F , frequent evolution sequences

F0 ← ∅ ; k ← 1 ;

F1 ← {{< i >}/i ∈ I&freq(i) > minFreq};

For each trend data sequenceδS ∈ ∆db do
graphDB ← createGraph(δS) ;

End For
While (Candidate(k) 6= ∅) do

For each sequence graphg ∈ graphDB do
[countFrequency is a version of the TotallyFuzzy algorithm]
[adapted to sequence graph parsing]
countFrequency(Candidate(k), minFreq, g) ;

End For
Fk ← {s ∈ Candidate(k)/freq(s) > minFreq};
Candidate(k + 1)← generate(Fk ) ;
k++;

End While

return F ←
k

[

j=0

Fk

Fig. 9. EVA : Main algorithm

The soundness and completeness of such approaches,
based on sequence graphs, have been proved [20]: all the
supported sequences and only them are created in the
sequence graphs. So at the end of the process we obtained
all the evolution patterns contained in the trend dataset.

V. EXPERIMENTS

The aim of these experiments is to apply gradual
sequential patterns for web usage analysis.

A. Data

In our case, access logs from a laboratory website have
been prepared and mined to find repeatedly visited pages.
Records contain the number of access to one page, the same
half-day by one user. For example, record“1500 5067 10 6”
means that“visitor 1500” on half-day5067 visited 6 times
the URL coded by10. This dataset contains 27209 web pages
visited by 79756 different IPs during 16 days (32 half-days).
The translation into the formalism given in sections II and
III is given by Tab. IV.

TABLE IV

DATA SEQUENCES FOR WEB USAGE MINING

Object↔ IP
Timestamp↔ halfday

Quantitative items↔ # of accesses to each
web page

Evolution items↔ variation of the #
of accesses to each web page

Duration↔ time period between two accesses to
one web page

As detailed in section III-A, quantities are compared and,
thanks to our algorithm TED, the dataset is converted into
a trend database that contain evolution items and the fuzzy
sets membership degrees. Then these data are mined by EVA .



B. Results

The runtime performances of our algorithm are similar to
fuzzy sequential pattern algorithms, Figure 10. As the min-
imum frequency of the gradual patterns wanted decreases.
This is due to the increasing number of frequent sequences
that leads to a proportional increase of the number of scans
on the dataset.
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Fig. 10. Runtime according tominFreq.

Regarding the qualitative analysis, discovered patterns are
relevant. One typical evolution pattern we discovered on the
log file of INRIA Sophia is related to the Koala project and
expresses the following temporal tendency“A slow increase
of the number of connections to page KBM preceeds a long
period of an increase of the connections to KOML, that
occurs after a short period. Then follows a slow increase of
the number of connections to DJAVA”.

VI. CONCLUSION

In this paper we introduced an approach for discover-
ing typical evolutions and durations in numerical sequence
databases. This approach is based on fuzzy sequential pat-
terns that are used to mine trend data sequences.

In contrast to time-series analysis, in the context of data
sequences, some attributes may be unfilled in some records.
Moreover duration between two consecutive records is not
necessarily regular. Therfore, describing trends in such nu-
merical sequence datasets requires specific approaches.

For this reason, we proposed a process based on two
algorithms. TED converts a numerical database into a trend
database, describing evolution of numerical attribute values,
according to time for several objects. These evolutions are
represented as trend sequences. Then EVA searches for
frequent evolution sequences in this trend sequence dataset.

Discovered evolution patterns would for instance inform
that An increasing number of requests to registration.php
during a short period preceeds an increasing number of re-
quests to faq.html, after a very short period. These temporal
relations among web page browsing could then be used to
improve web site architecture and quality of services. We
actually applied an implementation of this process to access
logs of a website and discovered relevant knowledge.

Extensions of this work could lead to temporal
implication, describing causal relationships between
evolution of attributes. It would then include some statistical
results implying search for dependencies based on linear
regressions. The discovered knowledge would for instance
help in explaining some web server failures.
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