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Abstract

Fuzzy sequential pattern mining is a rel-
evant approach when dealing with tem-
porally annotated numerical data since
it allows discovering frequent sequences
embedded in the records. However, such
patterns, in their current form, do not
allow extracting another kind of knowl-
edge that is typical of sequential data:
temporal tendencies. Thanks to a rel-
evant use of fuzzy sequential patterns,
we propose the GraSP algorithm that
discovers gradual trends in sequences.
Our proposal is validated through ex-
periments on web access logs.

Keywords: Sequential Patterns, Data
Mining, Sequence Database, Trends,
Gradual Rules.

1 Introduction

As databases available from most of industrial
or biological areas often contain timestamped
or ordered records, sequence mining has be-
come an important data mining task. One
specific approach, sequential pattern mining,
aims to discover frequent sequences within se-
quence databases, i.e. the mined datasets are
sets of timestamped records, each of them
constituted of a set of values. Consider the
knowledge extracted from a commercial web-
site. With sequential patterns, one could ex-
tract that 10% of users first request the page
registration.php and later help.html.

Most of the time, databases do not only con-
tain binary attributes, but also numeric at-
tributes, such as prices, quantities,... There-

fore generalizations of symbolic sequential
patterns have been proposed to handle such
information [1, 2, 3]. These fuzzy sequential
patterns contain additional pieces of knowl-
edge compared to crisp ones. For instance, the
previous pattern could be more explicit: 10%
of users first request the page registration.php
many times and later few request help.html.

In this paper we propose to incorporate grad-
uality within fuzzy sequential patterns and
express temporal tendency, in order to mine
rules like “the more the increase of x in A, the
more the increase of y in B”, defining gradual
sequential patterns. Gradual dependencies are
rules that represent a relation among the vari-
ations in the degree of fulfillment of impre-
cise properties by different objects [6, 7]. An
example of gradual dependence is the higher
the number of simultaneous connections to a
website, the slower response, meaning that ob-
serving web logs, when the number of simul-
taneous connections increases, the time re-
sponse of this website also increases.

Within a context of web mining such patterns
could be for instance that the more the num-
ber of requests to registration.php fulfills the
property “high number of requests” at time t
the more the number of requests to help.html
page fulfills the property “high number of re-
quests” a few seconds later. This knowledge
would be explicit for the end-user (is the reg-
istration form easy to fill-in?). However the
problem of gradual sequential pattern mining
is not a mere extension of gradual dependen-
cies, since the temporal aspects introduce a
large number of combinations. Our goal is to



show that handling time and extract gradual
sequential patterns can be done efficiently and
leads to relevant knowledge.

In this paper, we describe our proposal which
relies on the following points. First we pro-
pose the definition of gradual sequential pat-
terns. Secondly we introduce our method
for extracting gradual sequential patterns by
means of fuzzy sequential patterns. Last, we
focus on the algorithmic tricks that we use in
GraSP to efficiently mine sequence databases
for gradual sequential patterns.

In the next section, we define the fundamen-
tal concepts associated with gradual rules and
fuzzy sequential patterns. In section 3 we
present our proposal, first defining what grad-
ual sequential patterns are, then detailing how
to implement their discovery. We propose
some experiments on web access logs in sec-
tion 4, showing the benefits of such pattern
discovery. We conclude in section 5 on the
prospects opened by our work.

2 About Sequential Patterns and

Graduality

Sequential patterns are often introduced as an
extension of association rules in [8]. Initially
proposed in [9], they highlight correlations be-
tween database records as well as their tem-
poral relationships. Some generalization were
proposed to use fuzzy set theory to handle nu-
meric attributes. In this paper we use fuzzy
sequential patterns to mine gradual sequences
defined from the concepts of gradual rules.

2.1 Sequential Patterns

Sequential patterns are based on the idea of
maximal frequent sequences.
Let R be a set of object records where each
record R consists of three information ele-
ments: an object-id, a record timestamp and
a set of attributes/items in the record. Let
I = {i1, i2, ..., im} be a set of items or at-
tributes. An itemset is a non-empty set of
attributes ik, denoted by (i1i2 . . . ik). It is a
non-ordered representation. A sequence s is a
non-empty ordered list of itemsets sp, denoted

by 〈s1s2...sp〉. A n-sequence is a sequence of
n items (or of size n).

Example 1 Consider a website. Objects are
users, and records are the URLs requested
made by each user during one session. Times-
tamps are the sessions. If an user requests
URLs encoded by e, a, k, u, and f according
to the sequence s = 〈(e) (a k) (u) (f)〉, then
all items of the sequence were requested sep-
arately, except URLs a and k which were ac-
cessed at the same session. In this example,
s is a 5-sequence.

A sequence S = 〈s1 s2...sp〉 is a subsequence
of another one S′ = 〈 s′

1
s′
2

...s′m〉 if there
are integers l1 < l2 < ... < lp such that
s1 ⊆ s′l1 , s2 ⊆ s′l2 , ..., sp ⊆ s′lp .

Example 2 The sequence s′ = 〈(a) (f)〉 is
a subsequence of s because (a) ⊆ (a k) and
(f) ⊆ (f); 〈(a) (k)〉 is not a subsequence of s.

All records from the same object o are
grouped together and sorted in increasing or-
der of their timestamp, constituting a data se-
quence. An object supports a sequence s if it is
included within the data sequence of this ob-
ject (s is a subsequence of the data sequence).
The frequency of a sequence (freq(s)) is de-
fined as the percentage of objects supporting
s in the whole set of objects O. A minimum
frequency value (minFreq) is specified by the
user and the sequence is said to be frequent
if the condition freq(s) ≥ minFreq holds. A
sequence that may be frequent is a candidate
sequence. Given a database of object records,
the problem of sequential pattern mining is
to find all maximal sequences of which the
frequency is greater than a specified thresh-
old (minFreq) [9]. Each of these sequences
represents a sequential pattern, also called a
maximal frequent sequence.

Several extensions were proposed to handle
numerical and quantitative values [1, 2, 3],
to generalize sequential patterns with respect
to various temporal parameters (time-interval
between events of a sequence, grouping sev-
eral records into a single itemset...) [9, 10], or
even to deal with missing values [11].



2.2 Gradual Rules and Dependencies

Gradual correlations in the fulfillment of im-
precise properties may be represented using
several formalism such as gradual dependen-
cies and gradual rules.

Gradual dependenciess describe the implica-
tion that may exist between two fuzzy proper-
ties. Several proposals have been formulated
in order to discover such rules within rela-
tional databases. [4] and [5] propose to use the
various fuzzy implications to extract different
kinds of gradual dependencies. [5] describes
some tracks for designing a mining algorithm.

Gradual rules describe a correlation among
the variation in the degree of fulfillment of im-
precise properties by different objects [6, 7].
They express a tendency. For instance, a
gradual dependency could be the higher the
number of connections, the lower the down-
load rate, meaning that as the number of con-
nections increases, download rate tends to de-
crease. Formally a gradual rule can be ex-
pressed by a sentence the more (or less) X is
A, the more (or less) Y is B.
[6] gives the very first complete formalism
of gradual rules, expressing the relations and
correlations between attributes using statis-
tical formulæ and tools, such as contingency
diagrams and linear regressions. [7] describes
a framework that discovers gradual rules on a
preprocessed database using a fuzzy associa-
tion rule mining algorithm. In this paper, we
adopt a similar principle and propose to mine
for gradual sequential patterns using fuzzy se-
quential patterns.

2.3 Fuzzy Sequential Patterns

In order to allow for handling numerical or
quantitative information several works pro-
posed to partition each numerical attribute
into several fuzzy sets. The quantitative
database is thus converted into a member-
ship degree database, which is then mined for
fuzzy sequential patterns [1, 2, 3].

The item and itemset concepts have been re-
defined relative to classical sequential pat-
terns. A fuzzy item is the association of one

item and one corresponding fuzzy set. It is de-
noted by [x, a] where x is the item (also called
attribute) and a is the associated fuzzy set.

Example 3 [URL A, lot] is a fuzzy item
where lot is a fuzzy set defined by a mem-
bership function on the quantity universe of
the possible number of requests of the URL A
during one session.

A fuzzy itemset is a set of fuzzy items. It
can be denoted as a pair of sets (set of items,
set of fuzzy sets associated to each item) or as
a list of fuzzy items. We use the following no-
tation: (X,A), where X is a set of items and
A is a set of corresponding fuzzy sets. One
fuzzy itemset only contains one fuzzy item re-
lated to one single attribute.

Example 4 ([URL A, lot][URL B, few]) is
a fuzzy itemset and can also be denoted by
((URL A,URL B)(lot, few)).

Last a g-k-sequence S = 〈s1 · · · sg〉 is a se-
quence constituted by g fuzzy itemsets s =
(X,A) grouping together k fuzzy items [x, a].

Example 5 The sequence 〈([URL B, lot]
[URL A, lot]) ([URL C, few])〉 groups to-
gether 3 fuzzy items into 2 itemsets. It is a
fuzzy 2-3-sequence.

In the next sections of this article, we use
the following notations: let O represent the
set of objects and Ro the set of records for
one object o. Let I be the set of attributes
or items and ̺[i] the value of attribute i in
record ̺. Each attribute i is divided into
fuzzy sets. Then one record in a fuzzy se-
quence database consists of the membership
degrees of each attribute to each fuzzy set,
e.g r(x, a) = µa(x) represents the member-
ship degree of item/attribute x to the fuzzy
set a in record r.

The frequency of a fuzzy sequence S is then
computed by the formula:

FFreq(S) =

∑

o∈O

ϕ(S, o)

|O|

where ϕ(S, o) gives the degree to which S is
included into the object o data sequence.



This degree is computed by considering the
best appearance – i.e. the appearance with
the highest degree – of the ordered list of item-
sets of S. It is computed by:

ϕ(S, o) = ⊥ς⊆ζo|S=ς=〈s1...si...sk〉⊤s1...sk
(⊤j∈si

µ(j))

where k is the number of itemsets in S, ζo

is the set of sequences included in the data
sequence of object o and ⊤ and ⊥ are the t-
norm and t-conorm operators generalized to
n-ary cases. Practically we use the Zadeh t-
norm and t-conorm, min and max.

3 Gradual Trends in Sequential

Patterns

The objective of this work is to discover tem-
poral relations among the variation in the
degree of fulfillment of imprecise properties
by different objects. For instance a gradual
sequential pattern could be that considering
mail server breakdowns, the more the number
of received e-mails is “high” and the more the
average size of received e-mails is also “high”
at time t, the higher the number of time de-
livery errors becomes later.

Moreover we propose to use the fuzzy data
sequence formalism to discover an additional
information, expressing in the previous exam-
ple what is typically “later” for this pattern,
e.g. few minutes, half an hour, ...

In order to mine gradual sequential patterns
we thus propose to process the original fuzzy
sequence database into a gradual sequence
database that will then be mined using our
algorithm GraSP (subsection 3.4).

3.1 Overall Principle

The global process can be described by fig-
ure 1. In addition to the definition of grad-
ual sequential patterns, our contribution cor-
responds to steps 2 and 3.

First the database is converted into a mem-
bership degree database (µdb on Figure 1, e.g.
Table 1), such as for fuzzy sequential pattern
mining, using predefined fuzzy sets – auto-
matically or from expert knowledge designed.

Then this membership degree database is con-

DB

1

µdb

2

νdb

3

Gradual

Sequential

Patterns

Figure 1: Overall principle of our approach

verted into a time-related variation degree
database (step 2, leading to νdb in Figure 1).
This step of the process is detailed in subsec-
tion 3.3. This dataset is the one mined for
gradual sequential patterns (step 3 in Figure
1) as it is described in subsection 3.4.

Example 6 Let 〈([x, 4])([x, 3][y, 5][z, 8])
([x, 2][y, 4][z, 10])([y, 6][z, 7])〉 be a sequence
characterizing the number of connections to
URL x, y and z during successive sessions
of one IP o. Table 1 describes a membership
degree database (µdb) drawned from this
sequence. It contains four ordered fuzzy
records for the IP o. This records may
for instance contain the fuzzification of the
number of accesses to three URL X, Y and Z
during successive session of an identified IP.
This dataset µdb then gives the membership
degrees for three fuzzy items, consisting of
attribute X (resp. Y , Z) associated with
quantitative property A (resp. B, C), for
instance “very few”, “few” and “lot”.

Table 1: A membership degree data sequence.
date x,a y,b z,c

d1 1 0.1 r1

d2 3 0.2 0.3 0.4 r2

d3 4 0.4 0.5 0.7 r3

d4 5 0.2 0.3 r4

Then Table 3 gives the time-related variation
degrees associated to gradual items obtained
from Table 1, after step 2 of the global process
(described in subsection 3.3).



3.2 Definitions

A gradual item should denote a variation –
increase or decrease – of the membership de-
gree of an attribute to a property (i.e. one
of its associated fuzzy sets). Then a gradual
item is defined as a fuzzy item [x, a], associ-
ated to an operator q, with q ∈ {<,>}. For
instance, the gradual item [x, a,>] means the
more x is a. While building the gradual se-
quence database, each gradual item will be
associated with a membership degree. This
degree describes the strength of the variation
expressed by the q operator [7].

A gradual itemset can then be defined as a
non-ordered, non empty set of gradual items
and a gradual sequence is an ordered list of
gradual itemsets. A gradual itemset will
be denoted by parenthesis (e.g. ([x, a,q1]
[y, b,q2])) and a sequence by angles (e.g.
〈([x, a,q1] [y, b,q2]) ([z, c,q3])〉).

Thus a gradual sequence database will be a
specific fuzzy sequence database in which the
fuzzy items represent variation strength in ful-
fillment degree of attribute properties. So
mining gradual sequential patterns should be
as “simple” as mining fuzzy sequential pat-
terns. Unfortunately, due to the temporal as-
pect of the data and the combinatory prob-
lems it causes, this naive solution is not feasi-
ble and we need an efficient approach.

In the forthcoming subsection, we show how
the variation degree database is built and in
subsection 3.4 we detail our algorithm for
gradual sequential pattern mining.

3.3 Building Gradual Records

Each item [x, a,q] in the variation degree
database νdb represents the evolution of
µa(x) between two successive records r1 and
r2, related to a same object o in the member-
ship database. Then each record in νdb will
be made by the combination of two records of
the initial µdb dataset. More specifically, for
each ordered pair of records ri and rj of one
data sequence – rj is later than ri, but not
necessarily consecutive – such that ri(µa(x

i))
and rj(µa(x

j)) are strictly greater than 0, we

create a gradual record grrirj containing the
gradual item [x, a,q] iff µa(x

i)qµa(x
j).

Example 7 From records r1 and r2 in Tab.
1, a gradual record is created, containing item
[x, a,>], since µa(x

2) = 0.2 > µa(x
1) = 0.1.

In order to keep the temporal relation-
ships originally existing within the sequence
database, for each object o, gradual records
are chronollogically ordered by the times-
tamps of r and r′. Moreover, to keep the vari-
ation strength we use the definition of varia-
tion degree grrr′([x, a,q]) given by [7] :

grrr′([x, a,q]) = µq(µa(x), µa(x
′))

where µq(u, v) =

{

|u − v| if uqv
0 else

Example 8 From Table 1 records r1 and r2,
the gradual item in Example 7 is associated
to the variation degree grr1r2([x, a,>]) = 0.1.
Table 2 is the variation degree database ob-
tained from Table 1.

Table 2: Variation degree data sequence ob-
tained from Table 1.

x,a,> y,b,> y,b,< z,c,> z,c,<

d1 d2 0.1 r1

d1 d3 0.3 r2

d2 d3 0.2 0.2 0.3 r3

d2 d4 0.1 0.1 r4

d3 d4 0.3 0.4 r5

Having this set of records for each data se-
quence o in O, we could then go to the mining
step. However one information, still available
in a sequence database, would be lost. We
are indeed in a context of temporally anno-
tated records. So comparing two records to
generate a gradual item with a variation de-
gree could lead to an additional entry in the
gradual dataset: timestamps of both records
may also be compared thus creating an addi-
tional fuzzy item in grrr′ describing duration
between r and r′. This duration item is ex-
pressed by a linguistic variable computed from
the difference between timestamps of r and r′.

Example 9 Considering the fuzzy sets on
Figure 2 for duration, the final time-related
variation degree database obtained from Table
1 is described by Table 3.



Table 3: Time-related variation degree data
sequence obtained from Table 1.

x,a y,b,> z,c,> duration

> > < > < sh. lg

d1 d2 0.1 0.75 0.25

d1 d3 0.3 0.25 0.75

d2 d3 0.2 0.2 0.3 1

d2 d4 0.1 0.1 0.75 0.25

d3 d4 0.3 0.4 1

Figure 2: Duration linguistic variables

Finally, the time-related variation degree
database consists of a set GR of gradual
records grr1r2 , each consisting of:

• one object-id o, corresponding to the
object-id of r1 and r2,

• r1 timestamp, denoted by t(r1),

• r2 timestamp, denoted by t(r2),

• a set of gradual items [x, a,q], such that

∀[x, a]/r1(µa(x
1)) 6= 0, r2(µa(x

2)) 6= 0,
grr1r2([x, a,q]) = µq(µa(x

1), µa(x
2))

withq ∈ {<,>}

• fuzzy duration items

grr1r2(δ) = µd(t(r
2) − t(r1))

3.4 Algorithmic Tricks

Our aim is to extract gradual sequential pat-
terns from the time-related variation degree
database obtained after step 2.

Since each gradual record grr1r2 has been
built from two records of the initial dataset,
it contains two timestamps t(r1) and t(r2)
that describe a duration. Since we want to
discover sequences we need to define an or-
der and/or constraints to be satisfied between
gradual records, taking into account the orig-
inal timestamps t(r1) and t(r2).

Actually several gradual records can have the
same starting timestamp t(r1) and they can-
not belong to the same sequence. But they

correspond to the same object in the dataset.
In the same way, one record covering the time-
period from t(r1) to t(r3) does not preceed or
follow a record including r2 that happened be-
tween r1 and r3 in the original µdb.

Example 10 Figure 3 represents each grad-
ual record of Table 3.

time

gr
r1r2

t(r1)) t(r2))

gr
r1r3

t(r1)) t(r3))

gr
r2r3

t(r2)) t(r3))

gr
r2r4

t(r2)) t(r4))

gr
r3r4

t(r3)) t(r4))

Figure 3: Overlapping gradual records

The second gradual record overlaps the first
and third ones and the fourth record overlaps
the third and fifth ones.

To take the possible overlaps of itemsets into
account, the sequence database νdb should
be parsed with lots of forward and backward
phases during examination of data sequences.
To avoid such expensive parsing of the data,
we designed an algorithm that skips overlap-
ping itemsets for one candidate sequence. Our
approach uses a graph structure to represent
allowed sequences in a data sequence, such as
the sequence graphs developped in [10] to han-
dle time constraints. Vertices in the sequence
graph are gradual records and edges represent
sequences. Thus each gradual data sequence
of the final dataset νdb is then preprocessed
into a sequence graph in which the gradual
sequential patterns are mined for.

The global mining algorithm, GraSP, Fig. 4,
can be described as follows. It is a generate-
and-prune approach, that uses the frequent
sequences of size k to generate candidate se-
quences of size k + 1. Then the frequency
of these (k + 1)-sequences is calculated us-
ing the TotallyFuzzy algorithm from [3].



GraSP - Input: minFreq, νDB
Ouput: F , frequent gradual sequences

F0 ← ∅ ; k ← 1 ;

F1 ← {{< i >}/i ∈ I&freq(i) > minFreq};

For each gradual data sequence gS ∈ νDB do
graphDB ← createGraph(gS) ;

End For
While (Candidate(k) 6= ∅) do

For each sequence graph g ∈ graphDB do
[countFreq is a version of the TotallyFuzzy]
[algorithm adapted to sequence graph parsing]
countFreq(Candidate(k),minFreq, g) ;

End For
Fk ← {s ∈ Candidate(k)/freq(s) > minFreq};
Candidate(k + 1)← generate(Fk) ;
k++;

End While

return F ←
k

[

j=0

Fk

Figure 4: GraSP

Then, the algorithm searches for the candi-
date sequences within the sequence graphs.

Example 11 Figure 5 represents the se-
quence graph obtained from the time-related
variation degree sequence given by Table 3.

grr1r3

grr1r2 grr2r3

grr2r4

grr3r4

Figure 5: Sequence graph for the data se-
quence in Table 3.

From the data sequences in Table 3 we can
build four longest sequences to mine gradual
sequential patterns: 〈(grr1r2)(grr2r3)(grr3r4)〉,
〈(grr1r3)(grr3r4)〉 and 〈(grr1r2)(grr2r4)〉.

The soundness and completeness of such ap-
proaches, based on sequence graphs, have
been proved. So at the end of the process
we obtain all the gradual sequential patterns
contained in the time-related variation degree
dataset.

4 Experiments

The aim of these experiments is to apply grad-
ual sequential patterns for web usage analysis.

4.1 Data

In our case, records contain the number of
access to one page, the same half-day by one
user. For example, record “1500 5067 10 6”
means that “visitor 1500” on half-day 5067
visited 6 times the URL coded by 10. This
dataset contains 27209 web pages visited by
79756 different IPs during 16 days (32 half-
days). The translation into the formalism
given in sections 2 and 3 is given by Tab. 4.

Table 4: Data sequences for web usage mining
Object ↔ IP

Timestamp ↔ halfday
Fuzzy items ↔ properties of # of accesses to each

web page
Gradual items ↔ variation of degree of the properties

of accesses to each web page
Duration ↔ time period between two accesses to

one web page

As detailed in section 3.1, quantities are con-
verted into three fuzzy sets membership de-
grees, using the principle given in [3].Then the
membership degree database is converted into
the time-related variation degree database,
mined for gradual sequential patterns.

4.2 Results

The runtime performances of our algorithm
are similar to fuzzy sequential pattern algo-
rithms, Figure 6.
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Regarding the qualitative analysis, discovered
patterns are relevant. One typical pattern we
discovered on the log file of INRIA Sophia is
related to the Koala project and expresses the
following temporal tendency “The lower the
number of connections to page KBM becomes,
the more the connections to KOML fulfills the
“high number” property after a short period
and during a long period, then followed by
an increasing high number of connections to
DJAVA”.

5 Conclusion and Future Work

In this paper we have developed an approach
for mining gradual trends in sequential pat-
terns based on fuzzy sequential pattern min-
ing. The purpose of this technique is to dis-
cover time-related tendencies, showing how
the variation of one (or several properties)
is linked to other that previously happened.
This work extends some concepts that were
initially proposed for gradual rule discovery.
Within the context of time-related databases,
we need to define some specific process for
handling temporal information. Time in-
deed leads to an explosion of runtime and
space complexity, thus making existing algo-
rithms for gradual rules mining inappropri-
ate. We solved this problem by designing an
efficient algorithm. It was implemented and
tested, discovering relevant knowledge such
as the more the number of requests to regis-
tration.php fulfills the property “high number
of requests” at time t the more the number
of requests to help.html page fulfills the prop-
erty “high number of requests” a few seconds
later. This temporal relation among web page
browsing could then be used to improve web-
site architecture and quality of services. Now
we are working on defining time-related grad-
ual rules based on these sequential patterns.
The objective of this work is to find the causal
relationships that may exist between several
sequential events.
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