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Abstract

Recent widening of data mining application areas have lead to new issues.
For instance, frequent sequence discovery techniques that were developed for
customer behaviour analysis are now applied to analyse industrial or biolog-
ical databases. Thus frequent sequence mining algorithm must be adapted
to handle particular characteristics of these data. Among these specificities
one should consider numerical attributes and incomplete data. In this paper,
we propose a method for discovering crisp or fuzzy sequential patterns from
an incomplete database. This approach uses partial information contained in
incomplete records, only temporary discarding the missing part of the record.
Experiments run on various synthetic datasets show the validity of our pro-
posal as well in terms of quality as in terms of the robustness to the rate of
missing values.

1 Introduction

Over the last decade data mining applications have widened, drifting from their
original areas. They thus confronte researchers with new issues. One of them is the
adaptation of approaches first designed for a specific domain, with specific data,
and now applied to other data, with special features.

One relevant example of this evolution are the applications of sequential pattern
discovery techniques. This data mining technique aims at discovering knowlegde –
frequent sequences – from temporal databases. First designed to analyze customer
behaviors in supermarket, they are now used for mining industrial, textual, medical
or even biological data. However these data are often imperfect with respect to the
requirements for mining sequential patterns.

Indeed algorithms were designed to handle data that could be processed as
binary ones – presence or absence of a product in a market basket. Furthermore
these data were considered as complete ones, i.e. no attribute is unfilled. New
algorithms were recently proposed to handle these new features. More specifically
several approaches introduce fuzzy sequential pattern mining in order to handle
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the quantitative information often contained in industrial databases.
Regarding data that contain missing values there only exist few approaches. In
fact when such data are mined, they are most of the time deleted or replaced by a
statistical value. However this leads to a loss of information or to biased knowledge.

To avoid such pre-processing in [8] we extended the principles originally de-
veloped by [2] in order to discover frequent sequences within databases containing
values missing at random. This technique is based on the idea that only but all
the available information should be used while the mining task. This was first
applied to design an association rule method for mining incomplete databases [19]
and some machine learning techniques [12]. This principle consists in only making
use of available information (i.e. filled-in attributes) and ignoring missing infor-
mation, without ignoring the whole involved record. Thus only partial complete
databases are mined for each pattern and the whole dataset is used to discover all
the patterns.

In this paper we recall the different principles we introduced in [8] to discover
sequential patterns within time-stamped incomplete databases using the algorithm
SPoID (Sequential Patterns for Incomplete Databases). Then we extend these def-
initions to handle both quantitative and incomplete data while mining for frequent
sequences in real-world databases. There indeed exist approaches – based on fuzzy
sets – for discovering sequential patterns in quantitative databases. However these
techniques cannot handle missing values without specific additional preprocessing.
Therefore we propose the algorithm F-SPoID (Fuzzy Sequential Patterns for Incom-
plete Data) that can be applied to discover frequent sequences within incomplete
quantitative databases.

The remainder of the paper is organized as follows. Section 2 introduces the
concepts linked to sequential pattern and fuzzy sequential pattern discovery and
gives a brief overview of data mining in the presence of missing values. Section 3
details our approach to mine for crisp or fuzzy sequential patterns within incomplete
data, and we describe our algorithm in Section 4. Section 5 is then dedicated to
experiments that show the validity of our approach. Finally, we discuss further
work opened by this proposal and we conclude in Section 6.

2 Sequences, Fuzziness and Missing Values

Sequential patterns are often introduced as an extension of association rules, ini-
tially proposed in [1]. They highlight correlations between database records as
well as their temporal relationship. Even though these algorithms do not mine
incomplete records contained in the database. These missing values must then be
removed either by deletion or replacement. Quality of results then depends on this
preprocessing. Moreover this step is often time-consuming. In order to reduce the
preprocessing due to missing values and to improve the sequential pattern quality,
we propose a method for sequential pattern mining within incomplete databases.
This method is based on association rules approaches. In this section we first define
the concepts linked to sequential pattern mining, then we detail our motivations
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before introducing techniques that allow association rule mining handling missing
values.

2.1 Sequential Patterns

Let R be a set of objects records where each record R consists of three information
elements: an object-id, a record timestamp and a set of attributes/items in the
record. Let I = {i1, i2, ..., im} be a set of items or attributes. An itemset is a
non-empty set of attributes ik, denoted by (i1i2 . . . ik). It is a non-ordered rep-
resentation. A sequence s is a non-empty ordered list of itemsets sp, denoted by
< s1s2...sp >. A n-sequence is a sequence of n items (or of size n).

Example 1. Let us consider an example of market basket analysis. The object is
a customer, and records are the transactions made by this customer. Timestamps
are the date of transactions. If a customer purchases products e, a, k, u, and f
according to the sequence s =< (e) (a k) (u) (f) >, then all items of the sequence
were bought separately, except products a and k which were purchased at the same
time. In this example, s is a 5-sequence.

A sequence S =< s1 s2...sp > is a subsequence of another one S′ =< s′1 s′2 ...s′m >
if there are integers l1 < l2 < ... < lp such that s1 ⊆ s′l1 , s2 ⊆ s′l2 , ..., sp ⊆ s′lp .

Example 2. The sequence s′ = <(a) (f)> is a subsequence of s because (a) ⊆ (a k)
and (f) ⊆ (f). However, <(a) (k)> is not a subsequence of s.

All records from the same object o are grouped together and sorted in increas-
ing order of their timestamp. They are called a data sequence. An object supports
a sequence s if it is included within the data sequence of this object (s is a sub-
sequence of the data sequence). The frequency of a sequence (freq(s)) is defined
as the percentage of objects supporting s in the whole set of objects O. In or-
der to decide whether a sequence is frequent or not, a minimum frequency value
(minFreq) is specified by the user and the sequence is said to be frequent if the
condition freq(s) ≥ minFreq holds. A sequence that may be frequent is a can-
didate sequence. Given a database of object records, the problem of sequential
pattern mining is to find all maximal sequences of which the frequency is greater
than a specified threshold (minFreq) [2]. Each of these sequences represents a
sequential pattern, also called a maximal frequent sequence.

Several extensions were proposed to consider incremental mining for sequential
patterns [14], to handle numerical and quantitative values [5, 7, 11] or to general-
ize sequential patterns with respect to various temporal parameters (time-interval
between events of a sequence, grouping several records into a single itemset...)
[6, 15, 20]. However, no technique was proposed to deal with missing values while
sequential pattern mining. For this reason, in the following sections, we propose an
approach that can mine maximal frequent sequences from an incomplete sequence
database.



4 C. Fiot et al.

2.2 Fuzzy Sequential Patterns

In order to allow for handling numerical or quantitative information several works
proposed to partition each numerical attribute into several fuzzy sets. The quan-
titative database is thus converted into a membership degree database, which is
then mined for fuzzy sequential patterns [5, 7, 11].

The item and itemset concepts have been redefined relative to classical sequen-
tial patterns. A fuzzy item is the association of one item and one corresponding
fuzzy set. It is denoted by [x, a] where x is the item (also called attribute) and a
is the associated fuzzy set.

Example 3. [candy, lot] is a fuzzy item where lot is a fuzzy set defined by a mem-
bership function on the quantity universe of the possible purchases of the item
candy.

A fuzzy itemset is a set of fuzzy items. It can be denoted as a pair of sets
(set of items, set of fuzzy sets associated to each item) or as a list of fuzzy items.
We use the following notation: (X, A), where X is a set of items and A is a set of
corresponding fuzzy sets.

Example 4. (X, A) = ([candy, lot][soda, little]) is a fuzzy itemset and can also be
denoted by ((candy, soda)(lot, little)).

One fuzzy itemset only contains one fuzzy item related to one single attribute.
For example, the fuzzy itemset ([candy, lot][candy, little]) is not a valid fuzzy item-
set because it contains twice the attribute candy.

Last a g-k-sequence S =< s1 · · · sg > is a sequence constituted by g fuzzy
itemsets s = (X, A) grouping together k fuzzy items [x, a].

Example 5. The sequence S =< ([soda, lot][candy, lot])
([video games, little]) > groups together 3 fuzzy items into 2 itemsets. It is a fuzzy
2-3-sequence.

In the next sections of this article, we denote by O the set of objects and by
Ro the set of records for one object o. Let r[i] be the quantity value of attribute i
in record r. Each attribute i is divided into fuzzy sets.

Depending on the data and the expert knowledge that is actually available,
the fuzzy partitioning may be given by the expert or built automatically from the
database by a clustering algorithm as presented in [9] and [10], all the more that
some fuzzy clustering algorithm are robust to incomplete data [21].

The frequency of a fuzzy sequence S = 〈s1 · · · sk〉 is then computed by the
formula 2.2:

FFreq(S) =

∑

o∈O

ϕ(S, o)

|O|
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where ϕ(S, o) gives the degree to which S is included into the object o data se-
quence. This degree is computed by considering the best appearance – i.e. the
appearance with the highest degree – of the ordered list of itemsets of S. It is
computed by the formula 2.2:

ϕ(S, o) = ⊥ς⊆ζo|S=ς=<s1...si...sk>⊤s1...sk
(⊤j∈si

µj(r(j)))

where k is the number of itemsets in S, ζo is the set of sequences included in the
data sequence of object o and ⊤ and ⊥ are the t-norm and t-conorm operators
generalized to n-ary cases. Practically we use the Zadeh t-norm and t-conorm, min
and max.

2.3 Missing Values and Sequential Patterns

Sequential patterns have mostly been applied and assessed to analyse customer
behaviours in supermarket. Then they have been used in web usage analysis or
in biological or medical areas. In the original context of the market basket anal-
ysis, missing values are rare or even unexisting, whereas in web logs or biological
sequences some data are incomplete. Therefore techniques have been developped
to handle these missing values while mining for frequent sequences.

Fuzzy sequential patterns have been proposed to make sequential patterns more
suitable to real world databases, within the context of historically-stamped nu-
merical data (sensor, scientific, demographic, monitoring, evolution phenomena
data, etc.). However, this kind of databases often contain incomplete data, i.e.
records containing unfilled attributes, or missing values, due to breakdowns or
errors, for instance.

Different approaches are generally used for knowledge discovery in incomplete
databases. Most of the time they consist of a preprocessing step that imput or
delete missing values. Some techniques have also been developed for handling
missing values within the mining step, more precisely for classification [13, 18, 23],
clustering [21] or association rules mining [3, 4, 16, 17, 19].

Within the context of temporal knowledge discovery and specifically sequential
pattern discovery, the common way of processing missing values consist of their
deletion before the mining task. As this deletion may lead to an important loss of
information, a proposal was done to handle incomplete data while mining for crisp
sequential pattern [8]. But this work has not been developed for handling missing
values in a quantitative database.

Therefore, we propose in this paper a fuzzy extension of our previous proposal
SPoID, to make possible the discovery of fuzzy sequential patterns within incom-
plete databases. This method uses the whole dataset without deletion before the
mining task: it uses partial and temporary disabling of incomplete data. All the
records will then be used for discovering all the sequential patterns, but each of
them is extracted from a partial dataset.
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3 Fuzzy Sequential Patterns and Incomplete Data

As deleting incomplete records leads to an important loss of information we adapted
an association rule [1] mining approach robust to missing values. In this section we
describe our methods, SPoID designed for crisp sequential patterns, and F-SPoID,
designed for fuzzy sequential patterns. Both approaches are based on the same
principles, instigated by the Robust Association Rules algorithm (RAR), proposed
by [19].

3.1 Principle

The main idea of our approach, as the one of the RAR method, is incomplete
elements disabling, within our context, incomplete sequences. While the RAR al-
gorithm only regards complete records for association rules mining, we propose to
only take into account the complete data sequences for each candidate sequence.
In other words, when an incomplete data sequence is scanned, only filled-in time-
stamped attributes will be considered for frequency calculation. Thus each candi-
date sequence will be considered as a frequent sequence on a partial database, but
the whole dataset will be used to find the whole set of frequent sequences.

Let us consider a candidate sequence S, the set O of objects in the database
can be divided into three disjoint subsets (Figure 1): the set of data sequences
supporting S, denoted by OS , the set of data sequences not supporting S, denoted
by OS , and the set of data sequences for which we do not know whether they
support S or not, denoted by O∗

S .

OS

{

Data sequences supporting S

O∗
S

{

Data sequences that may support S

OS

{

Data sequences not supporting S

Figure 1: Partition of the database depending on S inclusion.

For each candidate sequence S, only the subsets OS ∪OS will be kept to deter-
mine wether the sequence S is frequent or not. This data sequence set represents
the valid database for S as it only contains complete data sequences for the given
candidate sequence S.

Constitution of a valid database leans on temporary disabling data sequences
that contain missing values for items in the candidate sequence. A data sequence is
disabled for a candidate sequence S if it is incomplete for S (i.e. we cannot decide
whether it supports S or not). The set of data sequence disabled for a candidate
sequence S is denoted by Dis(S).

This implies to redefine the frequency calculation to take into account the
database partial deactivation. The frequency definitions given in section 2 are then
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modified in order to consider the valid database concept, and thus that only one
part of the dataset is used for frequency calculation of a crisp or a fuzzy sequence.

3.2 SPoID: Crispy Dealing with Incomplete Data

Considering a crisp sequence S, the temporary disabling of the database is taken
into account by computing the frequency over the valid database for S.

Definition 1. The frequency of a sequence S is the rate of appearance of this
sequence among the data sequences that can support it. It is defined as the ratio of
the number of data sequences supporting S over the number of data sequences that
surely include S or not (complete data sequences for S). It is given by:

Freq(S) =
|OS |

|O| − |Dis(S)|

In [8], we proved that, considering minor restrictions, this frequency definition
holds the antimonotonicity property of the support definition enonciated by [2].
So we can use the various properties described in [2] in order to implement the
sequential mining algorithm within incomplete databases. However, the frequency
concept must also be regarded taking into account the size of the valid database
used to compute it. Therefore we define a representativity criterion and a mini-
mum representativity threshold minRep, that must be satisfied: a valid database
must be a significative sample of the whole dataset for a sequence S. Then a se-
quence is said to be representative if its representativity is greater than a minimum
representativity value minRep.

Definition 2. The representativity Rep(S) of a sequence S is defined as the ratio
of the number of data sequences that either include or cannot include S over the
total number of data sequences in the whole dataset. It is given by:

Rep(S) =
|O| − |Dis(S)|

|O|

Eventually, to be kept as frequent, a candidate sequence must have a repre-
sentativity greater than the minimum representativity threshold minRep and its
frequency must be no less than the user-defined minimum threshold minFreq.

Example 6. Let us consider the database given by Table 1, with a minimum fre-
quency equal to 50%.

O. Seq.

O1 (a b) (b c d) (b c e)
O2 (a) (b c) (b d)
O3 (a b) (b c) (b c d)

Table 1: Complete database.

O. Seq.

O1 (a b) (? ? c) (? b c)
O2 (a) (? c) (b d)
O3 (a b) (? c) (? ? c)

Table 2: Incomplete database.
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The sequential patterns obtained are: <(a b)(b c d)>, <(a b)(b c)(b c)> and
<(a)(b c)(b d)> from the complete database, Table 1. Now, let us consider the
incomplete database given by Table 2.

Item a is certainly supported by the three objects, then its frequency is freq(a) =
3/3 = 100% and its representativity is equal to 1. It is the same for items b and c.
For item d, O<d> = {O2} and Dis(< d >) = {O1, O3}, then freq(d) = 1/(3-2) =
1 and rep(d) = (3-2)/3 = 0.33. If minRep is 0.3, then rep(d) > minRep and d is
a frequent item. On the other hand, if minRep = 0.4, then rep(d) < minRep and
d is not a frequent item because the valid database regarded to compute its frequency
is not significant enough.

Let us consider minRep=0.3 and consider sequence S =< (a b)(a b c d) >. It
cannot be supported by one of the data sequence, because none of them contains an
itemset composed of 4 items, either complete or not, then freq(S)=0.

Now consider S′ =< (a b)(b c) >. It is supported by O1, it cannot be supported
by O2 but maybe by O3. Then, OS′ = {O1}, Dis(S′) = {O3} and OS′ = {O2}.
This leads to freq(S′)=1/(3-1)=50% and rep(S′)=(3-1)/3 = 0.67. S′ is then both
representative and frequent.

Applying this method, discovered patterns for minFreq=50% and minRep =
0.3 are: <(a b)(c)(b c)> and <(a)(c)(b d)>.

Even if the patterns extracted using this approximation of the frequency are not
exactly the one obtained on the complete database, they are closer to the one we
should get than the one discovered using the preprocessed dataset. Experiments
detailed in section 5 show that there exists a value of the minimum representativity
for which the algorithm SPoID extracts the whole set of sequential patterns of the
complete database from an incomplete one.

3.3 F-SPoID: Fuzzy Sequential Patterns and Missing Values

This definition of the frequency handling missing values may now be extended to
allow for incomplete data processing within the context of fuzzy sequential pattern
discovery.

Considering the framework of fuzzy sequential patterns, |OS | is computed on
the same principle as in formula 2.2. Then to take into account that only one part
of the dataset is complete for a given sequence S, we compute the frequency of S
over this partial database, instead of considering the whole one.

So the frequency of a fuzzy sequence S is given by the formula:

FFreq(S) =

∑

o∈OS

ϕ(S,o)

|O|−|Dis(S)|

=

∑

o∈O

⊥ς⊆ζo|S=ς=<s1...sk>⊤s1...si...sk
(⊤j∈si

µj(r(j)))

|O|−|Dis(S)|

This definition is consistent with the crisp definition given in the previous sub-
section and also with the definition of the fuzzy frequency given for complete
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database mining.
This frequency definition also holds the antimonotonicity property required to

ensure completeness of results while mining for sequential patterns.

Example 7. Let us consider the membership database, table 3, obtained from a
quantitative datasets and some previously designed membership functions. This
dataset contain three data sequences in which we search for the sequence S =<
([X3, a])([X2, b]) >, i.e. the sequence made of the fuzzy item [X3, a] followed by the
fuzzy item [X2, b].

Fuzzy items

X1 X2 X3 X4

a b a b c a b c a b

O1 r1 1 1 ? ? 1
r2 1 0.8 0.2 1
r3 0.5 0.5 0.25 0.75

r4 1 1
O2 r1 1 ? ?

r2 0.25 0.75 0.5 0.5
O3 r1 1 0.2 0.8

r2 0.5 0.5 0.4 0.6

Table 3: Example of an incomplete membership database.

S =< ([X3, a])([X2, b]) > is supported by O1, it cannot be supported by O3 but
maybe by O2. Then, OS = {O1}, Dis(S) = {O2} and OS′ = {O3}. This leads to

freq(S) =
⊥(⊤(0.8, 0.75),⊤(0.8, 1))

3 − 1
=

0.8

2
= 0.4 ∼ 40%

and rep(S′)=(3-1)/3 = 0.67. S′ is then both representative and frequent.

4 Implementation

4.1 Algorithms

The algorithm we implemented for mining crisp or fuzzy sequences within incom-
plete data runs similarly to the generate-and-prune sequential pattern mining algo-
rithms. It is described by Algorithm 1. It consists in generating all the candidate
k-sequences from the frequent (k-1)-sequences. Then the database is scanned to
count the number of data sequences that support each candidate sequence. The
main difference stands in the counting of incomplete data sequences.

This counting step is described by the algorithm SPoID (Alg. 2) in the crisp
case and by the algorithm F-SPoID (Alg. 3) in the fuzzy case. Both algorithms
follow the same principle: for each candidate sequence S, for each object o,

• if the candidate sequence is found, the absolute value of the frequency is
incremented by 1 – crisp version – or by ϕ(S, o) – fuzzy mining,
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• if the candidate sequence is not found nor a sequence with missing values
that could be replaced to complete the candidate sequence, then the object
does not support the candidate sequence. The absolute frequency is not
incremented.

• an incomplete data sequence in which missing values could be replaced by
items of the candidate sequence is found. In that case, the object is added
to the disabled object set.

SPoID - Input: |O|, sequence database, minFreq, minimum support
minRep, minimum representativity (user-defined or computed)

Ouput: SPList, frequent sequence list

C ← {i ∈ I}; k = 1 ;

F ← getFrepnRep(C,minFreq,minRep); SPList.add(F ) ;

While (C 6= ∅) do

k++ ; C ← generate(F ,k) ;
For each candidate sequence s ∈ C do

For each object o ∈ O do

[Search for s within So: in the crisp case computeFreq(s) is run as SpoID, in
the fuzzy case computeFreq(s) is run as F-SpoID]

frequency(s)+= computeFreq(s,o) ;
End For
Freq(s)← frequency(s)/(|O| − |Dis(s)|); Rep(s)← |O| − |Dis(s)|/|O| ;
If ((Freq(s) < minFreq)||(Rep(s) < minRep)) Then prune(s) ; End If

End For
SPList.add(C) ;

End While
return SPList ;

Algorithm 1 – Main algorithm.

Once the whole dataset scanned, the absolute value of the frequency is divided
by the substraction of the number of disabled objects to the number of objects in
the database. The representativity is also computed. Then the pruning step is run
to delete candidate sequences that are neither frequent nor representative.

SPoID - Input: So, a data sequence,
s a candidate sequence

Ouput: f , frequency of sequence
and updated Dis(S)

If (s ∈ So) Then

f=1 ; Dis(s)← Dis(s)\o ;
Else

If (s̃ ∈ So/s̃ may be s) Then

Dis(s)← Dis(s) ∪ o ;
End If

End If
return f ;

Algorithm 2 – SPoID.

F-SPoID - Input: So, a data sequence,
s a candidate sequence

Ouput: f , frequency of sequence
and updated Dis(S)

If (s ∈ So) Then

f = ⊥ς⊆ζo|s=ς=<s1···sk>⊤si
(⊤j∈si

µr(j));

Dis(s)← Dis(s)\o ;
Else

If (s̃ ∈ So/s̃ may be s) Then

Dis(s)← Dis(s) ∪ o ;
End If

End If
return f ;

Algorithm 3 – F-SPoID.
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The temporal complexity of this algorithm is, in the worse case, the same as the
one of the algorithm TotallyFuzzy presented by [7] for mining fuzzy sequential
patterns.

When considering classical sequential patterns an object supports a sequence or
not. So the scan can stop as soon as the sequence is found within the record set of
an object. On the contrary, (F-)SPoID searches for the best complete occurrence of
a sequence for each object and each sequence. This leads to an exhaustive scanning
of the record set, as performed for association rule mining.

A naive approach could be that for each candidate k-sequence (likely frequent
sequence) all the database is scan to find its frequency, which would involve nk

scans of the database at most if n is the number frequent items. The only struc-
ture kept in memory would thus be the list of candidate sequences. However, this
would be very inefficient, as the computational time would explode.

Therefore we use the same data structure as the one described by [7] enabling
us to find all representations of all k-sequences in only k scans of the database. The
computational time is also lower but the used memory space is increased. However,
some optimizations have been implemented to bound this spatial complexity. We
also added some property-based optimisation to avoid unnecessary scans to improve
the efficiency of our approach.

4.2 Minimal Representativity and Margin of Error

In order to determine the representativity threshold one may consider statistical
results. Statistics indeed use sampling techniques that allow to only consider a
subpopulation subset to assess a proportion, satisfying an error interval with a
sufficient confidence. These tools help to determine the optimal sampling size de-
pending on the data distribution. Thus considering a random data distribution,
[22] uses the Chernoff bound to set the minimal size of a random sample for asso-
ciation rule mining. This result was also proved theoretically and experimentally
by [24].

We thus propose to use two kinds of representativity depending on the user
needs: the minimum representativity threshold can be defined either by the user as
a percentage of the dataset size, or it can be an absolute number of data sequences
computed from statistics formula related to the data distribution and user-defined
parameters for error and confidence level. However our experiments show that the
optimal representativity threshold is not an absolute value but rather depends on
the missing value rate of datasets.

5 Experiments

These experiments were carried out on a PC - Linux 2.6.7 OS, CPU 2.8 GHz with
512 MB of memory. The algorithm was implemented in Java on the PSP principle;
PSP is a generate-and-prune algorithm developed for sequential pattern mining. In
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particular, we used the Prefix-Tree structure to store the candidate and frequent
sequences.
Synthetic datasets were randomly generated. Then some items were randomly
replaced by missing values. Sequential patterns were extracted from the complete
database and from the preprocessed incomplete ones (i.e. incomplete databases in
which incomplete records have been deleted). Then those patterns are compared
to the one discovered by our algorithms (F-)SPoID.

Results here detailed were obtained from several synthetic datasets containing
around 2000 sequences of 20 transactions in average, all with the same kind of item
and missing value distributions. Each transaction contains around 10 items chosen
among 100 for the binary data and 20 fuzzy items chosen among 300.

5.1 Result presentation

Our analysis is based on the several counting:

• the total number of sequential patterns discovered by (F-)SPoID,

• the number of sequential patterns discovered by (F-)SPoID, that are discov-
ered in the complete database (true positive patterns),

• the number of wrong sequential patterns discovered by (F-)SPoID (that
groups together the patterns that are not discovered in the complete database
(false positive patterns) and the one not found by (F-)SPoID but should be
(false negative patterns)).

Table 4 sums up these notations.

β # sequential patterns discovered by (F-)SPoID, also contained in the
complete dataset (true positive patterns)

δ # different sequential patterns (false negative + false positive patterns)
θ # sequential patterns discovered by (F-)SPoID in the incomplete

database (true positive + false positive patterns)
τ # sequential patterns discovered in the complete dataset

Table 4: Notations for the different kinds of patterns.

5.2 SPoID Experiments

First, Figure 2(a) shows the evolution of the ratio β/θ, with respect to the mini-
mum representativity threshold. It can be noted that this rate increases according
to minRep. It means that among sequential patterns discovered by SPoID, the
proportion of sequential patterns obtained on the complete dataset increases with
the minRep threshold.

This observation can be completed by analysing Figure 2(b), which represents
evolution of the ratio β/τ (number of discovered sequential patterns with respect
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Figure 2: (a): β/θ rate (accuracy) according to minRep; (b): β/τ (rate accord-
ing to minRep.

to sequential patterns that should be discovered) according to the minimum rep-
resentativity threshold. This ratio decreases while minRep increases. It means
that the minimum representativity threshold should be low enough to allow the
discovery of all the sequential patterns obtained in the complete database.

Then we show that there exists an optimal value of the representativity thresh-
old for which the ratio β/θ and β/τ are the closest to 1. This value is the threshold
at which the right patterns discovered in the incomplete database are the most
numerous compared to the number of wrong patterns. Figure 3(a) focuses on this
optimal value minRep. This graph describes the evolution of the ratio β/δ accord-
ing to the minimum representativity. It can be noted that there is not an absolute
value for the minimum representativity, that would be common to every database
independently from the incompleteness rate and only depending on an error mar-
gin. From these results, the minimum representativity threshold only depends on
the incompleteness rate of the database.

Whatever the proportion of missing values in the incomplete database, the
overall behavior of the ratio β/δ is quite the same: it increases until it reaches a
maximum before decreasing. This maximal point corresponds to the average opti-
mal representativity, for which the number of right patterns discoverd by SPoID is
the highest and the number of wrong patterns is the lowest.
All these observations can be synthetized and confirmed by the analysis of figure
3(b), giving accuracy of SPoID according to recall for several incompleteness rate.
Table 5 gives the value of optimal representativity empirically found, for each in-
completeness rate in datasets.

We ran several experiments on different datasets with different size and item
distributions. However, the empirical optimal representativity values do not cor-
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Figure 3: (a): β/δ rate according to minRep; (b): accuracy according to recall.

respond to the ones obtained by computing the statistical size of representative
samples (see Section 4.2). This may come from the temporal aspect of the data.
Therefore we currently work on using other statistical sampling methods, more
adapted to time-related data.

% of missing values 10% 20% 30% 40% 50% 60% 70%

optimal minRep 0.97 0.9 0.81 0.74 0.6 0.48 0.39

Table 5: Average optimal representativity according to the missing value propor-
tion in the database.

Figure 3(a) also shows the SPoID algorithm performances depending on the
missing value proportion in the database. A difference can be noted between the
overall evolution of the ratio β/δ for databases containing less than 40% of missing
values and the one containing 50% of incomplete records or more.
Thus Figure 4(a) gives the comparison of SPoID success rate with results obtained
on a preprocessed incomplete database. This figure shows that some right patterns,
discovered by SPoID are not found using a deletion preprocessing step. This is also
shown by computing accuracy and recall for each method. On Figure 4(b) we can
thus note that each pattern discovered by the after-deletion method is a pattern
found in the complete database (accuracy equals to 1). However the recall is very
low, which means that only a small number of patterns that should be found
are actually discovered. On the contrary, using the SpoID approach, even if the
accuracy is not equal to 1, there exist a value of minRep that optimizes both recall
and accuracy.

Figure 4(a) also shows that the ratio of right patterns strongly decreases be-
tween 40 and 50% of missing values: the number of wrong patterns becomes pro-
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Figure 4: (a): β/δ rate according to the missing value proportion; (b): accuracy
according to recall (mv rate=40%).

portionnaly slightly higher compared to the number of right patterns. This ratio
even becomes less than 1 when the missing value percentage exceeds 50%. SPoID
can then discover sequential patterns within incomplete database if at least half
of the records in the dataset are complete, while the former methods requiring a
preprocessing step do not find all the frequent patterns since 10% of missing values.

Last, the analysis of runtime performances shows that at constant incomplete-
ness rate, runtime of SPoID is slightly constant while the minRep threshold de-
creases.The qualitative analysis of corresponding candidate and frequent sequences
has shown that the number of candidate sequences increases but, as the minimum
representativity is lower, the time spent for scanning the database decreases. We
also noted that runtime increases with the incompleteness rate.

5.3 F-SPoID Experiments

The same kind of observations were done on fuzzy databases, using F-SPoID. We
ran experiments on several datasets, varying the parameters minFreq, minRep
and the incompleteness rate of the databases.

Figure 5(a) shows the evolution of the ratio β/δ according to minRep, depend-
ing on the rate of incompleteness. There exists a value of minRep for which the
number of true positive sequential patterns is the highest compared to the number
of different patterns (false positive and false negative) . This value of minRep
is the optimal value for which the accuracy and recall of F-SPoID are maximal.
Table 6 gives the average optimal values for our synthetic datasets depending on
the incompleteness rate.

The existence of this optimal value is confirmed by the analysis of the parametric
curve of accuracy according to recall considering the parameter minRep, depending



16 C. Fiot et al.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

de
lta

beta

#right/#wrong according to minRep

mv rate = 10%
mv rate = 30%
mv rate = 20%

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ac
cu

ra
cy

recall

Accuracy according to recall

mv rate = 10%
mv rate = 30%
mv rate = 20%

(b)

Figure 5: (a): β/δ rate according to minRep; (b): accuracy according to recall.

on the proportion of missing values within the data. On figure 5(b) it can be noted
that for all datasets the evolution of accuracy with respect to recall is similar. It
is also close to the one observed on crisp data, even if the results on fuzzy data are
overall not as good as on the crisp datasets.
We also observed this kind of behaviors on quantitative datasets generated with
different quantity or item distributions and also modifying the way quantity fuzzy
sets are computed.

% of missing values 10% 20% 30% 40% 50%

optimal minRep 0.81 0.76 0.7 0.64 0.44

Table 6: Average optimal representativity according to the missing value propor-
tion in the fuzzy database.

5.4 Complementary Work

From these experiments on synthetic datasets one can note that quality of results
is highly linked to the different parameters: data distribution, dataset size, missing
value distribution and minimum representativity threshold. With these experi-
ments we found out that the empirical optimal representativity value is not the
same as the one computed from statistical formulae. This observation can be done
on both binary or quantitative datasets. So our hypothesis is that the sampling
methods used for mining association rules on database samples [24] are not the
most adapted to time-related datasets.

Therefore these works and experiments should be extended to determine the
most adapted sampling method for mining sequential data.
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Another additional work is currently in progress on applying the techniques
SPoID and F-SPoID on real-world data. This validation does not necessarily require
an expert knowledge as it is done using a complete database in which missing
values are randomly spread by deleting some information. Then the comparison
between approaches is done on the same principle as the one used on synthetic
data. However experts could help in subjective analysis of the true negative and
false positive patterns.

6 Conclusion

Temporal databases available from application areas such as biological data or in-
dustrial process data most of the time contain numerical attributes and a lot of
incomplete data. The most adapted data mining technique to analyze such time-
stamped datasets are sequential pattern discovery algorithms. However, although
some works were done to handle these numerical features by specifying fuzzy se-
quential pattern algorithms, only few proposals focus on extracting frequent se-
quences – either crisp or fuzzy – from incomplete data.

Therefore, in this paper, we first described the definitions for sequential pattern
mining in order to handle random incompleteness in data sequences, we detailed
in [8]. Then, we extended these principles to fuzzy sequential patterns for mining
incomplete quantitative sequence databases. These new definitions enable the user
to manage missing values directly during the mining task, then avoiding a heavy
preprocessing step. Our methods and algorithms SPoID and F-SPoID have been
implemented and tested on synthetic datasets. We have thus shown the robustness
of our approaches until an incompleteness rate around 40%, while the existing
approaches give erroneous results since 10% of missing values.

After having proposed two methods for handling random missing values, one
for binary databases, the second for quantitative databases, we now work on ex-
tending these approaches to handle other types of missing values such as related
to one specific attribute, for instance. Next step will then consist in detecting the
different kinds of incomplete information including the attributes that should not
be considered as incomplete even if unfilled. Last, to help the use of our methods
on real-life databases, we work on the specification of analysis tools to express the
interest and quality of discovered sequences with respect to incompleteness of the
data sequences that include these patterns.
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