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Abstract. In this paper, we describe a formal logical framework which
we claim as essential to prove and to revise a model produced by com-
bined ILP techniques. The dynamic process of proof embrace the super-
vision of the learning machine by a human, and this framework places
the interpretation of contradictions in the heart of the interactive pro-
cess which leads to a model which can be discussed, justified, and proven.
We illustrate and validate this framework on an industrial application
in the field of Drug Discovery, combining different learning processes to
predict pharmaco-kinetic properties (ADME-T) and adverse side effects
of therapeutic drug molecules.

1 Introduction

The pharmaceutical industry is confronted to a pressing need to analyse ever
growing quantities of collected data and convert them into relevant decsions,
using cheminformatics methods. Most often, reliable predictions are only pos-
sible on molecules very similar to the learning set, and these predictions use
descriptions which are not easy to be translated in better molecular structures.

This domain concentrates many challenges for inductive learning : the bias
problem,the underfitting/overfitting problem, the constraint satisfaction prob-
lem, the multiparametric decision problem, the empirical testing and the inter-
active problem solving by scientists assisted by machine learning.

As there are hundreds of descriptors used to describe the surface of the
molecules and thousands related to the computation of properties for a single
molecule, the risk of overfitting is permanent. When we try to limitate the num-
ber of descriptors to reduce this overfitting, we create a risk of falling in the



adverse case of underfitting. So the balance between completeness and consis-
tency corresponds to the balance between underfitting and overfitting. As learned
rules in drug design conjugates more that three terms, the constraint satisfac-
tion problem presents a transition phasis between the domain where deciding
with learned rules is easy but produce errors, and the domain where finding
rules to decide is so difficult that the system learns by heart and can only de-
cide for molecules which are very similar to the examples used during learning.
Finally the multiparametric decision required to deal with a distributed set of
constraints that is not convex leads very often to an antagonism between opti-
mised decisions. Furthermore the regularities learned from examples which use
descriptors coming from different domains do not have a unified theoretical basis
to justify them by causal arguments.

Our objective is to propose a logical framework to assist researchers in su-
pervising the proof process of inductive theories produced by learning machines.
This framework enables to describe with annotations all the actions occuring
during an inductive process combining different machine learning approaches.
Common sense actions such as proof, refutation, conjecture, experimentation,
. . . , are logically defined by their interrelation as it has been done in the logical
tradition for classical reasoning Cite. The main difference is that we reason
on actions producing knowledge. This logical framework then has to qualify the
proof of a learned model from an empirical point of view as well as from a formal
and subjective one; indeed, to be trust by scientists, a model has to be empiri-
cally proven. It is formally proven when it is not producing any contradictions,
and it is finally subjectively proven after the scientists eliminated properly some
conjectures and postulates formulated during the learning process.

Aristotle’s square (see section ??) is a very old formal model which puts
a negation relation between modalities in the heart of a reasoning process. This
square describes a syllogistic inference which occurs in classical logical reasoning.
However, the square of Aristotle is not compliant with an inductive practise in
which postulates are added by the user to supervise and influence the learning
process, i.e. statements which are neither proven, nor observed or refuted.
This square can’t be used neither to define or take into account the fact that
learned rules are conjectures, i.e. statements which are observed but not
proven.

We discuss more precisely the problems posed by Drug discovery to inductive
learning in section ??, and we propose in section ?? a cubic structure combining
three Aristotle’s squares defining the modalities of proof, conjectures and postu-
lates, which are essential to obtain a framework enabling reasoning in presence
of incomplete and inconsistent knowledge. However, this model doesn’t take into
account the confrontation between theoretical results and experimental results.
So we propose in section ?? an hypercubic structure combining five Aristotle’s
squares designed to reason on the empirical proof of a simulation using the model
resulting from the learning process. This structure merges formal, empirical and
subjective reasoning. Finally, we illustrate in section ?? how this framework is



applied to the supervision of a learning process combining different ILP methods
to predict ADME-T properties.

2 The problem of Drug discovery, ADME-T

Schematically, the pharmaceutical activity can be divided into three sectors:
drug discovery (ie going from a target to a molecule that is ready to be tested in
man), drug development (ie. the proof of concept in man and the clinical trials)
and finally the marketing and monitoring of the product.

It is widely accepted that out of a hundread of drug discovery projects that
are started within the industry, less than one would eventually reach the market
ten to fifteen years later.

Despite over a decade of massive investment by the pharmaceutical indus-
try into high throughput methods (Genomics, High Throughput Screening and
combinatorial chemistry), efficient identification and optimization of potent and
quality lead molecules is still the highest and riskiest hurdle in current drug dis-
covery and development. The only clear outcome of high throughput methods
has been an unparalleled production of large quantities of data that need to be
analyzed.

In order to reduce risks in the clinical stages of development, in a typical lead
optimization process, 40 to 60 assays are run in parallel or in a cascade to evalu-
ate the potential of each candidate molecule, its specificity, its good Absorption
and Distribution, good Metabolism and Excretion profiles and limited Toxic-
ity (ADME-T). In this multi-parametric space, identifying “quality” molecules
which display desirable properties is a true challenge.

The use of computational tools (data mining, predictive modeling etc) has
been seen as the potential solution to this dramatic inefficiency.

QSAR (quantitative structure activity relation) equations are standard ex-
amples in predictive modelling for drug discovery where an overall fitness score
is developed as a weighted sum of numerous descriptors. In Docking, the score
includes ligand internal energy, interaction energy and entropic considerations in
the form of a weighted sum of terms [?]. Typically the score is developed empir-
ically by analysing a set of examples and deriving a weighted sum. The weights
are fitted to the learning set and may not necessarily be relevant or precise for
other complexes.

QSAR attempts to relate a numerical description of a molecular structure
to a known biological activity. Large numbers of readily computable descriptors
are available, in combination to sophisticated techniques that improve the initial
linear regression analysis methods used in deriving QSAR equations (PCA, PLS,
NN, GA, SVM etc). In general, QSAR equations relate one objective (such as
activity for example) with a number of descriptors. QSAR equations are con-
structed by the combination of a number of weighted terms (descriptors).

These methods rely on the choices of (1) the descriptors for generalisation
and (2)the examples in the learning set to avoid overfitting.



An inadequate choice of either parameters will generally lead to useless mod-
els that do not generalise or are not interpretable. In addition, search strategies
can be compromised when confronted to non-convex solution fronts, i.e.
when a solution “between” two valid solutions might be invalid. Fur-
thermore scale invariance is not always true, i.e. even for a continuous property
such as molecular weight, its use and therefore significance is distinct for different
ranges (for example 200-600 range correspond to small molecules, a molecular
weight greater than 2000 does not). This is to say that some relations are sensi-
tive to scale. More generally, qualities can be converted into quantities (binning)
but the reverse is not always true. This leads us to the necessity of defining do-
mains of validity for all parameters, in both the search and the objective spaces.
In turn the notion of domain is linked to boundaries and hence allows character-
isation of paradoxical combinations or conflicts. Here, conflicts are real mutual
exclusions rather than a competition between several continuous parameters.

All in all, it is fair to say that the current state of the art in cheminformatics
is insufficient: “In general, reliable predictions are only possible for molecules
similar to those in the training set” [?] hence undermining their predictive use
and “most models [. . . ] use descriptors that are not easily understood by the
chemist and not easy to translate into better molecular structures”, and hence
have little impact in drug discovery.

In next section, we present the logical framework used in such a context to
control the proof process of conjectures generated by learning from examples.

3 The cube of oppositions

In the two following sections we present a logical framework which defines with
modalities the different actions occuring during the dynamic process of proof.
First of all, we shall provide some intuitive interpretations of these
modalities:

– α: the formula is observed / ¬α: the formula is not observed;
– �α: the formula is proven. A proof is a process which enables the

verification of a computation’s exactitude, or of the pertinence of
problem’s solution. To prove α is to establish with reasonings the
truth of α / ¬�α: the formula is not proven;

– ¬�¬α ∧ ¬α: the formula is a postulate. A postulate is a primary
principle, undemonstrable or undemonstrated / α ∨ �¬α: the for-
mula is not a postulate;

– �¬α: the formula is rejected, refuted. A refutation is a process
which enables to demonstrate the falsity of an affirmation by con-
trary proofs / ¬�¬α: the formula is not rejected;

– α∧¬�α: the formula is a conjecture. A conjecture is a simple suppo-
sition founded on appearence or probabilities, a hypothesis which
has not received any confirmation / �α ∨ ¬α: the formula is not a
conjecture.



– ∼ A simulation is a method of study and measurement consisting
in replacing a studied system by a simpler model which has an
analogous behaviour. Here, this model is the result of the learning
process.

– ¬∼ is the contrary of a simulation and can be interpreted as an
experimentation. An experimentation is an effective test realised
to study a phenomenon.

– ¬�∧¬∼ ∧¬�¬ can be interpreted as an experimental result, result-
ing from an action, a fact.

– � ∨ ∼ ∨ �¬, can be interpreted as a theoretical result, resulting
from a computation, or a principle.

Je pense qu’on devrait dcorer le carr avec preuve et rfutation pour
donner des repaires. De plus, la partie sur les 3 hexagones arrive un
peu brusquement. Moins maintenant que les dfinitions sont places en
dbut de section, mais tout de mme, il faudrait montrer les modalits
sur le carr avant de les voir apparaitre sur les hexagones.

So a proof is the result of a dynamic process of constant revision: a new
proof is interesting when it proves some conjectures or eliminate surnumerous
postulates, and is reciprocally suspected when it proves some conjecture that
are reputed unsolvable or false. Logicians appreciate that solvers reason with
consistent and complete theories, this is why theories which take inconsistency
and incompleteness model them by believes, intentions, and defaults. However,
during the interactive phases of learning, it is illusory to try being consistent and
complete by considering that errors are the defaults of some known consistant
and complete theories, which would lead to making a theory of the whole. As we
already pointed out in the title, a discovery is triggered by the resolution of a
contradiction, which is a statement at the same time true and false (Ref para-
consistent logic?). In our formalism, it is contradictory to prove a postulate
so when a postulate is proven then either it has to be removed, either the proof
is false.

To express this formalism, we need to define a closed set of modal-
ities that can be used to define a problem solving with possibly incom-
plete knowledge. We justify the use of a paraconsistent logic by the
necessity to put into question conjectures, postulates, and even proofs,
by confronting them to experimental results. A proof is then the re-
sult of a dynamic paraconsistent process of generating and putting
into question new conjectures and postulates to explain new experi-
mental results which are contradictory whith the proof in its current
state.

Je pense que l’on devrait prsenter expliquer les formes de raison-
nement qui interviennent durant la construction des preuves, modal-
its, etc... cad l’abduction, d’infrence, et la dduction. Ces formes de
raisonnements ne sont elles pas les actions (non dfinies) dont on parle
au dbut de ce chapitre?



3.1 Aristotle’s square

The doctrine of the square of opposition originated with Aristotle in the fourth
century B.C. and has occurred in logic texts ever since. It relates various quan-
tified propositions and their negations by introducing various notions of opposi-
tions: contradiction, contrariety and sub-contrariety. Contradiction for two terms
is defined as the impossibility for them to be both true or both false at the same
time. Contrariety for two terms is the impossibility for them to be both true,
but the possibility to be both false. Sub-contrariety is the impossibility to be
both false, but the possibility to be both true. According to these definitions,
opposition is based on various degrees of truth difference. A last useful notion
is sub-alternation between two terms, also better known as implication, defined
as the impossibility of having the first term true without having also the sec-
ond true. The square of oppositions is represented by the following geometrical
relations (figure ??).

A .................................................................
contrariety

E

I

sub-alternation

?
..................................................................

sub-contrariety
O

sub-alternation

?

contradiction

Fig. 1. Aristotle’s square of oppositions

The column with A and I corresponds to affirmative propositions, while the
column with E and O corresponds to negative propositions. The line with A and
E corresponds to universal propositions, while the lign with I and O corresponds
to existential (also called particular) propositions. Several extensions have been
proposed in order to palliate the logical drawbacks and develop the inference
capabilities of the traditional Aristotelician square. Various modal decorations
on the vertices can be found in [?]. The process which supplies evidence for the
validity, or for the invalidity, of certain inferences and conversions (of a proposi-
tion into its negative) is based on this simple diagram (figure ??). Therefore the
square of opposition appears as a geometrization of the inference process.

Now we introduce new modalities in order to reason in a paraconsistent and
paracomplete way on the actions that occur during the dynamic construction of
a proof. (i.e. abduction, inference and deduction)?

3.2 The cube of oppositions

In this section we define the modalities of proof, postulate and conjecture in
order to reason on the pertinence of a model and on the completeness of its proof.



Working on the geometrical aspects of the so formed hexagon and its various
modal decorations, [?] introduces these new modalities inside other hexagons:
a paraconsistent one (in a paraconsistent logic there can exist a proposition
which is true and the negation of which is true, without implying the triviality
of the theory, i.e. the truth of any proposition) , and a paracomplete one (in a
paracomplete logic there can exist a proposition which is false and the negation
of which is false, without implying triviality of the theory, i.e. the truth of any
proposition).

�α ∨�¬α �α ∨ ¬α α ∨�¬α

�α

-

�¬α

�

�α
-

¬α

�

α

-
�¬α

�

¬�¬α
?

¬�α
?

α
?

¬�α
?

¬�¬α
?

¬α
?

¬�¬α ∧ ¬�α

-�

α ∧ ¬�α
-

�

¬�¬α ∧ ¬α

-
�

Fig. 2. The three hexagons from left to right: “classical”, “paraconsistent”, “paracom-
plete”.

Looking at the three hexagons [?], we have thus the most general sub-
alternation relation between these various negative terms: �¬α −→ ¬α −→
¬�α. This is no surprise, since these terms are known as expressing various
kinds of negation in classical and modal proposition logics with the correspond-
ing weakening relations: [?,?] show that �¬ is an intuitionistic paracomplete
negation, and [?] shows that ¬� is a paraconsistent negation.

To define the modalities of conjecture and postulate, we need a richer oppo-
sition theory as the one provided by [?] and [?]. The geometrical constructions
built upon this theory are various squares and hexagons among which are of
course all previously discussed figures, and one logical cube, which we now focus
on.

The logical cube (figure ??) is built from two distinct tetrahedra. The one of
contrariety, which vertices are those from which the sub-alternation arrows start,
opposes the proof � to the modalities that can be derived from its contrary
�¬, and the one of sub-contrariety which vertices are those to which the sub-
alternation arrows lead, oppose the contradiction of a proof ¬� to the modalities
that can be derived from a proof. Any vertex of the cube is then contradictory
to the furthest lying opposite vertex (easily obtained by central symetry).

This logical cube is a three-dimensional generalization of the square of op-
positions, and due to its construction, it contains three squares of oppositions,
visible on figure ??, constituted by the necessity �α, the impossibility �¬α
and two other cases of contingency, α ∧ ¬�α and ¬�¬α ∧ ¬α, which refine the
case of pure contingency ¬�α∧¬�¬α of Aristotle’s modal square, as introduced
by [?].
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Fig. 3. The cube of oppositions

�α ......... �¬α �α ............ ¬�α ∧ α �α ............ ¬α ∧ ¬�¬α

¬�¬α
?

...... ¬�α
?

�α ∨ ¬α
?

.......... ¬�α
?

α ∨�¬α
?

.............. ¬�α
?

Fig. 4. from left to right: classical definition of proof towards refutation, paraconsistent
definition of proof towards postulate, and paracomplete definition of proof towards
conjecture

In this section, we formulated in an algebraic way a closed set of modalities
to express the state of the proof of a model, using knowledge based on
observed facts and completed by conjectures and postulates. In the
following, we are concerned by the proof and refutation of a learned model, and
therefore the confrontation between a simulation using this model built upon
incomplete knowledge, and new knowledge coming from experimentations.

4 The Hypercube of oppositions

First of all, we identify such an approach in science philosophy. The role of con-
tradictions in a dialectic process of discovery is well known in science philosophy.
For Lakatos [?], there is always a detail level at which a statement as simple as
1+1=2 can become arguable from a formal point of view. We introduce the use
of postulates to fix some limits to what is arguable or not, and conjectures to re-
strain the objectives, to fix some limits to what is provable or not (for example,
one could state that the conjecture P = NP is not to be proved). As Pop-
per[?], we believe that every formal element has to be experimentally
refutable by a scientific society, and that proof and refutation form
the social acreditation process of a formalism. Finally, if as Bachelard,
we look at truth as a corrected error, we consider an inductive pro-



cess as resulting from the interpretation of contradictions between
experimentations and theoretical results.

To take these considerations into account, we now introduce the
modalities of experimental result, experimentation, simulation, and
theoretical result by defining two opposition squares (only modalities
are shown to simplify the diagrams), and we link them to the previous cube to
build a hypercubic construction of higher-order geometrical figures of oppositions
as suggested by [?] (figure ?? shows only a part of this hypercube for clarity
reasons).

� ........... ∼ ∼ .......... �¬

¬∼
?

........ ¬�
?

¬�¬
?

....... ¬∼
?

Fig. 5. the squares defining simulation and experimention towards proof and refutation
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�
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-

�

¬�
?

-

Fig. 6. One facet of the hypercube of oppositions

Both experimentation and simulation produce results, and it is the confronta-
tion between them that puts forward an eventual contradiction between a phe-
nomenon and the model used to simulate it, which leads to put into question
proofs, conjectures, and postulates to localise the theoretical error. A first result
of this methodology is to reveal the facets of the different learning techniques. On
the front face, the adequacy of “experimental result” and “simulation” is related
to the production of possible and contingent statements that are related with a
subcontrariety relation. The corresponding learning method are version space or
galois lattice techniques. The left face as the bottom face links respectivly the
“experimental results” to the “proof” or to the “refutation” of the model. The



three other faces are related to the analysis of the prediction. The back face is
used to compare a prediction, i.e. a “theoretical result” given by a “simulation”,
to an “experimentation” which concretise some “experimental results” (the fact
that an object falls when it is released on earth is observable by experimenting
it on a particular object in particular conditions).

In the following section we illustrate the different facetes of this supervision
strategy of a learning process on an industrial application in Drug Discovery.

5 Application to the prediction of Absorption

A real application of learning in scientific discovery is from collaboration with Ar-
iana Pharmaceuticals in Drug design [?]. KEMTM can suggest specific molecular
modifications to achieve multiple objectives, after analysing a multi-parametric
database.

In this example we focus on the prediction of absorption, a key issue in drug
design since this is one of the important and early causes of failure in the drug
discovery process. Indeed molecules need to be absorbed before they can per-
form any desired activity. Absorption is a complex process involving both passive
(diffusion) and active (through transporter proteins) accross cellular membranes.
For passive transport, molecules need to be soluble (hydrophilic) in water and at
the same time they need to be greacy (hydrophobic) to penetrate cellular mem-
branes that are formed of lipids. This contradicting requirement is modulated
by active transport, where molecules need to be recognized (i.e. complementar-
ity of shape and charge) by a another molecule (transporter) that helps them
through membranes. Although no one can for sure predict the absorption of a
new molecule, a number of empirical rules are known. This is an interesting con-
text for applying our IA since our key requirement is to capture knowledge from
the experimental data and then evolve and improve this model in a consistent
manner.

To illustrate our approach we focus on a set of 169 molecules for which the
absorption in man has been experimentally evaluated (4 classes. 0 not absorbed,
3 highly absorbed) [?]. These molecules are described using a set of physico
chemical properties such as molecular radius, different calculated measures of
their total polar surface accessible to water (TPSA and VSA POL), their hy-
drophobicity (SLOGP), presence of halogens etc.

To learn, KEM acts according the facet of the hypercube of oppositions visi-
ble on figure ??: 1)(left face)A decision tree is used to find a good segmentation
of the numerical descriptors. 2)(front face) A Galois lattice method works on
these binary descriptors in order to construct a lattice of regularities. 3)(upper-
face) sup-irreductibles nodes are translated into logical constraints for prediction.
4)(backface) the prediction is confronted to the experimentation. 5)(right face)
the study of the experimental error is done by a refutation of the simulation.

Initially, the system learns from the dataset a set of rules linking the structure
of the molecule to the absorption. The quality of the prediction is tested in a
subsequent stage on a novel set of molecules. The results are shown on prediction



Fig. 7. Predictions A and B

A in figure ??. Ideally the predictions should be on the diagonal. An error of one
class is tolerated. However, it is clear that for one molecule, the error is larger
(ie experimental : class 1 vs predicted: class 3). This confrontation between a
theoretical result and an experimental result puts forward a contradiction in the
model.

Fig. 8. KEMTM



Figure ?? shows this contradiction: the molecule (Ranitidine) has been pre-
dicted with fraction absorbed in man 3 i.e. highly absorbed. However, if the user
makes a postulate and forces fraction absorbed in man 3 to be false, the system
localise the error that induced the contradiction by showing that the postulate
contradicts the conjectural learned rule VSA pol 2 → fraction absorbed in man
3. At this stage the user realises that indeed this conjecture was true for the
learning set, however this is not generally true and it can be eliminated. The
user then goes back to simulating once more the test and results are shown in
Figure ??, prediction B. As expected, the results have been improved. The im-
portant point is that the improvement has been done in a controlled way under
the user’s supervision, and this was only possible because the user and KEMTM

shared a common vocabulary to type statements.
In scientific discovery, there are in general no Oracles who can say a priori

whether a prediction is correct or not. Experimentalists formulate a conjecture
that is consistent with existing empirical data and then set about to test it.
We beleive that the key for a computational system is to adhere to the same
process i.e. build up an explanation / reasons for predicting an outcome. If the
system is able to provide enough arguments, the user will ”trust” it and try
the experience. This implies that the arguments are annotated with modalities
which are meaningful both for the user and the machine.

6 Conclusion

We emphasised the fact that annotations are very often used by scientists to ex-
change points of view and communicate. We believe these annotations represent
the key to a usefull interaction between a learning machine and a user super-
vising it. We identified a closed set of modalities to represent these annotations
for which we provided a logical definition. We illustrated on an example coming
from Drug Discovery how these annotations of common sense, which are now
logically defined, are used by a learning machine and a scientist to interactively
build a model that is coherent and complete with observations and experimental
results. We prone that this hypercube describes in a universal way a rational
agent and enables the supervision of its computing process.
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Mathématique, 35(49):3–14, 1984.

7. B. Faller and F. Wohnsland. Physicochemical parameters as tools in drug discovery
and lead optimisation. In Pharmacokinetic optimization in drug research, pages
189–208. Testa, Waterbeemd, Folkers and Guy editors, Wiley-VCH, Zurich, 2004.

8. Imre Lakatos. Proofs and Refutations. Cambridge University Press, 1976.
9. A. Moretti. Geometry for modalities? Yes: through n-opposition theory. In J.-Y.
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