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Éric Martin
emartin@cse.unsw.edu.au

School of Computer Science and Eng., UNSW Sydney
NSW 2052, Australia

Hélène Hagège
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This paper studies machine learning paradigms from the point of view of human cognition.
Indeed, conceptions in both mahine learning and human learning evolved from a passive to
an active conception of learning. Our objective is to provide an interaction protocol suited to
both humans and machines, to enable assisting human discoveries by learning machines. We
identify the limitations of common machine learning paradigms in the context of scientific
discovery, and we propose an extension inspired by game theory and multi-agent systems. We
present individual cognitive aspects of this protocol as well as social considerations, and we
relate encouraging results concerning a game implementing it.

Introduction

The processes involved in scientific discovery such as ac-
quiring knowledge and organizing it within general represen-
tations, the discovery of new facts and theories through ob-
servation and experimentation, can be seen as those of pro-
blem solving (P. Langley & Zytkow, 1987). Since the incep-
tion of artificial intelligence, researchers have aimed at endo-
wing machines with such abilities. Computational scientific
discovery became an active field of research when machine
learning techniques started showing conclusive results in the
late 70s. These results motivated the simulation of histori-
cal discoveries (Lenat, 1983), (Langley, Bradshaw, & Simon,
1981), (P. Langley & Zytkow, 1987), and since the beginning
of the 21st century, research in this domain has been orien-
ted toward the discovery of unknown rules (Simon, Valdés-
Pérez, & Sleeman, 1997). (Langley, 1998) or (Langley, 2000)
provide examples of such discoveries assisted by machines.
Our work follows this line of research, but we place the user
at the heart of the system, to build interactively with an adap-
tive problem solver an adequate description model of the stu-
died phenomena : the machine learns at the same time as the
user, and this co-learning leads to a pertinent understanding
of the problem and a pertinent modeling for simulation and
prediction. During this interaction, the user acts in turn as a
learner or as a teacher. However, instead of focusing on iso-
lated problem solvers and their capabilities, our contribution
lies in the definition of an interaction protocol encompassing
both human and machine learning, resulting in a formal foun-
dation for discovery platforms. We emphasize the fact that in

machine learning as well as human learning, the role of the
learner have evolved from a passive role to an active one.

In common machine learning formalizations, a learner can
query an oracle to gather data concerning the target function
to be learned. This is often unrealistic as the oracle usually
needs to be endowed with capabilities that go beyond the po-
wer of a universal Turing machine. In the particular context
of scientific discovery, where studied problems are not yet
solved, no model or theory might be available, and a software
assistant has to cope in this context with uncertainty, pattern
discovery, interactive ontology building (Nobrega, Cerri, &
Sallantin, 2003), etc. Moreover, to interact with a researcher,
it is necessary to produce statements comprehensible to a hu-
man and emit scientific judgments about them.

This challenging objective implies a pluri-disciplinary ap-
proach involving logical and epistemic considerations, as
well as machine learning theory and multi-agents systems.
This paper attempts to synthesize our work in these domains.
(Sallantin, Dartnell, & Afshar, 2006) described the minimal
logical prerequisite to endow a problem solver with a prag-
matic logic of scientific discovery in order to interact effi-
ciently with a scientist. We will informally summarize these
requirements in the first section. (Dartnell & Sallantin, 2005)
reflected on machine learning paradigms that we will further
develop to situate our protocol. An experimentation of this
protocol, in collaboration with researchers in epistemology
and didactic, produced results were reported in (Hagège,
Dartnell, & Sallantin, 2007) and will also be synthesized to
validate the relevance of our platform to human learning. We
will finally explore new directions in machine learning, ba-
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sed on cognitive aspects of the learner, to introduce time as
a complexity measure and provide general heuristics to help
eliminate conjectures during experimentation.

Logical Prerequisite for an
Adaptive Problem Solver

Common definitions of a problem solver take into account
the type of solvable problem which characterizes it, as a dif-
ferential equation problem solver, or a nonlinear equation
system solver : common problem solvers are designed to per-
form the computation of a known problem which has already
been solved and modeled. So for any presented instantiation
of a specific problem, the solver is able to tackle it and pro-
duce solutions. An adaptive and autonomous problem solver
should be able to acquire new capabilities by learning how
to solve new problems, and then use this knowledge and ex-
perience to find solutions. To solve a problem, one has to
observe the problematic situation, analyze it,and build a lan-
guage describing the situation and highlighting the dimen-
sions which are pertinent for reasoning. These dimensions
determine the definition domain of the variables characteri-
zing the problem and influencing the computation of a solu-
tion. This language is used to formulate assumptions and hy-
potheses that have to be validated by experiments, and com-
pare their results to theoretical computations. Experiments
can reveal contradictions between theory and reality and the-
refore lead to a revision of the description model and to the
formulation of new hypotheses. By analogy with the process
of scientific discovery, where neither the ontology nor the
theory are known a-priori, we define below the functiona-
lities that an adaptive autonomous problem solver should be
empowered with to define the process of discovery. It should
be able to :

– build and maintain an Ontology of the domain. By On-
tology, we mean a logical language relevant to observa-
tions describing the variables involved in the resolution
of the problem. An Ontology emerges from the learning
process.

– analyze and correlate gathered information and learn
ontological statements to constrain the relations bet-
ween the values of the problem’s dimensions, i.e., infer
logical rules.

– discover, name, and symbolically use regularities of the
analyzed data, and revise the ontology by introducing
new dimensions to the problem’s formulation. This abi-
lity to transform a property observed into a symbolic
object and re-use it is called the Nominalization prin-
ciple.

– formulate and express a theory to explain the problem
and predict further results. By theory, we mean the
computation rules of a problem’s solutions.

– design experiments to test and (in)validate the formula-
ted theories. This ability is called the Reducibility prin-
ciple.

The principles of nominalization and reducibility are key
to a problem solver’s adaptability. Nominalization allows one
to build an abstraction of the studied phenomena (we propose
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F. 2. Complementarity of Nominalization and Reducibility

a logical formalization of the introduction of new concepts
in (Dartnell & Martin, 2008)), and reducibility allows to ins-
tanciate these symbolic concepts in a concrete way, to design
experiments and validate their relevance (Figure 2). There-
fore, interaction between the solver and its environment are
sine qua non conditions of its evolution : by comparing the
results of theoretical computations and the results of its in-
teractions with the environment, the solver is able to detect
contradictions between “reality” and the formulated theories.

The use of contradictions as a dialectic engine implies
three requisites concerning the interactive problem solving
process :

– a Paraconsistence allows one to reason in presence of
contradictions and to maintain obligations.

– a Deontic modalities such as Obligation, Forbiddance
and Permission allow one to organize past knowledge
into norms.

– a Defeasability allows one to revise the model when
new contradictory facts occur.

(Nakamatsu, Kato, & Suzuki, 2003) give an elegant
example of paraconsistency based on a defeasible deontic
logic : Deontic logic is used to localize contradictions and
provoke a revision in the set of defeasible theories. Paracon-
sistency allows the solver to adapt the ontology to new facts
and new observations and therefore to use incremental lear-
ning.

Machine learning with graphs and Galois lattice theory
(Liquière, 1998), (Nobrega et al., 2003), for instance, can
be used to find relevant logical implication and equivalence
rules between the descriptors introduced by the user to des-
cribe the facts being observed (see Figure 1). These rules can
be easily understood by the researcher since they are formu-
lated in his own language.

Moreover, modalities can be used to type the products of
this learning activity. (Sallantin et al., 2006) defines the set
of modalities useful for the researcher and his assistant to
exchange logical judgments all along the discovery process.
This set, which is closed by negation since the negation of
one of those modalities does not involve a new modality, is
visually represented as a geometrical figure based on Aris-
totle’s square of opposition. Moreover, the underlying logic
is shown to be equivalent to the logic S 5.

In the following section, we discuss from the point of view
of machine learning the interaction protocol needed to enable
the dialectical management of contradictions.
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F. 1. Human-Machine interaction cycle

A Social Learning Protocol
The formalization needed to fully present this topic is cur-

rently under publication (Dartnell & Martin, 2008). We sum-
marize it informally in this section. Since the inception of
machine learning almost 50 years ago, several learning para-
digms have been proposed to provide study frameworks and
analysis tools to qualify and quantify this process. Among
those, we can cite identification in the limit (Gold, 1967),
query learning (Angluin, 1988), and PAC-learning (Valiant,
1984) for their impact on the machine learning community.
Each of them proposes a different form of reality, a different
form of interaction between the learner and his environment,
and different criteria of successful learning. One of the main
evolutions concerns the role played by the learner during the
learning process, which has evolved from a passive role to a
more active one. A comparable change of role can be found
in common conceptions of human learning. We first present
identification in the limit, which defines an infinite and pas-
sive process. Then we present how the use of queries trans-
forms a passive learner into an active one. We do not present
PAC-learning here since it deals with finite notions whereas
we are interested in infinite processes and infinite forms of
reality.

Passive Learning
To illustrate the problem of identification in the limit, let

us use a simple card game between two players. One of them,

the game master, chooses an infinite sequence of cards such
that any card can be referred to by its position in the se-
quence. Suppose the second player, the learner, has a vocabu-
lary V allowing him to describe exactly any card at any po-
sition, for example V = {ace, two, . . . , jack, queen, king} ∪
{hearts, diamonds, clubs, spades}, with the usual ordering
on the natural numbers. At each step, the game master re-
veals the next card in the sequence so that the learner dis-
covers them one by one. For instance, “queen(0), hearts(0),
ace(1), spades(1), queen(2), hearts(2), ace(3), spades(3)”.
After discovering each card, the learner expresses a conjec-
ture, under the form of a logical program which exactly des-
cribes a unique infinite sequence of cards. For instance the
following program is a conjecture consistent with the prece-
ding sequence.

queen(0), hearts(0),

∀x, queen(x) ∧ hearts(x)→ ace(x + 1) ∧ spades(x + 1),

∀x, ace(x) ∧ spades(x)→ queen(x + 1) ∧ hearts(x + 1),

(1)

The identification is considered successful if after no more
than a finite number of steps, the learner converges toward a
correct conjecture, i.e., if he changes his mind a finite number
of times. An acceptable strategy for this game would then
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be to arbitrarily order the set hypotheses and select, every
time when a new hypothesis is needed, the next one which
is consistent with the current knowledge concerning the se-
quence. Note that this kind of learning belongs to the para-
digm of function learning as presenting positive data is equi-
valent to presenting both positive and negative data since the
latter can be retrieved from the former.

Every conjecture is then refutable in the limit, as each new
card might invalidate the learner’s conjecture. On the other
hand, at no step in the game can the learner have a proof
that his current conjecture is correct. Moreover, the refuta-
tion might occur after a very long time and the learner has no
option but passively observe the cards as they are presented
to him. We now see how the use of queries can open the path
to active learning and the definition of search strategies.

Active Learning

We illustrated passive learning with a game in which a
learner has to exactly identify a univocal program, that is, a
logic program describing a unique infinite sequence which is
revealed to him one card after the other. We shall now illus-
trate active learning with a classification game in which the
learner has to exactly identify an equivocal program, that is,
a logic program describing a possibly infinite set of infinite
sequences, that is, a set of infinite sequences sharing certain
properties, by querying an oracle to test his hypothesis.

Let W be the set of all infinite sequences, let Ptarget be
an equivocal logic program describing a set Wtarget ⊆ W,
and let H be a possibly infinite set of equivocal programs
representing the learner’s hypothesis set.

At each step, the learner is allowed to query an oracle
using one of the types of queries introduced and studied in
(Angluin, 1988, 2004) :

– Membership : the input is a possible game X ∈ W,
and the answer is true if X ∈ Wtarget, or false if X is a
counter example.

– Equivalence : the input is a setWH ⊆ W of possible
games, and the answer is true if WH ≡ Wtarget, or a
counter example X such that X ⊆ WH∆Wtarget.

– Subset : the input is a setWH ⊆ W of possible games,
and the answer is true if WH ⊆ Wtarget or a counter
example X ∈ WH −Wtarget.

– Superset : the input is a set WH ∈ W of possible
games, and the answer is true if WH ⊇ Wtarget, or a
counter example X ⊆ Wtarget −WH .

The classification is said to be successful if after a finite
number of queries and experiments, the learner converges to-
ward a program PH ∈ H such that PH ≡ Ptarget. This evo-
lution of machine learning paradigms is in correspondence
with the change of paradigms that occurred in human lear-
ning paradigms which evolved from a behaviorist point of
view to a more constructivist one.

However, by our definition of a possible world, all these
queries are co-semi-decidable. Supposing the existence of
an oracle able to answer them would then require that it be
more powerful than a Turing machine. Membership queries
in particular are clearly not relevant, since we cannot decide

whether an equivocal program is actually univocal, namely,
describes a unique possible game. Moreover, in the context
of scientific discovery, Nature can be viewed as a “silent”
oracle which cannot answer a learner’s queries.

Next section presents a multi-learner extension of this pa-
radigm in which several learners learn from each other.

Interactive Learning and Collective cognition

A scientist does not work alone. According to (Popper,
1963), science is practiced within a community of resear-
chers who exchange data and theories by publishing their
conjectures and refuting them. A publication represents a
state of the art, a current theory, a solution to a problem,
which is accepted by the community until it becomes insuf-
ficient to explain Nature. We include this important aspect
of scientific discovery in our protocol : science is a limiting
process involving a community of agents. Inspired by multi-
agent systems and game theory (Chavalarias, 1997), we pro-
pose to distribute the resolution of Equivalent queries on a
community of learners confronted to the judgment of other
learners to cope with the lack of oracle. Each learner can
then publish his conjectures and refute existing ones accor-
ding to a popperian conception of science. This point will be
discussed further in the last section.

We symbolize the product of this social interaction by
a gain function. By attributing or deducing points for each
query, depending on the answer (refuted or not), we can
create competitive or collaborative environment between
multiple learners. This prompts for queries to score points
and experimentation to confirm or refute a theory. The intro-
duction of this social level can lead to experiment different
gain functions to determine in which conditions the commu-
nity formed by the learners converges faster to an acceptable
solution, and we will describe one of them in the following.
This point attribution leaves place for risk management and
exploration strategies, but this will not be discussed here.
When we use infinite objects, queries are co-semi-decidable,
i.e., the process of verification of a query will never end if the
query is correct. However, if a counter example exists, it will
be found at a finite stage of the process. This use of infinite
objects is necessary in the context of scientific discovery to
reflect the fact that each studied object can have a potentially
infinite description (according to (Lakatos, 1976), there is al-
ways a level of precision at which a statement as simple as
1+1=2 can become arguable from a formal point of view).
The gain function motivates the learners to try to search for
such counter examples and ensure that publications will ei-
ther remain as consensual references and gain credits, or be
refuted in the limit.

This distributed learning protocol was implemented using
the multi-agent system Madkit (Gutknecht & Ferber, 1997),
which implements the formalism AGR (Ferber & Gutknecht,
1998). The resulting platform takes the form of a card game :
Eleusis+Nobel 1 (Dartnell & Sallantin, 2005). Each learner
is an agent, Learner, and belongs to a scientific community

1 http ://www.lirmm.fr/kayou/netoffice/eleusis/
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F. 3. Eleusis + Nobel’s web display

sharing a set of problems. These problems are implemen-
ted as equivocal programs describing sets of infinite card
sequences such as “alternation of black and red cards” for
instance. Each problem is given an arbitrary name and for
each of them, an agent Problem, “knowing” the correspon-
ding program is created and can be accessed to validate finite
card sequences. Membership queries are co-semi-decidable
since they are defined on infinite sequences, but these restric-
tions to finite sequences are decidable and simulates experi-
mentation. Dedicated messages corresponding to experimen-
tation, publication and refutation have been defined as speech
acts. Experimentation messages are synchronized (the sender
waits for the answer) and sent directly to the agent in charge
of simulating experimentations for the chosen problem. The
sender receives the answer “yes” or “no” and the result is
displayed as shown on Figure 3. The sequences are built by
adding new cards to the existing sequence. Correct cards are
displayed at the requested position, circled in green, whereas
wrong cards are displayed under the main sequence, and cir-
cled in red. This part of the protocol is private which ensures
that each learner has his own private experimentation back-
ground.

After considering the risk associated with the publication
of their conjectures, learners can send a publication mes-
sage to the community. Since this kind of query is co-semi-
decidable, publication messages are unsynchronized. Each

learner receives this public query and can send a refutation
message containing a counter example selected in his own
experimentation panel. The agents in charge of simulating
experimentations simply react to these queries by switching
role to Published or Refuted so that the state of the art is
always visible.

The implementation is such that experimentations can ea-
sily be adapted to a different context. Each experimentation
is described as a temporal sequence of objects (or events)
identified as unique instances. Learners and Problems are
then free to derive any representation according to their own
model and theory.

Since the compatibility of our protocol with human lear-
ning is also one of our main concerns, we studied the impact
of Eleusis+Nobel on future biology teachers in order to va-
lidate epistemological and didactic aspects of this protocol.
We now present this experimentation, published in (Hagège,
Dartnell, & Sallantin, 2007).

Experimentation and Validation

The first experimentations were made to quantify the im-
pact of distributing queries among players. The second one,
more meticulous, aimed at qualifying the epistemological
impact of Eleusis+Nobel . Both of them shared the same set
of 33 hidden rules, and the gain function was defined as fol-
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lows : publishing was rewarded with P = 1 point, and refu-
ting (respectively, being refuted) was rewarded (sanctioned)
by a gain (a loss) of R = 2 points. Subset and superset queries
were not implemented in this version of the game.

Impact of Distributing Queries

We compared the performance of isolated players to the
one of a community. The first experiment showed that a hu-
man playing alone takes between 5 and 15 minutes to publish
a theory concerning a problem implying only sequences of
two cards. He usually considers his theory correct, and does
not try to refute it. Moreover, the average number of publi-
shed theories is between 10 and 20 (players stop before trying
to solve the entire set of rules), and few of them are equiva-
lent to the corresponding hidden rule. In contrast to these
results, we made further experimentations involving mul-
tiple players, coming from different scholar backgrounds.
The average time of a publication was the same, and we ob-
served a period of roughly half an hour during which players
published. Then they began to refute each other, and theories
were revised and republished. We observed that a community
of ten to thirteen players take between 1 hour and a half and
2 hours to reach a stable equilibrium of published theories
(as opposed to the theoretical length of 5 hours and a half for
one-player games). The amount of correct theories is also
much superior. This practically confirmed the need to use
queries together with experimentation (Angluin & Krikis,
2003), and the use of a community to confront experiences
and points of views on a given problematic. An interesting
alternative was to organize duels, between two players wor-
king on the same rule, until one of them admitted, without
being sure, that the adverse theory was true : a consensus
was made on a common description model. Although being
very simple, this gain function allows one to observe three
different behaviors when humans play : altruists publish of-
ten, regardless of refutation risks, opportunists never publish
and only try to refute others conjectures when they are pu-
blished, and the careful players seem to define a reasonable
experimentation length before deciding whether a conjecture
(theirs or not) is true. Clearly the latter is the richest behavior
in terms of strategy and risk management, but the formers en-
sure a constant flow between published and refuted theories.
This minimal interaction is then sufficient to create a process
of classification in the limit.

Epistemological Impact of the Game

Problematic. In science education and epistemology, a
constructivist vision of building knowledge has been deve-
loped (Fourez, Englebert-Lecomte, & Mathy, 1997), (Kuhn,
1962), (Strike & Posner, 1992), to which a majority of resear-
chers in these domains seem to adhere (Lederman, Abd-El-
Khadick, Bell, & Schwartz, 2002). According to constructi-
vism, all knowledge is linked to a subject who knows (Fou-
rez et al., 1997), so its profound nature is subjective. Thus
conviction, points of views and beliefs are part of science
and learning (Bachelard, 1971), (Kuhn, 1962). On the other
hand, all knowledge is issued from a construction process.

This process consists in qualitative reorganization of initial
knowledge structure (Lonka, Joram, & Brysin, 1996), and
can be assimilated to change of conceptions (Strike & Pos-
ner, 1992). Conceptions play an organizational role in thin-
king and learning (Strike & Posner, 1992), but affects and
values also do (Hagège, 2007). Here, we refer to personal
epistemology as a system of interacting attitudes related to
knowledge construction objects (such as conjecture, error,
science, . . .). Attitudes are composed of a cognitive and an
affective component (i.e., conception of an object, and af-
fective relation to this object (Hagège, Reynaud, & Favre,
2007)). They interact together and norms and associated va-
lues emerge from this epistemic attitudes system (Hagège,
2007). Norms are rules telling how the subject should be-
have in a particular situation and values consist in general
principles which justify the corresponding norms.

Most studies on epistemology learning and teaching
concern conceptions, i.e. what we call the cognitive com-
ponent of attitudes. Science teachers and students do not own
spontaneous constructivist science conceptions (Boulton-
Lewis, Smith, McCrindle, Burnett, & Campbell, 2001),
(Lemberger, Hewson, & Park, 1999), (Waeytens, Lens, &
Vandenberghe, 2002). For instance, to future biology tea-
chers, knowledge is an “external truth that can be discove-
red through observation, discussion, sense-making” and also
a collection of additive facts (Lemberger et al., 1999). In that
sense, experiment can constitute a supreme referee to ve-
rify theories. This naive, positivist labeled epistemology also
contains a realist view, given which the world is intimately
knowledgeable (in opposition to an idealist conception), so
that scientific knowledge tells us about truth : the world as
it is. This positivist and realist vision is coherent with naive
(Schommer, 1994) and traditionalist (Chan & Elliott, 2004)
epistemologies evaluated by other authors, in the sense that
knowledge would be composed of information units which
are progressively added, thus allowing knowledge progress.
In fact, a majority of secondary teachers define teaching as a
“maximum information transfer” and learning as “every in-
formation absorption” (Boulton-Lewis et al., 2001), (Waey-
tens et al., 2002).

In the following, we evaluate the impact of playing Eleu-
sis+Nobel on science conceptions, values, and to a less
extent, affects. We used the standard pre-test/post-test pro-
cedure. The test was mostly composed of a Likert-type scale
and of Osgoods semantic differentiators (OSD). Values are
considered to be implicit in all adjectives, but some of those
explicitly refer to values, such as good and beautiful. Af-
fects correspond to pleasure and pain domain. Conceptions
are here considered as ranging from a positivist and realist
end to an idealist and constructivist one. One has to notice
that we refer to philosophical corresponding notions, to be
able to characterize students undifferentiated epistemology.
These students initially had no deep thought about scientific
process. Eleusis+Nobel implements the popperian intersub-
jective construction of objectivity concept, which is a central
point of what became constructivism. That is why we expec-
ted Eleusis+Nobel to favor the development of a constructi-
vist epistemology.



HUMAN DISCOVERY AND MACHINE LEARNING 7

Procedure and subjects. The study has been realized in
south France, in the University Montpellier II. In January
2007, 43 third year general biology students filled up the
initial test (initial experiment). All these students aimed at
becoming secondary biology teachers (or primary school tea-
chers) and were enrolled to follow the same science educa-
tion and epistemology courses. One and half month later, 14
of them (Pl for Players) played Eleusis+Nobel then filled up
the final test (6 days later), whereas 14 others (NC for Nega-
tive Controls) filled up the final test without having played.
The final test corresponds to the initial test plus some additive
questions. For both Pl and NC groups, the initial experiment
is called the pre-test and the final one the post-test. Players
have been told that this game mimics scientific discovery as
it occurs - in community. During the game, Pl was mixed
together with 24 other students and the whole sample was
split into 16 teams of 2 or 3 players. All 16 computers were
in the same room. The game lasted 2 hours and the winner
team won a 1kg candy box (the Nobel Price).

Results. Both subpopulations were significantly the same
in terms of age and were composed of the same num-
ber of males and females. Concerning background’ socio-
professional category, little is known since the majority of
subjects answered “other” to that question, although our sam-
pling did not seem biased by professions linked to scientific
research or scientific education. We proposed a pre-test and a
post-test to students who played Eleusis+Nobel for two hours
and compared answer changes with the changes in the ans-
wers of the negative control (non-players). Before the game,
the initial epistemology of Pl and NC where similar, except
from esthetical values, which were higher for Pl. This he-
terogeneity effect points to a limit in our study : the small-
ness of our samples. Future experiment will be done with lar-
ger samples. Otherwise, positive values were expected from
students who aim at becoming science teachers. We tried
to evaluate several aspects linked to constructivism. Among
these, the aspect which is recurrently and significantly chan-
ged specifically to Pl concerns the role of subjectivity in
scientific process. These results are reinforced by those ob-
tained with additional specific post-test questions who indi-
cated putative conception changes focus on the role of com-
munity in scientific process. Thus, to us, the game allowed Pl
to become aware of these central aspects of constructivism,
so that they specifically assimilated them in the cognitive
components of their epistemic attitudes. The only one result
which was not predicted is the following one : Pl are in fact
less likely to believe that several interpretations are possible
in the face of a given result. Maybe they assimilated the term
“possible”, in the sense of what a research worker can rightly
propose, with “right”, in the sense of what is acceptable given
a theory. Because it was difficult to find volunteers, we orga-
nized this experiment with our students, who were supposed
to follow epistemology courses. This could explain why the
scores of NC also changed between the pre-test and the post-
test. However, statistics gave us a clear limit and the signi-
ficance levels that we used were absolutely standard. So no
statistically significant score change has been observed in the

subpopulation NC.
As all observed changes of answers did not focus on

themes that were explicitly dealt with in the game, but just
practiced, we infer that this constructivist conception had
been subconsciously assimilated, in the Piagetian sense. We
cannot exclude that this effect occurred synergistically with
traditional epistemology courses. Even so, observed changes
are very encouraging, because they would have been cau-
sed by only two hours of playing. An important factor with
such a teaching tool is the pleasure that players experience.
Open questions in the post-test treated addressed feelings du-
ring playing. We noticed that answers vastly differed : either
players liked it much, or they got “very frustrated because
of cheats”. This highlights what we also observed during the
game : they really got involved into it. Previous experiments
with 13 or 20-year-old pupils leaded to the same conclusion.
When time was out, a majority was disappointed and wanted
to continue (that rarely happens with a traditional course !).

Altogether, it indicates that Eleusis+Nobel game can
constitute a very interesting complementary tool to teach
epistemology which cannot, by essence, be taught in a dog-
matic way.

Evolutions and Perspectives
As we mentioned in the previous section, both traditiona-

list and constructivist teaching and learning conceptions can
be opposed (Chan & Elliott, 2004). In the first, teaching is
considered as a non problematic transfer of untransformed
knowledge from an expert to a novice. Learning corresponds
thus to absorption of such knowledge. At the opposite end,
learning is the creation and acquisition of knowledge through
reasoning and justification. Teaching facilitates learning, and
does not consist in knowledge transmission.

Extensions on Machine Learning
The formal learning models presented earlier can be des-

cribed as transmission from a teacher to a learner of a pro-
gram representing the target concept, either directly or indi-
rectly through examples or queries. Extensions in machine
learning, based on the previous cognitive considerations, ex-
plore the case in which this transmission is impossible. Hu-
man learning involve complex agents which are all different
and unique, which have limited modeling abilities and an in-
complete knowledge of themselves. Such constraints, which
evoke the introduction of limited rationality by Simon in eco-
nomics theory, lead to a change of paradigm since simulation
becomes out of reach for agents ignoring the way their ope-
rate.

These constraints are clearly illustrated with the example
of juggling, for which anyone knowing how to juggle can
constitute a valid teacher (or model) for the learner. However,
this learner only has a limited knowledge of the physical laws
influencing the movements of the balls and his body, and
even less knowledge concerning the neural connections de-
termining the proprioreceptive abilities of his brain or of his
teacher’s. Moreover, synchronization is crucial as the lear-
ner does not have time for such an introspection. However,
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without using physics and without cloning the teacher’s ce-
rebral areas involved during juggling to simulate their func-
tioning, learning how to juggle is still possible by imitating
the teacher and his movements.

In contrast to formal learning models supposing the lear-
ner’s capacity to simulate, (Angluin & Krikis, 2003) propose
to take into account and formalize the fundamental diffe-
rences between agents and how difficult is it to each of them
to achieve a given task. We now simplify this model for the
sake of clarity.

Formally speaking, both the teacher and the learner are
modeled as machines with an oracle access to a function box
representing their personal abilities. This oracle access ex-
presses the fact that agents only have access to inputs and
outputs for these functions which must then be seen as black-
boxes. The teacher is supposed to have a particular function,
and the learner has to learn how to compose his own func-
tions to imitate it. Since the learner and the teacher have dif-
ferent function boxes, simulation or outright coding is impos-
sible. The teacher cannot give the index of the target function
in his function box to the learner, or a set of indexes corres-
ponding to the order in which he composes his own functions
to achieve the target function, since the learner’s functions
might be different, or simply ordered differently.

In this context, and provided a complexity measure for
these functions has been given, the learner has access to com-
plexity queries to estimate the complexity of the solution and
find how to effectively imitate it with his own function box.
Let f be a partial recursive function, G = {g0, g1, . . . , gn} be
the teacher’s function box, and G′ = {g′0, g

′
1, . . . , g

′
m} be the

learner’s one. If the teacher’s solution to effectively compute
f is fT = gi ◦ gk, then an adapted complexity measure for
fT is the sum FT = Gi + Gk of steps needed by two Turing
machines to compute gi and gk. A complexity query is then
defined as a couple (x, s) such that x is an input for f , and s a
natural integer representing a complexity bound. To answer
this query, the teacher runs fT (x) for at most s steps. If the
process halts in less than s computation steps, then the value
y = fT (x) is returned to the learner. If not, an error value is
returned and the learner who is now able to adapt the attended
complexity of the solution and eliminate conjectures which
are too complex.

Intuitively, answering a membership query consists in ve-
rifying an (infinite) instance, answering an equivalence query
consists in achieving this verification on every instance in
a given (infinite) set, and answering a complexity query
consists bounding the time necessary to verify an instance.
Complexity queries extend membership queries and enable
their use in the context of scientific discovery. Results pre-
sented in (Angluin & Krikis, 2003) rely on the fact that all
Turing machines are equivalent and that their performance
can be bound by a function. This allows the teacher to take
into account his own performance to estimate a complexity
measure adapted to the learner’s one. Given an estimation of
the difference between the performance of the teacher’s and
the learner’s function boxes, the complexity measure for the
latter can be bound by a function b(FT ). For instance, if the
learner is twice as slow as the teacher and the latter needs n

steps to compute f (x), then the learner can bound the com-
plexity of his conjectures to 2n for this given task.

Extensions of Eleusis+Nobel
As we observed, the experimented gain function is suffi-

cient to create a dynamic for interaction. However, the use of
equivalence queries only implies that each conjecture has to
be refuted before publishing a new one. Different types of pu-
blications corresponding to subset and superset conjectures
could be defined in accordance with the queries presented in
the section related to active learning. This would allow one
to publish incomplete theories, or more general observations.
Several conjectures, potentially complementary or contradic-
tory, could then cohabit without being refuted and gain cre-
dit. The gain function could then be adapted to take into ac-
count the fact that the longer a conjecture remains unrefuted,
the more credit it has, and to report this credit to an even-
tual refutation. For instance, one can publish a subset query
such as ∀x, red(x) → black(x + 1), which is not possible in
the current protocol since any sequence starting with a black
card can refute it (incomplete theory). This would improve
the interaction between learners, as well as the quantity of
shared information. The discovery process would therefore
be accelerated.

Another extension of this platform would be to introduce
complexity queries. This would be relevant from the point
of view of machine learning, as a restriction of membership
queries or as the introduction of a heuristic such as time. It
would also be relevant from the point of view of scientific
discovery : when a scientist tries to recreate in vitro an expe-
riment observed in vivo, he sometimes comes to the conclu-
sion that the experiment, taking too long compared to the
observation in vivo, is not concluding and aborts it. A com-
plexity measure for equivocal programs could be the number
of cards involved in the validation of a card sequence. For
instance, a hidden rule might need five cards to decide the
validity of the sixth, or it could also need five cards among
which only three will really impact the validity of the sixth.
We provide examples for such rules :

∃x(queen(x) ∧ hearts(x))→ black(x + 5)
(2)

∃x(queen(x) ∧ hearts(x)),

∃y(x < y < x + 5 ∧ king(y))→ black(x + 5)

∀y(x < y < x + 5 ∧ ¬king(y))→ red(x + 5)
(3)

Conclusion
Machine learning paradigms have evolved from passive

learning to active learning. We selected identification in the
limit and learning with queries as the most suited ones in
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the context of scientific discovery, and we used them to for-
malize the problem of scientific discovery. In this context,
conceptions of reality are infinite and supposing the existance
of an oracle answering queries is unrealistic as the oracle
would then need to be endowed with capabilities that go
beyond the power of a universal Turing machine. We propo-
sed to distribute the resolution of queries in a social game of
publication and refutation, and we evaluated Eleusis+Nobel
, an implementation of our protocol, on a human community.
This experimentation highlighted two important facts :

– the protocol is suitable for human learning, since the
community was able to find a consensus concerning a
set of thirty-three more or less difficult rules in a reaso-
nable time (two hours).

– the protocol is suitable to teach constructivist concep-
tions to students, which means that the epistemic no-
tions on which it is funded are acceptable and signifi-
cant of how science is practiced in reality.

Moreover, our natural conception choices of multi-agent sys-
tems led us to define an AGR model of interactive learning,
and the genericity of the implementation allows one to adapt
the current platform to other contexts than cards.

These three points tend to show that this protocol is a
good candidate to conceive interactive platforms for assisted
science discovery, pedagogic tools, or other “science” games.

Inspired by more cognitive considerations and related new
work in machine learning, we proposed several evolutions for
this protocol, among which are :

– the introduction of a complexity measure such as time,
to introduce a heuristic and restrain co-semi-decidable
membership queries to decidable complexity queries.

– the implementation of subset and superset queries to fa-
vorize the interaction between learners and to favour an
increased competition among theories, in a more pop-
perian conception of science.
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