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Abstract

The transversal hypergraph enumeration based algo-
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teisseire@lirmm.fr

dundant dualization done by transversal hypergraph enu-
meration, instead of finding all frequent itemsets. This ap-
proach is limited to itemset mining because the applica-

rithms can be efficient in mining frequent itemsets, howevertion of transversal hypergraph enumeration requires tteat t

it is difficult to apply them to sequence mining problems. In
this paper we first analyze the constraints of using transver

sal hypergraph enumeration in itemset mining, then pro-

pose theordered pattermnmodel for representing and min-

structure of patterns being discovered (e.g. itemsefgi
the “representing as sets”.

In this paper we are interested in porting transversal hy-
pergraph enumeration based algorithms to sequential pat-

ing sequences with respect to these constraints. We showern mining. The rest of this paper is organized as follows.

that the problem of mining sequential patterns can be trans-
formed to the problem of mining frequent ordered patterns,

and therefore we propose an application of tealize and
Advancealgorithm, which is transversal hypergraph enu-
meration based, in mining sequential patterns.

1. Introduction

Section 2 introduces the transversal hypergraph enumera-
tion on itemset mining. In Section 3 we analyze the con-
straints on applying transversal hypergraph enumeralion.
the next Section 4 we formalize sequences with our propo-
sition of theordered patterrwith respect to the above con-
straints. In Section 5 we show that with ordered patterns
the Dualize and Advancalgorithm can be used in mining
sequential patterns. The final section is a short conclusion

As one of the most concentrated topics in data mining 2. Transversal Hypergraph Enumeration on

research, mining frequent itemsets has received much atten

tion. A lot of algorithms for this problem have been devel-
oped! since the first introduction of thapriori (also called
level-wis¢ algorithm in mining association rules [1, 2, 9],
where how to efficiently find all frequent itemsets is the ma-
jor subtask.

Theapriori (level-wis@ algorithm considers thgpecial-
ization relation(denoted by<) between itemsets, so that the

Itemset Mining

Given a data set over relationR, we use the ternan-
guage denoted by, for expressing properties or defining
subgroups of the datd. represents the structure of patterns
being discovered in data mining and the computational task
can therefore be considered as finding all sentepcesC
that defines a sufficiently large subclassoiith thespe-

search of all frequent itemsets can be performed by Walkingcialization relation=< between all sentences 6fin r, con-

up in the subset lattice of itemsets imposedfyyone level

sidering a seS C L such thatS is closed downwards un-

at a time. [8] detailed this approach. However, when the 4o the relations, the positive border3d* (S) consists of
most specific frequent itemsets appear at high levels in thisi,o st specific sentences shand thenegative border

search, the number of all frequent itemsets may be too IargeBd_(S)

and the time of computing may not be acceptable.
[6] proposed theDualize and Advancealgorithm that
only finds all most specific frequent itemsets using irre-

1See the FIMI (Frequent Itemset Mining Implementations Répoy)
Web site for a collection of implementations. (http://fiosi.helsinki.fi/)

consists of the most general sentences that are not
in S [8]. Figure 1 illustrates the notion of border.

In the problem of mining frequent itemsets addressed by
a frequency threshold, the positive border consists of afset
the most specific frequent itemsets and the negative border
consists the most general non-frequentitemsets. Thdt is, a
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Figure 1. Border and specialization relation.

itemsets inside the border, from the vision of specialorati

t(|Bd*| + |Bd~|), wheret(n) = n®I°e™) while using at
most|Bd~| + width(L, <)|Bd"| queries.

For itemset mining, we have already the languégep-
resented as sets if we consider the empty $et L. There-
fore theDualize and Advancalgorithm can be applied to
the problem of mining frequent itemsets. However, the lan-
guage for mining sequential patterns could not satisfy the
requirement of representing as sets.

3. Constraints on Representing as Sets

In this section we analyze the constraints on represent-
ing as sets. The problem of representing as sets is to find
a invertible mapping functiorf, with which we have the
structure imposed on the languageby < being isomor-

must be frequent but the ones outside the border cannot behic to a powerseP(R), whereR is an finite set. This

frequent.

A collection’H of subsets ofR is a simplehypergraph
[4], if no element ofH is empty and itX, Y € H andX C
Y imply X =Y. A hypergraph{ = (V, E) consists of a
finite collectionE of sets over a finite sét. The elements
of E are theedgesof the hypergraph, andtaansversalof
‘H is a setT’” C V that intersects all the edges &f If
noT’ C T is a transversal, we say that this transversal is
minimal The set7r(H) of all minimal transversals of a
hypergraphH is called thetransversal hypergraplof .
[8] showed that if the language satisfies the requirement
of representing as sets, the negative bofgiér (S) can be

problem restricts the application of transversal hypgrgra
enumeration in data mining.

If an invertible mapping functiorf : S — P(R) exists,
the size ofS must be a power o2. For the problem of
finding frequent itemsets, given relatidhof items, letS be
the set of all subsets @t defined by the languageé. If we
consider{} as a subset aR, thenS = P(R) is a powerset
and|S| = 2%, thus an identity mapping(S) = S can be
used in this case.

Given a data set on relatioR of items, letZ,.; be the
language of describing all itemsets generated fi@rand
Lseq be a class of sentences that defines all sequences gen-

computed by transversal hypergraph enumeration from theerated fromR where the number of sentences depends on

positive border, that isT r(Bd+(S)) = Bd~ (S).

Definition 1 (Representing as Sets [6]Let £ be the lan-
guage,= a specialization relation, an® a set; denote by
P(R) the powerset oRk. A functionf : £L — P(R)is a
representation o (and <) as sets, iff is one-to-one and
surjective, f and its inverse are computable, and for all
and ¢ we havep < 6 if and only if f(¢) C f(6). This
transformation is calledepresenting as sets

Based on the conclusions of [8], tl&ualize and Ad-
vancealgorithm first finds a most specific sentenées £
from an initial sentence, such thatp < 4. Once a set
of most specific sentences is found, the algorithm com-
putes the negative border of the sentences found by us
ing transversal hypergraph enumeration, and restartpits u

the maximal length of sentence. Obviously the number of
sequences defined by the langu#gg, is not a power of,
thusL,., cannot be mapped to a powerset by any invertible
function.

Furthermore, if there exists an invertible function maps
Lgeq 10 Let, for example functiong andg~!, then leth =
g o f we have that the languag&,., can be mapped to a
powerset byh. In fact it does not exist such an invertible
functionh. So that we have the following two properties.

Property 1. There does not exist any invertible mapping
function that maps the languagg,., to a powerset.

Property 2. It does not exist any invertible function that
maps the languag€..; to languageL,., of defining se-

qguences.

ward search from this negative border. If progress can be The languag€.., of defining sequences does not satisfy
made, the positive border can be made from the negativethe conditions on representing as sets, it does not exist any
border and thus the approach is guaranteed to succeed. Th@apping function maps., to a powerset.

time complexity of theDualize and Advancalgorithm de-

pends on the complexity of transversal hypergraph enu-

meration. [5] presented an incremental algorithm for the
transversal hypergraph computation with time complexity
T(I,i) = (I + i)°Uee+9) thus the time complexity of
the Dualize and Advancalgorithm could be concluded as

The goal of representing as sets is to apply the transversal
hypergraph enumeration to a powergtR) and then to
retransfer the results from the power#&tR) back to the
description languagg via the inverse functiorf ~1. This
invertible transformation is based on the isomorphism on
the specialization relatior over the mapping functiofi.



Property 3. Mapping functionf must be bijective.

If a mapping functiory has not the inverse functigit !,
after computing the transversal hypergraph, aXsgt €

P(R) may not have an inverse mapping to be applied in the

transformation fromX,, € P(R) to the language € L.

In particular, for itemsets we have = P(R), thus for
all f(¢) = X, we havep = X, and therefore we can
simply write the identity mapping a&(X ) = X.

Property 4. Mapping functionf must be isomorphic to the
specialization relation<.

The mapping function for representing as sets transfers

the language to a powerseP(R) and then the transversal
hypergraph enumeration @(R) can be used to reduce the
complexity of computing the negative border of the theory
Th(L,r,q). The isomorphism requiresis monotone with
respect to the specialization relatiefa that is,

p =20 = f(p) = f(O)
4. Representing Sequences as Sets

Given a data sat overn rows of relationR of items, we
say that gpatternis an itemsetX C R. Let L denote the
language defining all subsets®f a pattern can be uniquely
defined by a sentence in the languafe. Without losing
generality, we denote the patterniascorresponding to the
sentence» € Lr. The languag€ i describes the powerset
of R if we consider the empty s€f} as a part ofLr. The
size of Ly, is thereforg Lp| = 27,

We define theordered patternas a pair(/,,o0) where
I, C Risapattern and < o < nis an integer, the row
number of the pattern. We callthe order of an ordered
pattern. Therefore an ordered pattern is a pattern assdciat
with an order, it can be rewritten as follows,

(I¢7O) ::{(]%170)5(}%2’0)7"'7(}37’0)}7

whereR;, R, ..., R; € Rand|l,| = j. The pair(R;,o)
is anordered itemwhereR; € R. Let R 4 denote the set of
ordered items o, we haveR4 = {(R;,0) | R; € R,1 <
o <n},and|Ra| = |R| - n.

Let £4 denote the language defining all subsetdef,
it can be defined as following,

La=P{(X,0)| X €R,1<0<n}).

The size ofL 4 is |L 4| = 2715l
We have the following characteristics of ordered pat-
terns.

e Union: I, = I,Uly <= (Iy,0) = (I,,0)U(ly,0).

e Inclusion: I, C Iy <= (I,,0) C (Is,0).

e Incomparability : i # j = (I,,4) # (14, 7).
e Equivalence {(R;,%), (R;,7)} = {(R;.]), (Ri, i)}

When we consider the paii?;, o) as a single item, to
find all frequent ordered patterns is the same task as finding
frequent itemsets.

ap [aa ] ap [ pa] pp B

o\~
{

Figure 2. Finding frequent ordered patterns.

Example 1. Given data set with items R = {A, B},
let language£? define all ordered patterns with the
order o < 2, we depict the languag&€? as a lat-
tice shown in Figure 2. Assume a set of sentences
S C [2 closed downwards to the relatiod, S
{A', B, A% B2 A'B' A'B? B'B? A’B? A'B'B?},
and § includes the maximal ordered pattern sets
{A'B'B? A2B?%}.

The negative bordeBd~—(S) = {A'A? B1A%}. For
this problem, we already haw&’ represented as sets and
the mapping functiory is an identity mapping. With the
application of hypergraph transversals, we have therefore
Bdt(S) = {A'B'B? A?B?} = H(S) = {A?, A'B'},
thus we have the minimal transversals #f(S) that
Tr({A%, A'B'}) = {AlA? B'A?}, and thus the appli-
cation of hypergraph transversals returns the correct an-
swer. (]

We use thesequential relatiorbetween patterns in a se-
guence. The sequential relation is a total ordet that a
patterni, is precedent to another pattefpif I, —° I5.
Let o denote the order of the sequential relation, defined
as follows: given a sequencewith length of &, if for
no I, in s we havel, —° I, theno = 1; otherwise,
o = maz({o' | Iy —° I,}) + 1. Note thatly # I, is
not required for computingy —°’ I,. In particular, for a
sequence with length, we defineo = k if forno 1, in s
we havel, —° I, and the ordeo is therefore an integer
such thatl <o < k.

Given data set over relatioR of items, lets* denote
a sequence consists bfpatterns, thes* can be formally
described as follows.

s = (I, ! Iy =2 =PV L R D),

wherel,, ,I,,,...,1,, C R arek patterns. We use an

empty set to bound a sequence. If we consider a pattern and



its followed sequential relation as a pair, Suci{ &g, —°), a transactional database over relati®rthe task of mining
then we can represent a sequence as a set of pairs, that is, sequential patterns is to find maximal frequent sequences
with respect to giveminimal suppor{3]. We use the lan-
" = {Lprs 1) Loy =), Ly, =)} i i
@13 1 U RERERC IR 3 guageL 4 for representing sequences and useDialize
and Advancelgorithm in finding the positive border of all

where the trailing empty set can be safely removed. It is interesting sentences @f4. The sequential pattern min-

easy ;[jobsee tgat tge above formhof sequence can be reprqhg process is specified within tlizualize and Advancal-
sented by ordered patterns, such as, gorithm by a predicatg_hsp that determines whether the
kE_ sequence corresponded to each sentence is frequent or not.
={(Iyp,, 1), {py,2)y.-., [y, , k) } . o .
= AT 1), ey 2), o (T K This procedure returns all most specific sentences, ile., al

Definition 2 (Sequence)A sequence can be represented by most SpeCifiC frequent ordered patterns and their aliases. F

a set of ordered patterns with consecutive orders starting nally theHSPalgorithm returns all frequent sequential pat-
from 1. terns with respect to these aliases.

Due to the limit of space, this paper only introduce the
Now let us consider a languag®, of generally defin-  algorithm ofq_hsp that is defined as follows (shown as Al-
ing all ordered patterns over relatidhof items and given  gorithm 1). Given a sef of customer sequences and a sen-
maximal ordern, without distinguishing the form of rep-  tencep € £4, q_hsp evaluatesy against each € S. If ¢
resentation. Lef,., denote the language of defining all does not exist in any, ¢_hsp returnsfalse without further

sequences over attributéswith given maximal lengthy, evaluations. Otherwise, hsp computes the aliag € £,
we havel., C Lo. Semantically, under the context of of », and expandg to obtain all sentence®(y ¢ £) having
transaction database, we have following properties. the same aliad. ¢_hsp then evaluates € € in each cus-

tomer sequence, and updates the rank &r computing
the support o). If the support of) is > minimal _support
q-hsp stores) as a frequent sequence and returnsg: oth-
erwiseq_hsp returnsfalse. The approach obualize and
Advanceequires that;_hsp is monotone to the specializa-
tion relation= on the languagg€ 4.

Property 5 (From Ordered Patterns to SequencEpch
non-empty sentence iy stands for a list of transactions
with their order in transaction time, corresponding to a
sequence. Multiple sets of ordered patterns can be repre-
sented as one sequence in semantics.

Property 6 (From Sequence to Ordered PatternEpch
non-empty sentence ify., stands for a sequence of trans-
action, which can be only represented by a set of ordered
patterns with consecutive orders starting from 1. Proof. We already have that the sentencesCof respect
the specializatior. If a sentencex € L4 is interesting,
Therefore, groduction functiorp can be used in trans-  then we have the alias € £ interesting, means that the
forming a set of ordered patterns to a sequence. Given asequence, represented by is frequent, ang exists in at

Property 7. The predicate;_hsp is monotone to the spe-
cialization relation= on the languagée 4.

sentence € Lo, such as, least one customer sequence S. And according to the
_ I I relation=< on L 4, any generalization af must be existin at
¢ =1Up,01), U5 02),- -5 (T 00} least one customer sequence S, and any sub-sequences

of sy must be frequent. Thus we have thatfoe £, and
v X @, if g-hsp(S, ) = true, theng_hsp(S,v) = true.
Next we show that fory € L4 andy =< ¢, if

whereo; < 03 < ... < o andk < n. The production
p(y) returns a new sentenéec Lo such that,

0= {(Ipy;1), (Ipy,2),- -, (Lo, )} q-hsp(S,~) = false, theng_hsp(S, ¢) = false.
q-hsp(S,v) = false means thay does not exist in any
We say that the sentendeis thealias of the sentence, customer sequence € S or the sentence represented by
which represents a sequence. the aliasy) € L4 of v is not frequent. In the first case,
It is remarkable that the production functipns not in- no specialization ofy can exist in any customer sequence
vertible, so that it does not imply that this representation s € S. In the second case, the sequence represented by the
satisfies the requirement of representing as sets. alias of any specialization of cannot be frequent. Thus for

any sentence € L4 andy < ¢, we haveg_hsp(S, ¢) =

5. Mining Sequential Patterns with Transver-  false. O
sal Hypergraph Enumeration The predicate;_hsp is monotone to the specialization
relation=< on £ 4 and it updates correctly the frequency of

We propose thédSP algorithm for mining sequential  sequences with respect to the definitionsapportfor se-
patterns with transversal hypergraph enumeration. Givenquential patterns. Therefore the model of ordered patterns



and theg_hsp predicate can address the problem of mining
sequential patterns within thHeualize and Advancalgo-

HSPapproach for mining sequential patterns with e
alize and Advancalgorithm. We introduced the model of

rithm where the transversal hypergraph enumeration is ap-ordered patterns with respect to the constraints on apply-

plicable.

Algorithm 1: Algorithm of theq_hsppredicate.

if exitsy < ¢ not interestinghen
| return false;
end
alias_rank «— 0;
foreachs € S do
rank < evaluatep againsts;
if rank > 0 then
updatealias_rank by rank;
removes from S;
end
end
if alias_rank = 0 then
| return false;
end
0 — alias ofp;
& < all sentences with alia&but excludingp;
foreachs € S do
foreachr € £ do
rank < evaluater againsts;
if rank > 0 then
updatealias_rank by rank;
removes from S;
end
end
end
if alias_rank/number_of _slices > min_supp then
storealias@);
return true ;
end
return false;

1
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According to theDualize and Advancalgorithm, the
complexity of the HSP is polynomial in |Bd*| and
T(|Bd*|,|Bd~|) whereT (n) = n®Uoe (™) [5, 6, 7].

Given a setS of customer sequences, assume the final
result containsV aliases, then in the worst case the num-
ber of all most specific sentenceg&i*| = N|S|. In the
worst case, each evaluation of a sentepce L4 requires
IS + |¢|(JS] — 1) queries without caching, whete| is
the number of all sentences with the same alias withot
includingy, and|S| is the number of customer sequences.

6. Conclusion

We analyzed the constraints of using transversal hyper-
graph enumeration on itemset mining and proposed the

ing transversal hypergraph enumeration in itemset mining.
We showed that the problem of mining sequential patterns
could be addressed by the langudggefor finding frequent
ordered patterns and we presented a predicate for determin-
ing whether the sequence corresponded to each sentence is
frequent. This predicate is monotone @y, <). TheHSP
approach s interesting when the lengths of frequent sequen
tial patterns are large. We are currently investigating the
comparison between different approaches to sequential pat
terns mining.
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