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Abstract

The transversal hypergraph enumeration based algo-
rithms can be efficient in mining frequent itemsets, however
it is difficult to apply them to sequence mining problems. In
this paper we first analyze the constraints of using transver-
sal hypergraph enumeration in itemset mining, then pro-
pose theordered patternmodel for representing and min-
ing sequences with respect to these constraints. We show
that the problem of mining sequential patterns can be trans-
formed to the problem of mining frequent ordered patterns,
and therefore we propose an application of theDualize and
Advancealgorithm, which is transversal hypergraph enu-
meration based, in mining sequential patterns.

1. Introduction

As one of the most concentrated topics in data mining
research, mining frequent itemsets has received much atten-
tion. A lot of algorithms for this problem have been devel-
oped1 since the first introduction of theapriori (also called
level-wise) algorithm in mining association rules [1, 2, 9],
where how to efficiently find all frequent itemsets is the ma-
jor subtask.

Theapriori (level-wise) algorithm considers thespecial-
ization relation(denoted by�) between itemsets, so that the
search of all frequent itemsets can be performed by walking
up in the subset lattice of itemsets imposed by�, one level
at a time. [8] detailed this approach. However, when the
most specific frequent itemsets appear at high levels in this
search, the number of all frequent itemsets may be too large
and the time of computing may not be acceptable.

[6] proposed theDualize and Advancealgorithm that
only finds all most specific frequent itemsets using irre-

1See the FIMI (Frequent Itemset Mining Implementations Repository)
Web site for a collection of implementations. (http://fimi.cs.helsinki.fi/)

dundant dualization done by transversal hypergraph enu-
meration, instead of finding all frequent itemsets. This ap-
proach is limited to itemset mining because the applica-
tion of transversal hypergraph enumeration requires that the
structure of patterns being discovered (e.g. itemset) satisfies
the “representing as sets”.

In this paper we are interested in porting transversal hy-
pergraph enumeration based algorithms to sequential pat-
tern mining. The rest of this paper is organized as follows.
Section 2 introduces the transversal hypergraph enumera-
tion on itemset mining. In Section 3 we analyze the con-
straints on applying transversal hypergraph enumeration.In
the next Section 4 we formalize sequences with our propo-
sition of theordered patternwith respect to the above con-
straints. In Section 5 we show that with ordered patterns
theDualize and Advancealgorithm can be used in mining
sequential patterns. The final section is a short conclusion.

2. Transversal Hypergraph Enumeration on
Itemset Mining

Given a data setr over relationR, we use the termlan-
guage, denoted byL, for expressing properties or defining
subgroups of the data.L represents the structure of patterns
being discovered in data mining and the computational task
can therefore be considered as finding all sentencesϕ ∈ L
that defines a sufficiently large subclass ofr. With thespe-
cialization relation� between all sentences ofL in r, con-
sidering a setS ⊆ L such thatS is closed downwards un-
der the relation�, thepositive borderBd+(S) consists of
the most specific sentences inS and thenegative border
Bd−(S) consists of the most general sentences that are not
in S [8]. Figure 1 illustrates the notion of border.

In the problem of mining frequent itemsets addressed by
a frequency threshold, the positive border consists of a setof
the most specific frequent itemsets and the negative border
consists the most general non-frequent itemsets. That is, all
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Figure 1. Border and specialization relation.

itemsets inside the border, from the vision of specialization,
must be frequent but the ones outside the border cannot be
frequent.

A collectionH of subsets ofR is a simplehypergraph
[4], if no element ofH is empty and ifX,Y ∈ H andX ⊆
Y imply X = Y . A hypergraphH = (V,E) consists of a
finite collectionE of sets over a finite setV . The elements
of E are theedgesof the hypergraph, and atransversalof
H is a setT ⊆ V that intersects all the edges ofE. If
no T ′ ⊂ T is a transversal, we say that this transversal is
minimal. The setT r(H) of all minimal transversals of a
hypergraphH is called thetransversal hypergraphof H.
[8] showed that if the languageL satisfies the requirement
of representing as sets, the negative borderBd−(S) can be
computed by transversal hypergraph enumeration from the
positive border, that is,T r(Bd+(S)) = Bd−(S).

Definition 1 (Representing as Sets [6]). LetL be the lan-
guage,� a specialization relation, andR a set; denote by
P(R) the powerset ofR. A functionf : L → P(R) is a
representation ofL (and�) as sets, iff is one-to-one and
surjective,f and its inverse are computable, and for allθ
andϕ we haveϕ � θ if and only if f(ϕ) ⊆ f(θ). This
transformation is calledrepresenting as sets.

Based on the conclusions of [8], theDualize and Ad-
vancealgorithm first finds a most specific sentence,θ ∈ L
from an initial sentenceϕ, such thatϕ � θ. Once a set
of most specific sentences is found, the algorithm com-
putes the negative border of the sentences found by us-
ing transversal hypergraph enumeration, and restarts its up-
ward search from this negative border. If progress can be
made, the positive border can be made from the negative
border and thus the approach is guaranteed to succeed. The
time complexity of theDualize and Advancealgorithm de-
pends on the complexity of transversal hypergraph enu-
meration. [5] presented an incremental algorithm for the
transversal hypergraph computation with time complexity
T (I, i) = (I + i)O(log (I+i)), thus the time complexity of
theDualize and Advancealgorithm could be concluded as

t(|Bd+| + |Bd−|), wheret(n) = nO(log n), while using at
most|Bd−|+ width(L,�)|Bd+| queries.

For itemset mining, we have already the languageL rep-
resented as sets if we consider the empty set{} ∈ L. There-
fore theDualize and Advancealgorithm can be applied to
the problem of mining frequent itemsets. However, the lan-
guage for mining sequential patterns could not satisfy the
requirement of representing as sets.

3. Constraints on Representing as Sets

In this section we analyze the constraints on represent-
ing as sets. The problem of representing as sets is to find
a invertible mapping functionf , with which we have the
structure imposed on the languageL by � being isomor-
phic to a powersetP(R), whereR is an finite set. This
problem restricts the application of transversal hypergraph
enumeration in data mining.

If an invertible mapping functionf : S → P(R) exists,
the size ofS must be a power of2. For the problem of
finding frequent itemsets, given relationR of items, letS be
the set of all subsets ofR defined by the languageL. If we
consider{} as a subset ofR, thenS = P(R) is a powerset
and|S| = 2|R|, thus an identity mappingf(S) = S can be
used in this case.

Given a data set on relationR of items, letLset be the
language of describing all itemsets generated fromR and
Lseq be a class of sentences that defines all sequences gen-
erated fromR where the number of sentences depends on
the maximal length of sentence. Obviously the number of
sequences defined by the languageLseq is not a power of2,
thusLseq cannot be mapped to a powerset by any invertible
function.

Furthermore, if there exists an invertible function maps
Lseq toLset, for example functionsg andg−1, then leth =
g ◦ f we have that the languageLseq can be mapped to a
powerset byh. In fact it does not exist such an invertible
functionh. So that we have the following two properties.

Property 1. There does not exist any invertible mapping
function that maps the languageLseq to a powerset.

Property 2. It does not exist any invertible function that
maps the languageLset to languageLseq of defining se-
quences.

The languageLseq of defining sequences does not satisfy
the conditions on representing as sets, it does not exist any
mapping function mapsLseq to a powerset.

The goal of representing as sets is to apply the transversal
hypergraph enumeration to a powersetP(R) and then to
retransfer the results from the powersetP(R) back to the
description languageL via the inverse functionf−1. This
invertible transformation is based on the isomorphism on
the specialization relation� over the mapping functionf .



Property 3. Mapping functionf must be bijective.

If a mapping functionf has not the inverse functionf−1,
after computing the transversal hypergraph, a setXϕ ∈
P(R) may not have an inverse mapping to be applied in the
transformation fromXϕ ∈ P(R) to the languageϕ ∈ L.

In particular, for itemsets we haveL ≡ P(R), thus for
all f(ϕ) = Xϕ we haveϕ = Xϕ and therefore we can
simply write the identity mapping asf(X) = X .

Property 4. Mapping functionf must be isomorphic to the
specialization relation�.

The mapping function for representing as sets transfers
the languageL to a powersetP(R) and then the transversal
hypergraph enumeration onP(R) can be used to reduce the
complexity of computing the negative border of the theory
T h(L, r, q). The isomorphism requiresf is monotone with
respect to the specialization relation�, that is,

ϕ � θ ⇐⇒ f(ϕ) � f(θ).

4. Representing Sequences as Sets

Given a data setr overn rows of relationR of items, we
say that apatternis an itemsetX ⊆ R. LetLR denote the
language defining all subsets ofR, a pattern can be uniquely
defined by a sentence in the languageLR. Without losing
generality, we denote the pattern asIϕ corresponding to the
sentenceϕ ∈ LR. The languageLR describes the powerset
of R if we consider the empty set{} as a part ofLR. The
size ofLR is therefore|LR| = 2|R|.

We define theordered patternas a pair(Iϕ, o) where
Iϕ ⊆ R is a pattern and1 ≤ o ≤ n is an integer, the row
number of the pattern. We callo the order of an ordered
pattern. Therefore an ordered pattern is a pattern associated
with an order, it can be rewritten as follows,

(Iϕ, o) = {(R1, o), (R2, o), . . . , (Rj , o)},

whereR1, R2, . . . , Rj ∈ R and|Iϕ| = j. The pair(Ri, o)
is anordered item, whereRi ∈ R. LetRA denote the set of
ordered items onR, we haveRA = {(Ri, o) | Ri ∈ R, 1 ≤
o ≤ n}, and|RA| = |R| · n.

Let LA denote the language defining all subsets ofRO,
it can be defined as following,

LA = P({(X, o) | X ∈ R, 1 ≤ o ≤ n}).

The size ofLA is |LA| = 2n·|R|.
We have the following characteristics of ordered pat-

terns.

• Union: Iγ = Iϕ∪Iθ ⇐⇒ (Iγ , o) = (Iϕ, o)∪(Iθ , o).

• Inclusion: Iϕ ⊆ Iθ ⇐⇒ (Iϕ, o) ⊆ (Iθ , o).

• Incomparability : i 6= j ⇒ (Iϕ, i) 6= (Iϕ, j).

• Equivalence: {(Ri, i), (Rj , j)} = {(Rj , j), (Ri, i)}.

When we consider the pair(Ri, o) as a single item, to
find all frequent ordered patterns is the same task as finding
frequent itemsets.
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Figure 2. Finding frequent ordered patterns.

Example 1. Given data setr with itemsR = {A,B},
let languageL2 define all ordered patterns with the
order o ≤ 2, we depict the languageL2 as a lat-
tice shown in Figure 2. Assume a set of sentences
S ⊆ L2

a closed downwards to the relation�, S =
{A1, B1, A2, B2, A1B1, A1B2, B1B2, A2B2, A1B1B2},
and S includes the maximal ordered pattern sets
{A1B1B2, A2B2}.

The negative borderBd−(S) = {A1A2, B1A2}. For
this problem, we already haveL2

a represented as sets and
the mapping functionf is an identity mapping. With the
application of hypergraph transversals, we have therefore
Bd+(S) = {A1B1B2, A2B2} ⇒ H(S) = {A2, A1B1},
thus we have the minimal transversals ofH(S) that
T r({A2, A1B1}) = {A1A2, B1A2}, and thus the appli-
cation of hypergraph transversals returns the correct an-
swer. �

We use thesequential relationbetween patterns in a se-
quence. The sequential relation is a total order7→o that a
patternIϕ is precedent to another patternIθ if Iϕ 7→o Iθ.
Let o denote the order of the sequential relation, defined
as follows: given a sequences with length of k, if for
no Iγ in s we haveIγ 7→o Iϕ, theno = 1; otherwise,
o = max({o′ | Iθ 7→o′

Iϕ}) + 1. Note thatIθ 6= Iϕ is
not required for computingIθ 7→o′

Iϕ. In particular, for a
sequence with lengthk, we defineo = k if for no Iγ in s
we haveIϕ 7→o Iγ , and the ordero is therefore an integer
such that1 ≤ o ≤ k.

Given data set over relationR of items, letsk denote
a sequence consists ofk patterns, thensk can be formally
described as follows.

sk = 〈Iϕ1
7→1 Iϕ2

7→2 . . . 7→k−1 Iϕk
7→k ∅〉,

whereIϕ1
, Iϕ2

, . . . , Iϕk
⊆ R arek patterns. We use an

empty set to bound a sequence. If we consider a pattern and



its followed sequential relation as a pair, such as(Iϕi
, 7→o),

then we can represent a sequence as a set of pairs, that is,

sk = {(Iϕ1
, 7→1), (Iϕ2

, 7→2), . . . , (Iϕk
, 7→k)},

where the trailing empty set can be safely removed. It is
easy to see that the above form of sequence can be repre-
sented byk ordered patterns, such as,

sk = {(Iϕ1
, 1), (Iϕ2

, 2), . . . , (Iϕk
, k)}.

Definition 2 (Sequence). A sequence can be represented by
a set of ordered patterns with consecutive orders starting
from 1.

Now let us consider a languageLO of generally defin-
ing all ordered patterns over relationR of items and given
maximal ordern, without distinguishing the form of rep-
resentation. LetLseq denote the language of defining all
sequences over attributesR with given maximal lengthn,
we haveLseq ⊂ LO. Semantically, under the context of
transaction database, we have following properties.

Property 5 (From Ordered Patterns to Sequence). Each
non-empty sentence inLO stands for a list of transactions
with their order in transaction time, corresponding to a
sequence. Multiple sets of ordered patterns can be repre-
sented as one sequence in semantics.

Property 6 (From Sequence to Ordered Patterns). Each
non-empty sentence inLseq stands for a sequence of trans-
action, which can be only represented by a set of ordered
patterns with consecutive orders starting from 1.

Therefore, aproduction functionp can be used in trans-
forming a set of ordered patterns to a sequence. Given a
sentenceϕ ∈ LO, such as,

ϕ = {(Iϕ1
, o1), (Iϕ2

, o2), . . . , (Iϕk
, ok)},

whereo1 < o2 < . . . < ok andk ≤ n. The production
p(ϕ) returns a new sentenceθ ∈ LO such that,

θ = {(Iϕ1
, 1), (Iϕ2

, 2), . . . , (Iϕk
, k)}.

We say that the sentenceθ is thealias of the sentenceϕ,
which represents a sequence.

It is remarkable that the production functionp is not in-
vertible, so that it does not imply that this representation
satisfies the requirement of representing as sets.

5. Mining Sequential Patterns with Transver-
sal Hypergraph Enumeration

We propose theHSP algorithm for mining sequential
patterns with transversal hypergraph enumeration. Given

a transactional database over relationR, the task of mining
sequential patterns is to find maximal frequent sequences
with respect to givenminimal support[3]. We use the lan-
guageLA for representing sequences and use theDualize
and Advancealgorithm in finding the positive border of all
interesting sentences ofLA. The sequential pattern min-
ing process is specified within theDualize and Advanceal-
gorithm by a predicateq hsp that determines whether the
sequence corresponded to each sentence is frequent or not.
This procedure returns all most specific sentences, i.e., all
most specific frequent ordered patterns and their aliases. Fi-
nally theHSPalgorithm returns all frequent sequential pat-
terns with respect to these aliases.

Due to the limit of space, this paper only introduce the
algorithm ofq hsp that is defined as follows (shown as Al-
gorithm 1). Given a setS of customer sequences and a sen-
tenceϕ ∈ LA, q hsp evaluatesϕ against eachs ∈ S. If ϕ
does not exist in anys, q hsp returnsfalse without further
evaluations. Otherwise,q hsp computes the aliasθ ∈ LA

of ϕ and expandsθ to obtain all sentencesE (ϕ /∈ E) having
the same aliasθ. q hsp then evaluatesτ ∈ E in each cus-
tomer sequence, and updates the rank ofθ for computing
the support ofθ. If the support ofθ is≥ minimal support
q hsp storesθ as a frequent sequence and returnstrue oth-
erwiseq hsp returnsfalse. The approach ofDualize and
Advancerequires thatq hsp is monotone to the specializa-
tion relation� on the languageLA.

Property 7. The predicateq hsp is monotone to the spe-
cialization relation� on the languageLA.

Proof. We already have that the sentences ofLA respect
the specialization�. If a sentenceϕ ∈ LA is interesting,
then we have the aliasθ ∈ LA interesting, means that the
sequencesθ represented byθ is frequent, andϕ exists in at
least one customer sequences ∈ S. And according to the
relation� onLA, any generalization ofϕmust be exist in at
least one customer sequences ∈ S, and any sub-sequences
of sθ must be frequent. Thus we have that forγ ∈ LA and
γ � ϕ, if q hsp(S, ϕ) = true, thenq hsp(S, γ) = true.

Next we show that forγ ∈ LA and γ � ϕ, if
q hsp(S, γ) = false, thenq hsp(S, ϕ) = false.
q hsp(S, γ) = false means thatγ does not exist in any

customer sequences ∈ S or the sentence represented by
the aliasψ ∈ LA of γ is not frequent. In the first case,
no specialization ofγ can exist in any customer sequence
s ∈ S. In the second case, the sequence represented by the
alias of any specialization ofγ cannot be frequent. Thus for
any sentenceϕ ∈ LA andγ � ϕ, we haveq hsp(S, ϕ) =
false. �

The predicateq hsp is monotone to the specialization
relation� onLA and it updates correctly the frequency of
sequences with respect to the definition ofsupportfor se-
quential patterns. Therefore the model of ordered patterns



and theq hsp predicate can address the problem of mining
sequential patterns within theDualize and Advancealgo-
rithm where the transversal hypergraph enumeration is ap-
plicable.

Algorithm 1 : Algorithm of theq hsppredicate.

if exitsγ � ϕ not interestingthen1

return false;2

end3

alias rank ← 0;4

foreachs ∈ S do5

rank ← evaluateϕ againsts;6

if rank > 0 then7

updatealias rank by rank;8

removes fromS;9

end10

end11

if alias rank = 0 then12

return false;13

end14

θ ← alias ofϕ;15

E ← all sentences with aliasθ but excludingϕ;16

foreachs ∈ S do17

foreachτ ∈ E do18

rank ← evaluateτ againsts;19

if rank > 0 then20

updatealias rank by rank;21

removes fromS;22

end23

end24

end25

if alias rank/number of slices ≥ min supp then26

storealias(θ);27

return true ;28

end29

return false;30

According to theDualize and Advancealgorithm, the
complexity of the HSP is polynomial in |Bd+| and
T (|Bd+|, |Bd−|) whereT (n) = nO(log (n)) [5, 6, 7].

Given a setS of customer sequences, assume the final
result containsN aliases, then in the worst case the num-
ber of all most specific sentences is|Bd+| = N |S|. In the
worst case, each evaluation of a sentenceϕ ∈ LA requires
|S| + |ϕ|(|S| − 1) queries without caching, where|ϕ| is
the number of all sentences with the same alias withϕ, not
includingϕ, and|S| is the number of customer sequences.

6. Conclusion

We analyzed the constraints of using transversal hyper-
graph enumeration on itemset mining and proposed the

HSPapproach for mining sequential patterns with theDu-
alize and Advancealgorithm. We introduced the model of
ordered patterns with respect to the constraints on apply-
ing transversal hypergraph enumeration in itemset mining.
We showed that the problem of mining sequential patterns
could be addressed by the languageLA for finding frequent
ordered patterns and we presented a predicate for determin-
ing whether the sequence corresponded to each sentence is
frequent. This predicate is monotone on(LA,�). TheHSP
approach is interesting when the lengths of frequent sequen-
tial patterns are large. We are currently investigating the
comparison between different approaches to sequential pat-
terns mining.
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