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In this paper we present a novel approach for discovering fuzzy unexpected sequences, such as certainly unexpected, almost unexpected and a little unexpected, from databases with respect to user defined beliefs. We first formalize the belief on sequences and the different types of unexpectedness, then we detail the algorithm Taufu that finds fuzzy unexpected sequences with beliefs. Our approach has been verified with various experiments.

Introduction

As the one most concentrated in KDD and data mining research, the sequential pattern mining [START_REF] Agrawal | Mining sequential patterns[END_REF] gives a frequency based view of the correlations between elements contained in sequences. However, when we consider domain knowledge (in this paper we interpret knowledge as beliefs) within the discovery, most of the frequent sequences might have already been confirmed, and in many cases the most interested are the sequences that contradict existing knowledge.

For instance, in Web site log analysis, a belief may require that the access of home.php should be followed, but not directly (considering online statistic and advertisement systems involved in the same session), by the access of login.php, and the access of login.php should not be replaced by the access of logout.php. So that an expected sequence like "access of home.php is followed by stats.cgi then followed by ad.cgi and then followed by login.php" may have strong frequency support, and an unexpected sequence like "access of home.php is directly followed by login.php" will be hidden by the sequential pattern model since it is included in expected ones. Furthermore, another unexpected sequence like "access of home.php is followed by stats.cgi then followed by logout.php" may have weak support and be difficult to be discovered by frequency based criteria.

On the other hand, even though we know that the access of home.php could not be directly followed by the access of login.php, it is difficult to point out how many elements should exactly occur between them, since the number of involved online statistic and advertisement systems may be uncertain. It is therefore necessary to consider fuzzy unexpectedness with beliefs to respect such uncertain occurrences, such as "access of home.php is directly followed by login.php" is certainly unexpected, "access of home.php is followed by login.php after 1 elements" is almost unexpected, and "access of home.php is followed by login.php after 3 elements" is a little unexpected.

In this paper, we propose a novel approach, Taufu (τ fuzzy), for discovering fuzzy unexpected sequences from databases with respect to user defined beliefs. The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3 presents our ap-proach Taufu. Section 4 shows our experimental results. The conclusion and our future research directions are listed in Section 5.

Related Work

The interestingness measures for data mining can be classified as objective measures and subjective measures [START_REF] Mcgarry | A survey of interestingness measures for knowledge discovery[END_REF]. Objective measures typically depend on the structure of extracted patterns, and the criteria based on probability and statistics approaches like support and confidence; subjective measures are generally user and knowledge oriented, such criteria can be actionability, unexpectedness etc.. The belief driven unexpectedness is first introduced by [START_REF] Silberschatz | On subjective measures of interestingness in knowledge discovery[END_REF] as a subjective measure where beliefs are categorized to hard beliefs and soft beliefs.

In the most recent approach to semantics based unexpected association rule discovery presented by [START_REF] Padmanabhan | On characterization and discovery of minimal unexpected patterns in rule discovery[END_REF], a belief is represented as a rule. For example, the belief prof essional → weekend shows that professionals do shopping at weekend, and a rule Dec. → weekday, shows that in December people do shopping at weekday, is unexpected to the belief prof essional → weekend (since weekend semantically contradicts weekday) if: (a) the rule Dec. ∪ prof essional → weekday satisfies given support/confidence threshold values; (b) the rule Dec. ∪ prof essional → weekend does not satisfy given minimum support/confidence. On unexpected sequence discovery, [START_REF] Spiliopoulou | Managing interesting rules in sequence mining[END_REF] proposed an approach based on beliefs constrained by frequency. Given a belief, if the support/confidence values of specified subsequences within a frequent sequence do not satisfy frequency constraints introduced by the belief, then such a frequent sequence is unexpected. On the other hand, various fuzzy approaches have been proposed on discoveries of sequential patterns [START_REF] Chen | Discovery of fuzzy sequential patterns for fuzzy partitions in quan-titative attributes[END_REF][START_REF] Chen | A novel method for discovering fuzzy sequential patterns using the simple fuzzy partition method[END_REF][START_REF] Hu | A fuzzy data mining algorithm for finding sequential patterns[END_REF][START_REF] Subramanyam | A fuzzy data mining algorithm for incremental mining of quantitative sequential patterns[END_REF][START_REF] Chen | A new approach for discovering fuzzy quantitative sequential patterns in sequence databases[END_REF], most of them focused on finding frequent sequences with fuzzy quantity on each items, like "60% of people who eat a lot of candies purchase few potato chips"

We are concentrating on finding unexpected sequences with semantics and occurrence based fuzzy beliefs.

3 Taufu: An Approach for Fuzzy Unexpected Sequence Discovery 

′ = I ′ 1 I ′ 2 . . . I ′ n , if there exist integers 1 ≤ i 1 < i 2 < . . . < i m ≤ n such that I 1 ⊆ I ′ i 1 , I 2 ⊆ I ′ i 2 , .
. . , I m ⊆ I ′ im , then the sequence s is a subsequence of the sequence s ′ , denoted as s ⊑ s ′ . In particular, we denote the first itemset of a sequence s as s ⊤ and the last itemset as s ⊥ . We therefore note s

⊑ ⊤ s ′ if s ⊤ ⊑ s ′ ⊤ , s ⊑ ⊥ s ′ if s ⊥ ⊑ s ′ ⊥ , and s ⊑ ⊤ ⊥ s ′ if s ⊤ ⊑ s ′ ⊤ and s ⊥ ⊑ s ′ ⊥ . If s ⊑ s ′ , we say that s is contained in s ′ , or s ′ supports s.
The support of a sequence is defined as the fraction of total sequences in D that support this sequence. If a sequence s is not a subsequence of any other sequences, then we say that the sequence s is maximal.

The length of a sequence is the number of itemsets contained in the sequence, denoted as |s|. An empty sequence is denoted as ∅, we have s = ∅ ⇐⇒ |s| = 0. The concatenation of sequences is denoted as the form s 1 •s 2 , and we have

|s 1 • s 2 | = |s 1 | + |s 2 |.

Belief on Sequences

In order to discover fuzzy unexpected sequences from databases, we first propose the semantics and occurrence constrained belief on sequences.

Definition 1 (Belief). A belief on sequences consists of a sequence rule s α ⇒ s β and a pair η, τ of constraints. The rule s α ⇒ s β introduces that in a sequence s, the occurrence of s α ⊑ s implies an occurrence of s β ⊑ s later.

The pair η, τ consists of a semantical constraint η = s β ∼ s γ and an occurrence constraint τ = [n b ..n e ] on s β and s γ . We denote a belief on sequences as [s α ; s β ; s γ ; τ ]. A sequence s verifies a belief b is denoted as s |= b.

The semantical constraint η is a contradiction relation ∼ between two sequences, so that given two sequences s 1 and s 2 , the relation s 1 ∼ s 2 constrains that s 1 cannot be replaced by s 2 in any concentrated sequences. For example, as illustrated in Section 1, the access of login.php could not be replaced by the access of logout.php, so that we have login.php ∼ logout.php.

Given a sequence s, the constraint τ is an in- terval [n b ..n e ] on two subsequences s 1 , s 2 ⊑ s that s 1 → [n b ..ne] s 2 ,
where n b and n e are two integers that 0 ≤ n b ≤ n e ≤ * where * stands for the end of sequence s. The constraint s 1 → [n b ..ne] s 2 ensures that if s 1 occurs before the occurrence of s 2 in s, then between s 1 and s 2 there should exist a sequence

s ′ such that n b ≤ |s ′ | ≤ n e , denoted as |s ′ | |= [n b ..n e ]. We denote s 1 → [0..0] s 2 as s 1 → s 2 and s 1 → [0.. * ] s 2 as s 1 → * s 2 .
Example 1. The constraint home.php → [3..5] login.php requires that if home.php is followed by login.php, then between them there should be 3 to 5 occurrences of other elements. Therefore, considering the belief [home.php; login.php; logout.php; [3..5]], the constraint login.php ∼ logout.php further requires that if home.php is followed by logout.php, then between them there should not be 3 to 5 occurrences of other elements.

Fuzzy Unexpected Sequences

An unexpected sequence is a sequence that violates the constraints introduced by a given belief. Given a belief b = [s α ; s β ; s γ ; τ ] and an unexpected sequence s, the constraints η, τ can be represented as a constraint on the length of a subsequence

s ′ ⊑ s such that |s ′ | < n b or |s ′ | > n e and s α • s ′ • s β ⊑ s, or such that n b ≤ |s ′ | ≤ n e and s α • s ′ • s γ ⊑ s. We denote that s satisfies the constraint τ = [n b ..n e ], i.e. n b ≤ |s| ≤ n e , as |s| |= τ .
We partition the satisfiability of τ into several fuzzy sets by a fuzzy membership function µ, then s |= (τ, U ) denotes that the length of s satisfies the constraint τ , where U is the membership degree. Considering the possible violations of a belief [s α ; s β ; s γ ; τ ], we propose three types of unexpectedness.

Definition 2 (The α-unexpectedness). Given a belief b = [s α ; s β ; s γ ; * ] and a sequence s such that s α ⊑ s, if there does not exist s β , s γ such that s α → * s β ⊑ s or s α → * s γ ⊑ s, then s supports α-unexpectedness, denoted as s |= (α ⊢ b), and we say s is α-unexpected.

The meaning of the α-unexpectedness is given by the primary factor s α contained in such unexpected sequences. The α-unexpectedness is crisp since the constraint τ is fixed to * , which cannot be fuzzy.

Definition 3 (The β-unexpectedness). Given a belief b = [s α ; s β ; s γ ; τ ] and a sequence s such that s α ⊑ s, if τ = * and there exists s β such that s α → * s β ⊑ s, and there does not exist s ′ such that |s ′ | |= (τ, U ) and s α → s ′ → s β ⊑ s, then s supports β-unexpectedness, denoted as s |= (β ⊢ b, U ), and we say s is β-unexpected.

Definition 4 (The γ-unexpectedness). Given a belief b = [s α ; s β ; s γ ; τ ] and a sequence s such that s α ⊑ s, if there exists s γ such that s α → * s γ ⊑ s and there exists s ′ such that |s ′ | |= (τ, U ) and s α → s ′ → s γ ⊑ s, then s supports γ-unexpectedness, denoted as s |= (γ ⊢ b, U ), and we say s is γ-unexpected.

The meaning of the β-unexpectedness and γ-unexpectedness is given by the factor s β and s γ contained in the unexpected sequences. Such unexpectedness can be fuzzy, where the membership degree U of unexpectedness is measured by the fuzzy membership function µ, and we have 0 < U ≤ 1. Note that we have U ≡ 1 for α-unexpected sequences, so that for uniforming the notations, we can also denote an α-unexpected sequence as s |= (α ⊢ b, U ) where U = 1 (in fact we have τ = * =⇒ U = 1). Without loss of generality, a sequence supporting the unexpectedness u ∈ {α, β, γ} stated by a belief b is denoted as s |= (u ⊢ b, U ); a fuzzy unexpected sequence s and its membership degree U are denoted as a pair s, U . Example 2. Given a user defined belief b = [home; login; logout; [0..5]] on Web site log files, we consider three fuzzy sets for the each unexpectedness, they are "little" (µ L ), "almost" (µ A ) and "certainly" (µ C ). To crisp unexpectedness, a sequence s = (home)(ad1)(ad2)(ad3)(ad4)(login) is expected since |(ad1)(ad2)(ad3)(ad4)| = 4 and 4 |= [0..5]. However, let fuzzy membership functions for measuring β-unexpectedness be shown in Figure 1, we have µ L (4) = 0.67, µ A (4) = 1 and µ C (4) = 0.5, so that the best description of the sequence s is "almost" unexpected. In the fuzzy set "certainly" for such β-unexpectedness, we have s |= (β ⊢ b, 0.5) since the degree U = µ C (4) = 0.5, and we can so write sequence s as s, 0.5 for βunexpected of belief b. 

s ′ • s u = s (|s ′ | ≥ 0) such that s α ⊑ ⊤ s u ; (2) if s is β-unexpected, we have s a • s u • s c = s (|s a | , |s c | ≥ 0) such that s α ⊑ ⊤ s u and s β ⊑ ⊥ s u ; (3) if s is γ-unexpected, we have s a • s u • s c = s (|s a | , |s c | ≥ 0) such that s α ⊑ ⊤ s u and s γ ⊑ ⊥ s u .
The composition of an unexpected sequence can therefore be considered as at most three maximal subsequences, called the antecedent sequence (denoted as s a , and |s a | ≥ 0), the bordered unexpected sequence (denoted as s u , and |s u | > 0) and the consequent sequence (denoted as s c , and |s c | ≥ 0). Given a belief b and set S of sequences that support an unexpectedness u ⊢ b, that is, for each s ∈ S we have s |= (u ⊢ b, U ). Let S a be the set of all antecedent sequences, S u be the set of all bordered unexpected sequences and S c be the set of all consequent sequences. By studying S a , S u and S c , for example, by performing the sequential pattern mining to them, we can further discover the implication rules on such unexpected behaviors, such as, the maximal frequent sequences in S a reflect the implications of the unexpectedness u ⊢ b, and the unexpectedness u ⊢ b implies the consequences depicted by the maximal frequent sequences in S c . All the same, the maximal frequent sequences in S u depict the internal structures with the unexpectedness u ⊢ b.

The discovery of such rules and structures is out of the scope of this paper and is detailed in our previous article [START_REF] Li | Mining unexpected sequential patterns and rules[END_REF].

The Algorithm Taufu

Our algorithm Taufu finds all fuzzy unexpected sequences from a sequence database D, with respect to the belief base B, the fuzzy sets F and the minimum membership degree ω. The output of Taufu includes all fuzzy unexpected sequences s, U associated with the membership degree U , and the bordered unexpected sequence s u , the antecedent sequence s a and the consequent sequence s c of each pair s, U . Algorithm 1 shows the main routine of the algorithm Taufu. Algorithm 2 shows the procedure uxps alpha.

Note that in order to maintain the consistence of the belief base B, only the sequences violating all of the beliefs that state an αunexpectedness and contain the same s α are considered as α-unexpected to B, see Example 4. Therefore the procedure uxps alpha outputs s, 1 if s is α-unexpected to each belief that states the α-unexpectedness with s α .

Algorithm 2: Subroutine uxps alpha. The procedure uxps f uzzy first finds all the labels of fuzzy partitions corresponding to b in the fuzzy set F, in this example we have L = {A, C}. The procedure then finds fuzzy unexpectedness with respect to s β and s γ of the belief b. In this example, we only illustrate how uxps f uzzy extracts the βunexpectedness from s. The extraction of the γ-unexpectedness is the same one.

Input : s, b, B Output: s, 1 if s is α-unexpected,
The subroutine f ind f uzzy bounds of the procedure uxps f uzzy finds all intervals of itemsets between the last itemset s α and the first itemset of s β (or s γ ) with respect to the fuzzy partitions and the minimum membership degree ω. The result returned by f ind f uzzy bounds is a set of intervals and begin-end positions categorized by the label of fuzzy partitions corresponding to current belief b, and the ranges are sorted with the descendant membership degree order. In this example, the algorithm finds all fuzzy bounds between (12) and (21). Within the sequence s, there are totally 3 intervals for the fuzzy partition A and 5 intervals for the fuzzy partition C, the order is shown as the two tables in Figure 5(a).

For each fuzzy partition, the algorithm finds the unexpectedness by the backward matching procedure backward, that finds s α ⊑ s, and the forward matching procedure f orward, that finds s β ⊑ s (or s γ ⊑ s). In this example, for both of the fuzzy partitions A and C, the f orward procedure finds the first sequence that contains s α , that is ⊑ (11)(12) shown as 1 in Figure 5(a). For the fuzzy partition A, the first (the best) interval between ( 12) and ( 21) is shown as 4 , with which the algorithm finds an occurrence of s β , as shown as 5 . For the fuzzy partition C, the first (the best) interval between (12) and ( 21) is shown as 2 , with which the algorithm finds an occurrence of s β , as shown as 3 . Imagine that if the first interval between (12) and (21) does not drive the s β , then the second one will be verified, and till to the last one; if no s β is found, the algorithm returns without output.

Therefore, finally the algorithm outputs the bordered unexpected sequence [START_REF] Subramanyam | A fuzzy data mining algorithm for incremental mining of quantitative sequential patterns[END_REF] To simplify the procedure of our experiments, the ratio of membership function µ is fixed to ±0.2 for all fuzzy partitions, further more, the partitions "almost" and "a little" do not cover the interval ranges within which the membership degree of the partition "certainly" is 1.

The interval value of the partitions "almost" and "a little" where there membership degree equals 1 is fixed to 2.

For instance, for the following belief of CAT2 [ (login) ; (list)(view) ; (logout) ; [0..5]], the fuzzy partitions are shown in Figure 6. Note that the partitions "almost" and "a little" are partial. The numbers of unexpected sequences that we find with respect to ω = 1, ω = 0.7 and ω = 0.2 are listed in Table Figure 7 shows the number of unexpected sequences in the fuzzy sets "certainly unexpected", "almost unexpected" and "a little unexpected" when the minimum fuzzy degree ω = 1.0. Figure 8 and Figure 9 show the number of unexpected sequences in the same fuzzy sets when ω = 0.7 and ω = 0.2. Such unexpected sequences are difficult to discovered by classical sequential pattern algorithms because of the low support and the inclusion of sequences, and even because of the classification of those fuzzy partitions. As shown in this section, in our testing sequence database of Web attacks, some kind of beliefs drive a clear view of the unexpetedness, for example CAT2 and CAT3, but the unexpectedness stated by the beliefs of CAT4 are quite "fuzzy". Hence in the case of CAT4, the unexpected sequences extracted by a fuzzy method is more important for post analysis, and even for improving the belief base. On the other hand, even in such a database, the sequential pattern (login)(logout) can be discovered with a minimum support less than 0.1, but such a sequential pattern cannot state any unexpectedness contained in the database.

Conclusion

In this paper we introduce a novel approach for the discovery of fuzzy unexpected sequences from databases, with respect to user defined beliefs. We also present the algorithm Taufu, which has been verified with real Web server log file analyzing. The experimental results show that our approach Taufu extracts the unexpected sequences corresponding to all predefined fuzzy partitions.

We are interested in discovering belief driven fuzzy unexpected sequential patterns and fuzzy unexpected sequential rules from database, that are helpful to extract the internal relations within the unexpectedness and to find the implications before/after the occurrences of unexpectedness, where a fuzzy method can be creditable.
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β-unexpected/γ-unexpected sequences extracted from a belief in CAT2.