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Abstract 
 
 Scalability of architecture, programming model and task 

control management will be a major challenge for future VLSI 
systems. In this context, homogeneous MPSOC is a seducing 
approach as it is intrinsically scalable. HS-Scale is a 
contribution in this domain and was already published in 
[1,2]. In this article, we present an original MPI-based 
adaptive task migration support for the HS-Scale system. Our 
previous communication API was modified in order to be MPI 
compliant. In order to enable task migration without any 
MMU, a Position Independent Code compilation technique is 
implemented. The self-adaptability is based on monitoring 
information collected at run-time by each processing element 
(PE). Each PE is endowed with the same decisional capability 
insuring the scalability of the solution. A MJPEG case study 
validated on a multi-FPGA prototyping platform is presented. 
The observation of the dynamic behavior of HS-Scale shows 
that the system is able to find itself a stable task placement 
providing the best performance in terms of processing 
throughput. 

 
1. Introduction 

 
Multi-Processor System-on-Chips (MPSoCs) are becoming 

an increasingly popular solution that combines flexibility of 
software along with potentially significant speedups. These 
complex systems usually integrate a few mid-range 
microprocessors for which an application is usually statically 
mapped at design-time. Those applications however tend to 
increase in complexity and often exhibit time-changing 
workload which makes mapping decisions sub-optimal in a 
number of scenarios. 

Our previous work, presented in [1] and [2] aimed at 
exploring and defining principles which granted both 
hardware and software scalability, namely HS-Scale. The 
hardware architecture, H-Scale, is a homogeneous MP-SOC 
based on RISC processors, distributed memories and an 
asynchronous network on chip. S-Scale is a programming 
model handled at run-time by a compact Operating System 
which permits essentially to schedule tasks and to manage the 
memory and communications between tasks. Several 
experiments were conducted on HS-Scale with the 
implementation of several applications: FIR, DES and 
MJPEG. The results showed the importance of the task 
placement on the architecture with several task characteristics 
in terms of regularity and granularity. One very important 
result was the correlations observed between performance and 
task distribution allowing us to forecast some adaptive 

strategies to automate the task management and distribute it 
over the system.  

In this paper, our new contribution is the complete 
implementation of an adaptive migration support based on the 
Message Passing Interface (MPI) programming model. The 
HS-Scale system is now based on a set of adaptive principles 
which endow the architecture with some decisional 
capabilities. Based on a distributed monitoring scheme, each 
processing element is able to migrate automatically its tasks 
following a customizable policy. These mechanisms were 
developed in a fully decentralized fashion in order to satisfy 
the scalability of our solution.   Also, an originality of our 
contribution is that the task migration is performed without 
any MMU (Memory Management Unit), but enabled thanks to 
PIC (Processor Independent Code) compilation. 

This paper is organized as follows. Section 2 presents the 
related work in the field of task migration techniques for 
MPSOC systems. Section 3 resumes our previous work on the 
hardware architecture H-Scale. In section 4, the operating 
system and the programming model based on MPI are 
presented. . Our migration support is then exposed in section 
5; the dynamic task loading based on PIC compilation is 
especially detailed and run-time adaptive mechanisms are then 
described. In section 6, we present the basis of our 
experiments, a multi-board prototyping platform. We present 
and discuss results obtained on a case study, MJPEG.  

 
2. Related works 

 
Our new contribution is the implementation of a full 

adaptive task migration support based on the MPI 
programming model. Task migration has been studied in the 
literature in both shared and distributed memory systems over 
the past as it is shown in the following paragraphs.  

For shared memory systems such as today regular multi-
core PCs, the process is facilitated by the fact that no data has 
to be moved across several physical memories; there exist 
several efficient implementations on general purposes OS such 
as Windows or Linux [3]. Task migration has also been 
explored for MPSoCs, notably based on locality 
considerations [4] for decreasing communication overhead or 
power consumption [5]. In [6], authors present a migration 
case study for MPSoCs that relies on the µClinux operating 
system and a checkpointing mechanism. The system uses the 
MPARM framework [7], and although several memories are 
used the whole system supports data coherency through a 
shared memory view of the system.  

Migration on message-passing systems is generally a more 
difficult problem since both process code and state has to be 
moved from a processor to another, and synchronizations must 
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be performed using exchanged messages such as in [8] which 
is a solution out of the scope of this work since it target linux 
computer clusters. 

Some other approaches aimed at augmenting MPI for 
providing a support for process migration, such as [9], [10] 
and [11]. All these approaches target computer clusters with 
the typical resources of general purpose computers and are 
therefore hardly applicable to MPSoCs. In [12] users present  
similar features based on a JAVA MPI framework that 
provides hardware independence; they show that despite 
migrating tasks implies overhead which are in the order of 
seconds, significant speedups can be achieved. 

Finally, to the best of our knowledge, no other work 
combines the use of a message-passing programming model, 
on-chip multiprocessor system and adaptive task migration 
which is the main goal of the presented work. 

 
3. H-Scale architecture 

 
The basis of our approach stands on scalable hardware 

architecture called H-Scale and was presented in details in [1] 
and [2]. The processing element, namely the “NPU” (Network 
Processing Unit), is first presented. The communication 
infrastructure is then briefly described. 

  
3.1.  Network processing Unit 

 
The architecture is made of a homogeneous array of PE 

communicating through a packet-switching network. For this 
reason, the PE is called NPU, for Network Processing Unit. 
Each NPU, as detailed later, has multitasking capabilities 
which enable time-sliced execution of multiple tasks. This is 
implemented thanks to a tiny preemptive multitasking 
Operating System which runs on each NPU. The structural 
and functional views of the NPU are depicted in Figure 1. 
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Figure 1 Network Processing Unit structural and functional 

descriptions 

The NPU is built around two main layers, the network layer 
and the processing layer. The Network layer is essentially a 
small routing engine (XY routing). Packets are read from 
incoming ports, then either forwarded to outgoing ports or 
passed to the processing layer. Whenever a packet header 
specifies the current NPU address, the packet is forwarded to 
the network interface (NI in Figure 1). The network interface 
buffers incoming data in a small hardware FIFO and 
simultaneously triggers an interrupt to the processing layer. 
The interrupt then triggers data demultiplexing from the single 
hardware FIFO to the appropriate software FIFO as 
exemplified in Figure 1. 

The processing layer is based on a simple and compact 
RISC microprocessor, its static memory and a few peripherals 
(one timer, one interrupt controller, one UART) as shown in 
Figure 1. A multitasking microkernel implements the support 
for time-multiplexed execution of multiple tasks. 

The microprocessor we use has a compact instruction set 
comparable to a MIPS-1 [13]. It has 3 pipelines stages, no 
cache, no Memory Management Unit (MMU) no memory 
protection support in order to keep it as small as possible. 
 

3.2. Communication infrastructure 
 

For technology-related concerns, a regular arrangement of 
processing elements (PEs) with only neighboring connections 
is favored. This helps in a) preventing using any long lines and 
their associated undesirable cross-talk effects in deep sub-
micron CMOS technologies b) synthesizing the clock 
distribution network since an asynchronous communication 
protocol between the PEs might be used. Also, from a 
communication point of view, the total aggregated bandwidth 
of the architecture should increase proportionally with the 
numbers of PEs it possesses, which is granted by the principle 
of abstracting the communications through routing data in 
space. The Network-on-Chip paradigm (NoC) enables that 
easily thanks to packet switching and adaptive routing. 

The communication framework of HS-scale is derived from 
the Hermes Network-on-chip, refer to [14] for more details. 
The routing is of wormhole type, which means that a packet is 
made of an arbitrary number of flits which all follow the route 
taken by the first one which specifies the destination address. 
Figure 2 depicts the simple packet format used by the network 
framework constituted by the array of processing elements. 
Incoming flits are buffered in input buffers (one per port). 
Arbitration follows a round-robin policy giving alternatively 
priority to input ports. Once access to an output port is 
granted, the input buffer sends the buffered flits until the entire 
packet is transmitted (wormhole routing). 

 f0f1f2f3f4fn-1 adn
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Figure 2 Packet format 

Inter-NPU communications are fully asynchronous and are 
based on the toggle-protocol. This protocol uses two toggle 
signals for the synchronization, a given data being considered 
valid when a toggle is detected. When the data is latched, 
another toggle is sent back to the sender to notify the 
acceptance. This solution allows using completely unrelated 
clocks on each PE in the architecture. 

 
4. S-scale architecture 

 
The very first motivation for the HS-Scale system was to 

provide a complete scalable solution, from both hardware and 
software point of view. In this section, we present the 



 

developed operating system (micro kernel) running on each 
NPU and insuring the scalability of our approach. Then, we 
present the programming model which is now MPI compliant, 
allowing a greater portability of the developed applications, 
and thus potentially higher flexibility and performance. 

 
4.1. Distributed operating system 

 
The lightweight operating system we use was designed for 

our specific needs.  Despite being small (28 KB), this kernel 
does preemptive switching between tasks and also provides 
them with a set of communication primitives that are 
presented later. Figure 3 gives an overview of the operating 
system infrastructure and the services it provides.  

NI  
Figure 3 Operating System overview 

The interrupts manager may receive interrupts from 3 
hardware sources: UART, Timer and network interface (NI). 
Whenever an interrupt occurs, other interrupts are disabled 
and the processor context is saved in the system stack. 
Following the type of interrupt, it either reads from the UART, 
schedules another task (timer), receive information from other 
NPUs or use a communication primitive (interrupt from the 
network interface FIFO_in). Afterwards processor context is 
restored and interrupts are re-enabled. The scheduler is the 
core of the microkernel but is quite simple. Each time a timer 
interrupt occurs, it checks if there is a new task to run. In the 
positive case, it executes this new task. Otherwise, it has two 
possibilities: either there is no task to schedule then it just runs 
an idle task, or there is at least one task to schedule. Tasks are 
scheduled periodically following a round robin policy as 
depicted in Figure 4. 
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Figure 4 Scheduling diagram 

 

4.2. MPI-Based programming model 
 

Previously, we had developed a proprietary communication 
API. The first new contribution of this paper is that our API is 
now MPI compliant. The Message-Passing Interface (MPI) is 
a popular standard that is used in High Performance 
Computing computer clusters for instance. 

Since this work targets massively parallel on-chip 
Multiprocessor systems scalability is a major concern in the 
approach. For this reason, we put focus on distributed memory 
machines and therefore message passing model for it provides 
a natural mapping to such machines. MPI being the de-facto 
standard, several works aimed at porting MPI subsets for 
MPSoCs. 

Hence, tasks are hosted on NPUs which provide through 
their operating system communication primitives that enable 
data exchanges between communicating tasks. The proposed 
model reuses only two of the MPI communication primitives, 
MPI_send() and MPI_recv(). Figure 5 depicts the layered view 
of the communication protocol we use. MPI_recv() blocks the 
task until the data is available while MPI_send() is blocking 
until the buffer is available on the sender side. In our 
implementation each call exhibits this behavior and is 
translated into a sequence of low-level Send_Data() / 
Receive_Data() methods that set up a communication channel 
trough a simple request/acknowledge protocol. This protocol 
ensures the remote processor buffer has sufficient space before 
sending the message which help lowering the contentions in 
the communication network and also prevents deadlocks in it. 

Figure 5 depicts the communication stack that is used in 
our system. Although a hardware implementation could 
certainly help improving performance, for compactness 
reasons it is fully implemented in software down to packet 
assembling. 
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Figure 5 HS-Scale protocol stack 

No explicit group synchronization primitives are provided; 
however this can be simply achieved in an ad-hoc fashion 
through using MPI_send() and MPI_recv() for passing tokens. 
Broadcast, gather and similar mechanisms can also be 
implemented in the same manner. Furthermore, although it 
could be easily implemented, no non-blocking receive method 
is provided since the targeted applications usually do not 
require it. 

The prototypes of those functions are as follows: 
MPI_Send(int edge, const void *data, int size) 
MPI_Recv(int edge, void *data, int size) 

 
The prototypes of these functions are self explanatory, a 

reference to the graph edge identifier, a constant void pointer 
and a size of data expressed in bytes. 

Figure 6 shows an example of task graph where it can be 
seen that communication channels feature a (software) FIFO 
queue at the receiver side. Queues sizes can be parameterized 
and their size can be tuned on-line as the operating system 
provides memory allocation and deallocation services. 
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Figure 6 Example of graph task 

 

5. Adaptive task migration 
 
HS-Scale is a complete scalable framework: the proposed 
MPSOC system is made of a homogeneous set of processing 
elements, each one running a micro kernel. The applications 
can be programmed with some MPI primitives providing a 
higher flexibility in terms of task mapping and potentially 
higher performances due to the underlying parallelism. Our 
objective is now to implement a full adaptive task migration 
support to take benefit from this potential flexibility and 
performance. The first challenge was to enable dynamic code 
loading on a system devoid of any MMU.  Then, it was 
necessary to implement a robust migration protocol allowing 
to improve intelligently the global performance of a given 
application running on HS-Scale. 

One of the objectives of this work is to enable dynamic 
load balancing which implies the capability to migrate running 
tasks from processor to processor. Migrating tasks usually 
implies: 

- To dynamically load in memory and schedule a new 
process 
- To restore the context of the task that has been migrated 
 
5.1. Dynamic process loading 

 
Both points are challenging for such microprocessor targets 

since, for density reasons, no Memory Management Unit 
(MMU) is available. A MMU, among other tasks, usually 
performs the translation between virtual and physical 
addresses and therefore permits to load and run a code in an 
arbitrary region of the physical memory.  

A possible alternative for enabling the loading of processes 
without such mechanisms relies on a feature that is partly 
supported by the GCC compiler that enables to emit 
relocatable code (PIC: Position Independent Code). This 
feature generally used for shared libraries generates only 
relative jumps and accesses data locations and functions using 
a Global Offset Table (GOT) that is embedded into the 
generated ELF [15] file. A specific post-processing tool which 
operates on this format was used for reconstructing a 
completely relocatable executable. Experiments show that 
both memory and performance overheads remain under 5% 
for this solution which is clearly acceptable.  

 

5.2. Task context migration 
 
The migration of a process implies both instantiating a new 

executable into the memory but also restoring its context. 
Again, the lack of MMU makes this task difficult since the 
context of the process includes the stack which embeds not 
only data (such as return values of functions) but also return 
addresses that are memory-location dependent. The solution 
we developed is based on defining migration points that are at 
specific locations in the code, namely whenever a 
communication primitive is called. This method is restrictive 
since it assumes that the computation relies on a strict 
consumer / producer model where no internal state is kept 
from iteration to iteration. This translates that there cannot be 
any dependencies between two adjacent computed data 
chunks.  

When a task migration order is issued by the operating 
system, the following sequence of action is initiated between 
NPU1 which is current host for the task and NPU2 which is 
the future. 

- Task runs on NPU1 until it reaches the next 
communication primitive which freezes execution; task 
context is then saved into the corresponding Task control 
Block (TCB) by the operating system. This constitutes a 
migration point. 
- NPU1 transfers task binary code and state information 
(TCB) to NPU2 and deletes task from its own memory. No 
further incoming data transfers will occur since NPU1 does 
not answer to communication requests for this task. 
- NPU2 then loads the task into memory, creates the 
necessary software FIFOs, adds the task on TCB table, 
broadcasts this information on routing table and resumes 
execution from the migration point. 
 

5.3. Migration policy 
 
Our objective is that the platform has to be capable of 

taking decisions that relate to application implementation 
through task placement in order to be self adaptive. Our 
constraint is that these decisions have to be taken in a fully 
decentralized fashion in order to ensure platform scalability. 
Our purpose is to use distributed run-time monitoring 
mechanisms on each NPU: based on the monitored 
information, each NPU has to be capable to migrating a task 
when necessary, following a predefined migration policy. 

Each task of an application is connected to its predecessors 
and successors with software FIFOs (communication queues). 
In the previous works [2], we have observed on dataflow 
applications that the performance (in terms of throughput) of a 
given task and the utilization of its input FIFO are correlated: 
the FIFO usage tends to grow when its task requires more 
processing power to compute incoming data. We assume that  
task requires more processing power because this task shares 
the same processing resource with other tasks. Based on this 
assumption, we propose two adaptive mechanisms to improve 
performance: the first one is migration when a task requiring 
more processing power shares the same processing resource 
with other tasks. The second purpose is replication: in this 
scenario where the processor is too slow for a given task, the 



 

task will be replicated to increase throughput (this will be 
explored in future works). 

Consequently, we have first developed a FIFO monitoring 
service in our Operating System. Thanks to this mechanism, 
each NPU knows the FIFO usage for each task running on the 
system. When the FIFO usage of a given task reaches a pre-
defined threshold on a given NPU, this NPU sends a help 
request to the most appropriated nearest neighbor. This 
neighbor must offer at least more CPU time to the task so that 
it ensures a performance gain: the policy will choose in 
priority the least loaded neighbors.  

In order to illustrate the task migration policy, Figure 7 
shows a simple example. Initially, we assume two tasks of a 
given application hosted onto the same NPU and therefore 
sharing equally 50% of CPU time (time sliced execution). In 
this example, the FIFO monitoring service indicates that the 
FIFO usage of task 2 is above a threshold fixed at 80%. Task 2 
requires more CPU time than the NPU can provide. This NPU 
sends a request for assistance as described in the previous 
paragraph. As soon as a new host is found, a process is 
executed for migrating task code, using the protocol explained 
in the previous section. As depicted in Figure 7.b, once the 
migration process is completed, the task makes use of a higher 
percentage of the CPU resources (85%) in order to process the 
task 2 as fast as required by its incoming data.  
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Figure 7 Principle of task migration 

 

6. Experiments and Results 
 
We have proposed a full adaptive migration support based 

on MPI and implemented it in the HS-Scale framework. In 
order to validate and to conduct some experiments, we chose 
to develop a multi-FPGA prototyping platform described in 
the following. In the second part of this section, we focus on a 
MJPEG case study to show the feasibility of our adaptive 
migration support and to measure the dynamic behavior of the 
system. 

 
6.1. Prototyping platform 

 
The Xilinx Starter Kit Spartan-3 S1000 appeared to fit our 

specifications in terms of available logic, memory and I/Os for 
NPU connections. It is essentially based on a Spartan3 S1000 
FPGA which 1920 configurable logic blocks (CLB). The 
board features several general purpose I/Os, 1MByte of fast 
asynchronous SRAM, several ports for debugging/monitoring 
purposes and three 40-pin expansion connectors for the 
interconnections of boards.  

 
Device # CLB 
NPU 624 

Router 171 
MIPS R3000 366 

Other 88 

Table 1 FPGA synthesis result 

Table 1 gives the device utilization figures for a single 
NPU hosted on a single board. The complete prototype is an 
array composed of several instances of the prototyping boards 
connected through the 40-pin expansion connectors. For 
debugging reasons, we limited the frequency to 7MHz. One 
board, i.e. one UART of a single NPU, is directly connected to 
a PC as depicted on the picture in the Figure 8. This PC is 
used as a human-machine interface for sending program data 
(i.e. task codes and microkernel code), the data to compute 
and to display debugging messages in the monitoring terminal.  

 
Figure 8 Array of 4x4 NPU multi board. 

 

6.2. MJPEG Case Study 
 

The prototyping platform presented above has been used to 
perform several validations of dataflow applications such as a 
Finite Impulse Response (FIR) filters, Data Encryption 
Standard (DES) encoder, and Motion JPEG (MJPEG) decoder 
[16]. In our previous works [1, 2], we have measured 
application throughputs in various contexts: task graph 
running on a single NPU, task graph running on several NPU, 
several applications running at the same time, etc.  

In this paper, our objective was first to validate our 
adaptive migration process and then to characterize the 
dynamic behavior of the system when performing task 
migrations automatically.  

We have chosen to study the case of the MJPEG decoder 
application partitioned into 3 tasks: IVLC, IQ and IDCT. 
Figure 9 depicts the temporal evolution of the application 
throughput and the FIFO usage of each task. 

During the very first seconds, all tasks are instantiated 
manually on the NPU(1,1). From t1=4.401s to t2=6.303s, 
these tasks are executed sequentially on the same NPU which 
provides an average throughput of 38KB/s. At t2, the IVLC 
FIFO reaches a value greater than the fixed threshold (80%): 
this leads to a migration process composed of the following 
steps: 

- checking a migration point (3.79ms) 
- looking for a free NPU (5.59ms) 



 

- migrating the task (117.95ms) 
- restoring the context (4.02ms) 

 
Figure 9 MJPEG execution in time 

In this scenario, the task is moved from NPU(1,1) to 
NPU(2,0): the whole task migration process takes 131.35ms.  
During this time interval, the OS consumes CPU time to 
perform the migration process which decreases the application 
throughput as depicted in the Figure 9. After the migration 
completion, the average throughput reaches 57KB/s: it takes 
87.7 ms to observe a performance benefit.  

Observing the FIFO usage reveal that (i) the IQ FIFO 
remains stable meaning that it has just enough CPU time to 
process its data, (ii) the IDCT FIFO slowly decreases meaning 
that it has enough CPU time to process all the data in its FIFO. 
In this situation, the mapping is stable from the migration 
policy point of view: this implies that the system won’t move 
the tasks anymore. 

In order to observe what would be the consequence of 
another migration, the user has the possibility to initiate 
intentionally a new migration. In order to completely unfold 
the whole task graph, at t3=8.706s, the IQ task is migrated by 
the user from NPU(1,1) to the NPU(2,1): this migration lasts 
78ms. During this period, we observe again a short decrease in 
the application throughput. The average throughput stabilizes 
after a short period around its previous value. This proves that 
actually the performance in terms of throughput cannot be 
improved anymore because IVLC is the critical task of the 
pipeline: the global application throughput is completely 
dependent on the IVLC throughput. The IVLC FIFO being 
still greater than 80% and running on a single NPU, the only 
way to increase the application throughput would be either to 
increase the NPU frequency or to replicate the same task on 
another NPU. From a FIFO point of view, one can also notice 
that the IDCT FIFO increases: after migration from NPU(1,1), 
the IQ task is running alone onto NPU (2,1) which provides 
more CPU time. After 3s, the FIFO utilization stabilizes again. 

At t4=11.769s, the user initiates another migration of the 
IQ task to the NPU(1,2): this migration lasts 76ms. The effect 
on the application throughput is similar to the previous one. 
However, we observe a decrease of the IDCT FIFO usage as 
IQ does not produce new data during the migration time. After 
3s, the system finds again a stable state in terms of throughput 
and FIFO usage. 

 

7. Conclusion 
 
There are several approaches for MPSOC, but 

homogeneous solutions are attractive because of their natural 
scalability. HS-Scale is our contribution in this domain. In this 
paper, we have proposed an original MPI-based adaptive 
migration support for the HS-Scale system. Each NPU is able 
to trigger a migration: it depends on the usage of the tasks’ 
FIFOs monitored by a dedicated service of the OS and a 
predefined policy. This mechanism is completely distributed, 
ensuring the scalability of our approach. It has been validated 
on a multi-FPGA prototyping platform and a case study on the 
MJPEG decoder has illustrated the dynamic behavior of the 
system. One very interesting observation is that the system is 
able to find itself a stable solution providing the best 
application throughput. 

In our future works, we will focus first on different case 
studies. Especially, we would like to measure the behavior of 
our system when running several applications. Our major 
concern is also to increase the self-adaptability in term of 
performance: the automatic replication of tasks will be 
particularly studied and will be compared to alternative 
solutions such as Dynamic Frequency Scaling. 
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