
HAL Id: lirmm-00280687
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00280687

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MPI-Based Adaptive Task Migration Support on the
HS-Scale System

Nicolas Saint-Jean, Pascal Benoit, Gilles Sassatelli, Lionel Torres, Michel
Robert

To cite this version:
Nicolas Saint-Jean, Pascal Benoit, Gilles Sassatelli, Lionel Torres, Michel Robert. MPI-Based Adap-
tive Task Migration Support on the HS-Scale System. ISVLSI 2008 - IEEE Computer Society Annual
Symposium on VLSI, Apr 2008, Montpellier, France. pp.105-110, �10.1109/ISVLSI.2008.87�. �lirmm-
00280687�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00280687
https://hal.archives-ouvertes.fr

MPI-Based Adaptive Task Migration Support on the HS-Scale System

Saint-Jean N., Benoit P., Sassatelli G., Torres L., Robert M.
University of Montpellier II, LIRMM, UMR 5506

<name>@lirmm.fr

Abstract

 Scalability of architecture, programming model and task

control management will be a major challenge for future VLSI
systems. In this context, homogeneous MPSOC is a seducing
approach as it is intrinsically scalable. HS-Scale is a
contribution in this domain and was already published in
[1,2]. In this article, we present an original MPI-based
adaptive task migration support for the HS-Scale system. Our
previous communication API was modified in order to be MPI
compliant. In order to enable task migration without any
MMU, a Position Independent Code compilation technique is
implemented. The self-adaptability is based on monitoring
information collected at run-time by each processing element
(PE). Each PE is endowed with the same decisional capability
insuring the scalability of the solution. A MJPEG case study
validated on a multi-FPGA prototyping platform is presented.
The observation of the dynamic behavior of HS-Scale shows
that the system is able to find itself a stable task placement
providing the best performance in terms of processing
throughput.

1. Introduction

Multi-Processor System-on-Chips (MPSoCs) are becoming

an increasingly popular solution that combines flexibility of
software along with potentially significant speedups. These
complex systems usually integrate a few mid-range
microprocessors for which an application is usually statically
mapped at design-time. Those applications however tend to
increase in complexity and often exhibit time-changing
workload which makes mapping decisions sub-optimal in a
number of scenarios.

Our previous work, presented in [1] and [2] aimed at
exploring and defining principles which granted both
hardware and software scalability, namely HS-Scale. The
hardware architecture, H-Scale, is a homogeneous MP-SOC
based on RISC processors, distributed memories and an
asynchronous network on chip. S-Scale is a programming
model handled at run-time by a compact Operating System
which permits essentially to schedule tasks and to manage the
memory and communications between tasks. Several
experiments were conducted on HS-Scale with the
implementation of several applications: FIR, DES and
MJPEG. The results showed the importance of the task
placement on the architecture with several task characteristics
in terms of regularity and granularity. One very important
result was the correlations observed between performance and
task distribution allowing us to forecast some adaptive

strategies to automate the task management and distribute it
over the system.

In this paper, our new contribution is the complete
implementation of an adaptive migration support based on the
Message Passing Interface (MPI) programming model. The
HS-Scale system is now based on a set of adaptive principles
which endow the architecture with some decisional
capabilities. Based on a distributed monitoring scheme, each
processing element is able to migrate automatically its tasks
following a customizable policy. These mechanisms were
developed in a fully decentralized fashion in order to satisfy
the scalability of our solution. Also, an originality of our
contribution is that the task migration is performed without
any MMU (Memory Management Unit), but enabled thanks to
PIC (Processor Independent Code) compilation.

This paper is organized as follows. Section 2 presents the
related work in the field of task migration techniques for
MPSOC systems. Section 3 resumes our previous work on the
hardware architecture H-Scale. In section 4, the operating
system and the programming model based on MPI are
presented. . Our migration support is then exposed in section
5; the dynamic task loading based on PIC compilation is
especially detailed and run-time adaptive mechanisms are then
described. In section 6, we present the basis of our
experiments, a multi-board prototyping platform. We present
and discuss results obtained on a case study, MJPEG.

2. Related works

Our new contribution is the implementation of a full

adaptive task migration support based on the MPI
programming model. Task migration has been studied in the
literature in both shared and distributed memory systems over
the past as it is shown in the following paragraphs.

For shared memory systems such as today regular multi-
core PCs, the process is facilitated by the fact that no data has
to be moved across several physical memories; there exist
several efficient implementations on general purposes OS such
as Windows or Linux [3]. Task migration has also been
explored for MPSoCs, notably based on locality
considerations [4] for decreasing communication overhead or
power consumption [5]. In [6], authors present a migration
case study for MPSoCs that relies on the µClinux operating
system and a checkpointing mechanism. The system uses the
MPARM framework [7], and although several memories are
used the whole system supports data coherency through a
shared memory view of the system.

Migration on message-passing systems is generally a more
difficult problem since both process code and state has to be
moved from a processor to another, and synchronizations must

IEEE Computer Society Annual Symposium on VLSI

be performed using exchanged messages such as in [8] which
is a solution out of the scope of this work since it target linux
computer clusters.

Some other approaches aimed at augmenting MPI for
providing a support for process migration, such as [9], [10]
and [11]. All these approaches target computer clusters with
the typical resources of general purpose computers and are
therefore hardly applicable to MPSoCs. In [12] users present
similar features based on a JAVA MPI framework that
provides hardware independence; they show that despite
migrating tasks implies overhead which are in the order of
seconds, significant speedups can be achieved.

Finally, to the best of our knowledge, no other work
combines the use of a message-passing programming model,
on-chip multiprocessor system and adaptive task migration
which is the main goal of the presented work.

3. H-Scale architecture

The basis of our approach stands on scalable hardware

architecture called H-Scale and was presented in details in [1]
and [2]. The processing element, namely the “NPU” (Network
Processing Unit), is first presented. The communication
infrastructure is then briefly described.

3.1. Network processing Unit

The architecture is made of a homogeneous array of PE

communicating through a packet-switching network. For this
reason, the PE is called NPU, for Network Processing Unit.
Each NPU, as detailed later, has multitasking capabilities
which enable time-sliced execution of multiple tasks. This is
implemented thanks to a tiny preemptive multitasking
Operating System which runs on each NPU. The structural
and functional views of the NPU are depicted in Figure 1.

Network layer
Processing layer

Network layer
Processing layer

CPU RAM

UART NITimer

Task2

Task3

Task2 Task3

NI

HW Fifo
SW

SW Fifos

NI

Task1

SW output buffer

Task 3
µ kernel

Task 2
…

Figure 1 Network Processing Unit structural and functional

descriptions

The NPU is built around two main layers, the network layer
and the processing layer. The Network layer is essentially a
small routing engine (XY routing). Packets are read from
incoming ports, then either forwarded to outgoing ports or
passed to the processing layer. Whenever a packet header
specifies the current NPU address, the packet is forwarded to
the network interface (NI in Figure 1). The network interface
buffers incoming data in a small hardware FIFO and
simultaneously triggers an interrupt to the processing layer.
The interrupt then triggers data demultiplexing from the single
hardware FIFO to the appropriate software FIFO as
exemplified in Figure 1.

The processing layer is based on a simple and compact
RISC microprocessor, its static memory and a few peripherals
(one timer, one interrupt controller, one UART) as shown in
Figure 1. A multitasking microkernel implements the support
for time-multiplexed execution of multiple tasks.

The microprocessor we use has a compact instruction set
comparable to a MIPS-1 [13]. It has 3 pipelines stages, no
cache, no Memory Management Unit (MMU) no memory
protection support in order to keep it as small as possible.

3.2. Communication infrastructure

For technology-related concerns, a regular arrangement of
processing elements (PEs) with only neighboring connections
is favored. This helps in a) preventing using any long lines and
their associated undesirable cross-talk effects in deep sub-
micron CMOS technologies b) synthesizing the clock
distribution network since an asynchronous communication
protocol between the PEs might be used. Also, from a
communication point of view, the total aggregated bandwidth
of the architecture should increase proportionally with the
numbers of PEs it possesses, which is granted by the principle
of abstracting the communications through routing data in
space. The Network-on-Chip paradigm (NoC) enables that
easily thanks to packet switching and adaptive routing.

The communication framework of HS-scale is derived from
the Hermes Network-on-chip, refer to [14] for more details.
The routing is of wormhole type, which means that a packet is
made of an arbitrary number of flits which all follow the route
taken by the first one which specifies the destination address.
Figure 2 depicts the simple packet format used by the network
framework constituted by the array of processing elements.
Incoming flits are buffered in input buffers (one per port).
Arbitration follows a round-robin policy giving alternatively
priority to input ports. Once access to an output port is
granted, the input buffer sends the buffered flits until the entire
packet is transmitted (wormhole routing).

 f0f1f2f3f4fn-1 adn

Target address

#flits in the payload

Payload (n flits)

…

Figure 2 Packet format

Inter-NPU communications are fully asynchronous and are
based on the toggle-protocol. This protocol uses two toggle
signals for the synchronization, a given data being considered
valid when a toggle is detected. When the data is latched,
another toggle is sent back to the sender to notify the
acceptance. This solution allows using completely unrelated
clocks on each PE in the architecture.

4. S-scale architecture

The very first motivation for the HS-Scale system was to

provide a complete scalable solution, from both hardware and
software point of view. In this section, we present the

developed operating system (micro kernel) running on each
NPU and insuring the scalability of our approach. Then, we
present the programming model which is now MPI compliant,
allowing a greater portability of the developed applications,
and thus potentially higher flexibility and performance.

4.1. Distributed operating system

The lightweight operating system we use was designed for

our specific needs. Despite being small (28 KB), this kernel
does preemptive switching between tasks and also provides
them with a set of communication primitives that are
presented later. Figure 3 gives an overview of the operating
system infrastructure and the services it provides.

NI
Figure 3 Operating System overview

The interrupts manager may receive interrupts from 3
hardware sources: UART, Timer and network interface (NI).
Whenever an interrupt occurs, other interrupts are disabled
and the processor context is saved in the system stack.
Following the type of interrupt, it either reads from the UART,
schedules another task (timer), receive information from other
NPUs or use a communication primitive (interrupt from the
network interface FIFO_in). Afterwards processor context is
restored and interrupts are re-enabled. The scheduler is the
core of the microkernel but is quite simple. Each time a timer
interrupt occurs, it checks if there is a new task to run. In the
positive case, it executes this new task. Otherwise, it has two
possibilities: either there is no task to schedule then it just runs
an idle task, or there is at least one task to schedule. Tasks are
scheduled periodically following a round robin policy as
depicted in Figure 4.

Task 1

Sc
he

du
lin

g

Task 2

Sc
he

du
lin

g

Task 3

Sc
he

du
lin

g

Ta
sk

 1

Ne
tw

or
k

co
m

m
un

ic
at

io
n

Task 2

Sc
he

du
lin

g

Sc
he

du
lin

g

Ta
sk

 3

Ne
tw

or
k

co
m

m
un

ic
at

io
n

Sc
he

du
lin

g

Task 1

Sc
he

du
lin

g

time

Figure 4 Scheduling diagram

4.2. MPI-Based programming model

Previously, we had developed a proprietary communication
API. The first new contribution of this paper is that our API is
now MPI compliant. The Message-Passing Interface (MPI) is
a popular standard that is used in High Performance
Computing computer clusters for instance.

Since this work targets massively parallel on-chip
Multiprocessor systems scalability is a major concern in the
approach. For this reason, we put focus on distributed memory
machines and therefore message passing model for it provides
a natural mapping to such machines. MPI being the de-facto
standard, several works aimed at porting MPI subsets for
MPSoCs.

Hence, tasks are hosted on NPUs which provide through
their operating system communication primitives that enable
data exchanges between communicating tasks. The proposed
model reuses only two of the MPI communication primitives,
MPI_send() and MPI_recv(). Figure 5 depicts the layered view
of the communication protocol we use. MPI_recv() blocks the
task until the data is available while MPI_send() is blocking
until the buffer is available on the sender side. In our
implementation each call exhibits this behavior and is
translated into a sequence of low-level Send_Data() /
Receive_Data() methods that set up a communication channel
trough a simple request/acknowledge protocol. This protocol
ensures the remote processor buffer has sufficient space before
sending the message which help lowering the contentions in
the communication network and also prevents deadlocks in it.

Figure 5 depicts the communication stack that is used in
our system. Although a hardware implementation could
certainly help improving performance, for compactness
reasons it is fully implemented in software down to packet
assembling.

Application

Transport

Network

Data Link

Physical

Route Route

Route Route

 MPI_Send()

Send_Data() Receiv _Data()

Send_Packet() Receiv _Packet ()

Encapsulate() Decapsulate()
XY Routing

Application

Transport

Network

Data Link

Physical

MPI_Recv()

Figure 5 HS-Scale protocol stack

No explicit group synchronization primitives are provided;
however this can be simply achieved in an ad-hoc fashion
through using MPI_send() and MPI_recv() for passing tokens.
Broadcast, gather and similar mechanisms can also be
implemented in the same manner. Furthermore, although it
could be easily implemented, no non-blocking receive method
is provided since the targeted applications usually do not
require it.

The prototypes of those functions are as follows:
MPI_Send(int edge, const void *data, int size)
MPI_Recv(int edge, void *data, int size)

The prototypes of these functions are self explanatory, a

reference to the graph edge identifier, a constant void pointer
and a size of data expressed in bytes.

Figure 6 shows an example of task graph where it can be
seen that communication channels feature a (software) FIFO
queue at the receiver side. Queues sizes can be parameterized
and their size can be tuned on-line as the operating system
provides memory allocation and deallocation services.

T1

T2

T6

T3

T4 T5

MPI_Send()

MPI_Recv()

Figure 6 Example of graph task

5. Adaptive task migration

HS-Scale is a complete scalable framework: the proposed
MPSOC system is made of a homogeneous set of processing
elements, each one running a micro kernel. The applications
can be programmed with some MPI primitives providing a
higher flexibility in terms of task mapping and potentially
higher performances due to the underlying parallelism. Our
objective is now to implement a full adaptive task migration
support to take benefit from this potential flexibility and
performance. The first challenge was to enable dynamic code
loading on a system devoid of any MMU. Then, it was
necessary to implement a robust migration protocol allowing
to improve intelligently the global performance of a given
application running on HS-Scale.

One of the objectives of this work is to enable dynamic
load balancing which implies the capability to migrate running
tasks from processor to processor. Migrating tasks usually
implies:

- To dynamically load in memory and schedule a new
process
- To restore the context of the task that has been migrated

5.1. Dynamic process loading

Both points are challenging for such microprocessor targets

since, for density reasons, no Memory Management Unit
(MMU) is available. A MMU, among other tasks, usually
performs the translation between virtual and physical
addresses and therefore permits to load and run a code in an
arbitrary region of the physical memory.

A possible alternative for enabling the loading of processes
without such mechanisms relies on a feature that is partly
supported by the GCC compiler that enables to emit
relocatable code (PIC: Position Independent Code). This
feature generally used for shared libraries generates only
relative jumps and accesses data locations and functions using
a Global Offset Table (GOT) that is embedded into the
generated ELF [15] file. A specific post-processing tool which
operates on this format was used for reconstructing a
completely relocatable executable. Experiments show that
both memory and performance overheads remain under 5%
for this solution which is clearly acceptable.

5.2. Task context migration

The migration of a process implies both instantiating a new

executable into the memory but also restoring its context.
Again, the lack of MMU makes this task difficult since the
context of the process includes the stack which embeds not
only data (such as return values of functions) but also return
addresses that are memory-location dependent. The solution
we developed is based on defining migration points that are at
specific locations in the code, namely whenever a
communication primitive is called. This method is restrictive
since it assumes that the computation relies on a strict
consumer / producer model where no internal state is kept
from iteration to iteration. This translates that there cannot be
any dependencies between two adjacent computed data
chunks.

When a task migration order is issued by the operating
system, the following sequence of action is initiated between
NPU1 which is current host for the task and NPU2 which is
the future.

- Task runs on NPU1 until it reaches the next
communication primitive which freezes execution; task
context is then saved into the corresponding Task control
Block (TCB) by the operating system. This constitutes a
migration point.
- NPU1 transfers task binary code and state information
(TCB) to NPU2 and deletes task from its own memory. No
further incoming data transfers will occur since NPU1 does
not answer to communication requests for this task.
- NPU2 then loads the task into memory, creates the
necessary software FIFOs, adds the task on TCB table,
broadcasts this information on routing table and resumes
execution from the migration point.

5.3. Migration policy

Our objective is that the platform has to be capable of

taking decisions that relate to application implementation
through task placement in order to be self adaptive. Our
constraint is that these decisions have to be taken in a fully
decentralized fashion in order to ensure platform scalability.
Our purpose is to use distributed run-time monitoring
mechanisms on each NPU: based on the monitored
information, each NPU has to be capable to migrating a task
when necessary, following a predefined migration policy.

Each task of an application is connected to its predecessors
and successors with software FIFOs (communication queues).
In the previous works [2], we have observed on dataflow
applications that the performance (in terms of throughput) of a
given task and the utilization of its input FIFO are correlated:
the FIFO usage tends to grow when its task requires more
processing power to compute incoming data. We assume that
task requires more processing power because this task shares
the same processing resource with other tasks. Based on this
assumption, we propose two adaptive mechanisms to improve
performance: the first one is migration when a task requiring
more processing power shares the same processing resource
with other tasks. The second purpose is replication: in this
scenario where the processor is too slow for a given task, the

task will be replicated to increase throughput (this will be
explored in future works).

Consequently, we have first developed a FIFO monitoring
service in our Operating System. Thanks to this mechanism,
each NPU knows the FIFO usage for each task running on the
system. When the FIFO usage of a given task reaches a pre-
defined threshold on a given NPU, this NPU sends a help
request to the most appropriated nearest neighbor. This
neighbor must offer at least more CPU time to the task so that
it ensures a performance gain: the policy will choose in
priority the least loaded neighbors.

In order to illustrate the task migration policy, Figure 7
shows a simple example. Initially, we assume two tasks of a
given application hosted onto the same NPU and therefore
sharing equally 50% of CPU time (time sliced execution). In
this example, the FIFO monitoring service indicates that the
FIFO usage of task 2 is above a threshold fixed at 80%. Task 2
requires more CPU time than the NPU can provide. This NPU
sends a request for assistance as described in the previous
paragraph. As soon as a new host is found, a process is
executed for migrating task code, using the protocol explained
in the previous section. As depicted in Figure 7.b, once the
migration process is completed, the task makes use of a higher
percentage of the CPU resources (85%) in order to process the
task 2 as fast as required by its incoming data.

T1

T2

T1

T2

CPU 1 CPU 1

CPU 2

50%

50%

65%

85%

Input

output

Input

output
(a) Initial graph task (b) Task migration

FIFO full

Figure 7 Principle of task migration

6. Experiments and Results

We have proposed a full adaptive migration support based

on MPI and implemented it in the HS-Scale framework. In
order to validate and to conduct some experiments, we chose
to develop a multi-FPGA prototyping platform described in
the following. In the second part of this section, we focus on a
MJPEG case study to show the feasibility of our adaptive
migration support and to measure the dynamic behavior of the
system.

6.1. Prototyping platform

The Xilinx Starter Kit Spartan-3 S1000 appeared to fit our

specifications in terms of available logic, memory and I/Os for
NPU connections. It is essentially based on a Spartan3 S1000
FPGA which 1920 configurable logic blocks (CLB). The
board features several general purpose I/Os, 1MByte of fast
asynchronous SRAM, several ports for debugging/monitoring
purposes and three 40-pin expansion connectors for the
interconnections of boards.

Device # CLB
NPU 624

Router 171
MIPS R3000 366

Other 88

Table 1 FPGA synthesis result

Table 1 gives the device utilization figures for a single
NPU hosted on a single board. The complete prototype is an
array composed of several instances of the prototyping boards
connected through the 40-pin expansion connectors. For
debugging reasons, we limited the frequency to 7MHz. One
board, i.e. one UART of a single NPU, is directly connected to
a PC as depicted on the picture in the Figure 8. This PC is
used as a human-machine interface for sending program data
(i.e. task codes and microkernel code), the data to compute
and to display debugging messages in the monitoring terminal.

Figure 8 Array of 4x4 NPU multi board.

6.2. MJPEG Case Study

The prototyping platform presented above has been used to
perform several validations of dataflow applications such as a
Finite Impulse Response (FIR) filters, Data Encryption
Standard (DES) encoder, and Motion JPEG (MJPEG) decoder
[16]. In our previous works [1, 2], we have measured
application throughputs in various contexts: task graph
running on a single NPU, task graph running on several NPU,
several applications running at the same time, etc.

In this paper, our objective was first to validate our
adaptive migration process and then to characterize the
dynamic behavior of the system when performing task
migrations automatically.

We have chosen to study the case of the MJPEG decoder
application partitioned into 3 tasks: IVLC, IQ and IDCT.
Figure 9 depicts the temporal evolution of the application
throughput and the FIFO usage of each task.

During the very first seconds, all tasks are instantiated
manually on the NPU(1,1). From t1=4.401s to t2=6.303s,
these tasks are executed sequentially on the same NPU which
provides an average throughput of 38KB/s. At t2, the IVLC
FIFO reaches a value greater than the fixed threshold (80%):
this leads to a migration process composed of the following
steps:

- checking a migration point (3.79ms)
- looking for a free NPU (5.59ms)

- migrating the task (117.95ms)
- restoring the context (4.02ms)

Figure 9 MJPEG execution in time

In this scenario, the task is moved from NPU(1,1) to
NPU(2,0): the whole task migration process takes 131.35ms.
During this time interval, the OS consumes CPU time to
perform the migration process which decreases the application
throughput as depicted in the Figure 9. After the migration
completion, the average throughput reaches 57KB/s: it takes
87.7 ms to observe a performance benefit.

Observing the FIFO usage reveal that (i) the IQ FIFO
remains stable meaning that it has just enough CPU time to
process its data, (ii) the IDCT FIFO slowly decreases meaning
that it has enough CPU time to process all the data in its FIFO.
In this situation, the mapping is stable from the migration
policy point of view: this implies that the system won’t move
the tasks anymore.

In order to observe what would be the consequence of
another migration, the user has the possibility to initiate
intentionally a new migration. In order to completely unfold
the whole task graph, at t3=8.706s, the IQ task is migrated by
the user from NPU(1,1) to the NPU(2,1): this migration lasts
78ms. During this period, we observe again a short decrease in
the application throughput. The average throughput stabilizes
after a short period around its previous value. This proves that
actually the performance in terms of throughput cannot be
improved anymore because IVLC is the critical task of the
pipeline: the global application throughput is completely
dependent on the IVLC throughput. The IVLC FIFO being
still greater than 80% and running on a single NPU, the only
way to increase the application throughput would be either to
increase the NPU frequency or to replicate the same task on
another NPU. From a FIFO point of view, one can also notice
that the IDCT FIFO increases: after migration from NPU(1,1),
the IQ task is running alone onto NPU (2,1) which provides
more CPU time. After 3s, the FIFO utilization stabilizes again.

At t4=11.769s, the user initiates another migration of the
IQ task to the NPU(1,2): this migration lasts 76ms. The effect
on the application throughput is similar to the previous one.
However, we observe a decrease of the IDCT FIFO usage as
IQ does not produce new data during the migration time. After
3s, the system finds again a stable state in terms of throughput
and FIFO usage.

7. Conclusion

There are several approaches for MPSOC, but

homogeneous solutions are attractive because of their natural
scalability. HS-Scale is our contribution in this domain. In this
paper, we have proposed an original MPI-based adaptive
migration support for the HS-Scale system. Each NPU is able
to trigger a migration: it depends on the usage of the tasks’
FIFOs monitored by a dedicated service of the OS and a
predefined policy. This mechanism is completely distributed,
ensuring the scalability of our approach. It has been validated
on a multi-FPGA prototyping platform and a case study on the
MJPEG decoder has illustrated the dynamic behavior of the
system. One very interesting observation is that the system is
able to find itself a stable solution providing the best
application throughput.

In our future works, we will focus first on different case
studies. Especially, we would like to measure the behavior of
our system when running several applications. Our major
concern is also to increase the self-adaptability in term of
performance: the automatic replication of tasks will be
particularly studied and will be compared to alternative
solutions such as Dynamic Frequency Scaling.

8. References

[1] “HS-Scale: a Hardware-Software Scalable MP-SOC Architecture for

embedded Systems”. Saint-Jean N, Sassatelli G, Benoit P, Torres L, Robert
M. VLSI, 2007. IEEE Computer Society Annual Symposium on
Volume , Issue , 9-11 March 2007 Page(s):21 - 28

[2] “Application Case Studies on HS-Scale, a MP-SOC for Embbeded Systems”.
Saint-Jean N, Benoit P, Sassatelli G, Torres L, Robert M . IC-SAMOS 2007.(
July 2007) pp 88-95

[3] “MPCore Linux 2.6 SMP kernel and tools”, ARM Limited,
www.arm.com/products/CPUs/linux2 6 smp.htmlSdgsdf

[4] “Locality-Aware Process Scheduling for Embedded MPSoCs”, M.T.
Kandemir, G. Chen, Proceedings of DATE, pp. 870–875, 2005.

[5] “Multi-Processor Operating System Emulation Framework with Thermal
Feedback for Systems-on-Chip”. Salvatore Carta, Michele Pittau, Andrea
Acquaviva, Pablo G. Del Valle†, David Atienza, Giovanni De Micheli,
Fernando Rincon, Luca Benini, Jose M. Mendias. Great Lakes Symposium
on VLSI 2007 pp 311 - 316.

[6] “Supporting Task Migration in Multi-Processor Systems-on-Chip: A
Feasibility Study”. Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi,
and Antonio Poggiali. DATE 2006 pp 1- 6

[7] “Mparm: Exploring the MPSoC design space with SystemC”. L. Benini, et
al. Journal of VLSI, September 2005. Volume 41, Number 2 / septembre
2005 pp 169-182

[8] “Scalable Cluster Computing with MOSIX for Linux”. Barak A., Laadan O.
and Shiloh A., Proc. Linux Expo '99, pp. 95-100, Raleigh, N.C., May 1999.

[9] “A Task Migration Implementation of the Message-Passing Interface”.
Jonathan Robinson, Samuel Russ, Bjorn Heckel, Brian Flachs. HPDC 1996
pp 61

[10] “Improving load balancing in an MPI environment with resource
management”. . A. R. Dantas and E. J. Zaluska. Springer Berlin / Heidelberg
1996 High-Performance Computing and Networking pp 959-960

[11] http://t-system2.polnet.botik.ru/checkpointing/18-Youhui_Z.pdf
[12] “A Grid Middleware for Distributed Java Computing with MPI Binding and

Process Migration Supports”. Lin Chen, Cho-Li Wang, Francis C.M. Lau,
and Ricky K. K. Journal of Computer Science and Technology volume 18 ,
issue 4 (July 2003) pp 505 – 514

[13] MIPS corp., http://www.mips.com
[14] “Hermes: an Infrastructure for Low Area Overhead Packet-switching

Networks on Chip”. Moraes F. et al. Integration the VLSI Journal 38,
October 2004. pp. 69-93.

[15] “Linkers and Loaders” by John R. Levine, published by Morgan-Kauffman in
October 1999

[16] www.wikipedia.org/wiki/JPEG

