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Abstract— This paper proposes a new approach to compen-
sate the physiological motion, induced by respiration and heart
beating, for robotized minimally invasive cardiac surgery. The
control algorithm, based on a linear predictive control, uses the
effort information applied on the heart by the instrument.

I. INTRODUCTION

Nowadays, in order to access the heart to perform an in-
tervention such as a Coronary Artery Bypass Graft (CABG),
a great incision (of about 20 cm) is performed. The heart is
stopped, blood circulation and respiration are performed by
an external system (on-pump surgery). However, the use of a
heart-lung machine implies more risks and a longer recovery
time for the patient. Robotized mini-invasive cardiac surgery
aims at minimizing the size of the incision and removing the
cardiopulmonary bypass machine.

Nevertheless off-pump surgery implies another problem:
the physiological motion. The two main sources of physio-
logical motion inside the body are respiration and heartbeat.
Respiration is the most important source of disturbances. It
yields large cyclic displacements of several organs, mainly in
the abdomen and thorax. Secondly, heartbeat motion involves
high acceleration displacements. The sum of these motions
can be very disturbing for the surgeon during the operation
especially for surgical procedures requiring good precision
(e.g., needle insertion and suturing). Indeed, the gesture
accuracy strongly depends on his/her ability to compensate
these motions. Manual tracking of the complex heartbeat
motion can not be achieved by a human without phase and
amplitude errors [4].

A. Related Work in the Literature

The first approaches, to decrease heartbeat motion, used a
mechanical device that constrains the motions of a small area
on its surface by suction or pressure. Despite many improve-
ments since the first version in the early 90′s, stabilizers still
have some drawbacks: there is always residual motion, the
suction device may produce injuries to the myocardium and
the pressure device is not well suited for interventions which
are located behind the heart.

Robotized surgery offers new means to efficiently circum-
vent such disturbances with lower risks and better accu-
racy. In [7], they performed experiments to track a marker
attached to the surface of the heart with a 4 DOF robot
using a highspeed vision system which measured the heart
motion. The tracking error from the camera feedback system

was relatively large (on the order of few millimeters in
the normal direction). They demonstrated the feasibility of
robotic tracking of fast heart movements and introduce the
notion of "Heartbeat synchronization". This defines a control
architecture where the surgeon can teleoperate a robot which
is synchronized with the heart’s motion.

Always using vision system, [5] and [8] performed motion
canceling through the prediction of future heart motion using
model based predictive controllers, in order to achieve higher
precision tracking. A high-speed camera was used to measure
heart motion. Their results indicated a tracking error variance
on the order of 6-7 pixels (approximately 1.5-1.75 mm) in
each direction of a 3D tracking task. Although it yielded
better results than earlier studies using vision systems, the
error was still very large to perform heart surgery like a
coronary artery suture (the blood vessels have a 2 mm or
less diameter).

In [2], they proposed a force control (based on PI schema)
coupled with an Iterative Learning Control where the error
signal is filtered with varying cut-off frequency. The pre-
sented algorithm supposes that the perturbation is periodic.
Since respiration is controlled by an external ventilator, the
motion induced by respiration may be considered as periodic.
This same hypothesis may however be too restrictive when it
comes to the cardiac motion. Tests performed on an animated
contact of a very simple periodic movement showed large
errors.

In a recent work presented in [1], the control algorithms
fuses information from multiple sources: mechanical motion
sensors which measure the heart motion and sensors mea-
suring biological signals. The control algorithm identifies
the salient features of the biological signals and merge this
information to predict the feedforward reference signal. This
will improve the performance of the system since these
signals are results of physiological processes which causally
precede the heart motion.

B. Motivation and Methodology

Our work focuses on the mini-invasive cardiac surgery.
The space available during the operation is limited and
solutions requiring additional measuring instruments are only
applicable for operations where a sternostomy is performed.

Preferably, heart motion compensation should be per-
formed using instruments already available in common mini-
invasive surgeries. The use of additional markers or sensors
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placed on the heart surface reduces the workspace of the
surgeon and consequently are of no interest.

Vision systems for tracking and compensating physiolog-
ical motion have three major difficulties. First of all, a real
time vision system to capture the heart motion in high speed
is needed. This represents a great challenge for the design
of the appropriate vision system.

In addition, the operation is performed in a confined envi-
ronment. The tools must be in the visual field of view of the
cameras, often occluding the region of interest. This results
in a considerable deterioration of the tracking efficiency and
consequently disturbs the overall motion compensation. A
possible solution is the introduction of additional sources
of information such as the electrocardiogram signal, in
complement to the visual feedback.

Thirdly, the visual motion compensation does not take into
account the effect of the gestures performed by the surgeon,
which may modify radically the natural heart motion.

During free heart beating, individual points on the heart
move as much as 7-10 mm. Although the dominant mode
of the heart motion is in the order of 1-2 Hz, the measured
motion of individual points on the heart during normal
beating yields significant energy up to frequencies of 20
Hz. The tools need to track and manipulate a fast moving
target with very high precision. The coronary arteries that
are operated during CABG surgery range from 2 mm in
diameter down to under 0.5 mm, which means the system
needs to have a tracking precision in the order of 100 µm.

In our approach, we consider the two main sources of
physiological motion: the breathing movement and the heart
beat. Considering these motions as a source of perturbation,
we propose a control system that allows a robot to move in a
synchronized manner with the organ and to follow its motion,
rejecting any perturbations. In this manner only the consign
given by the surgeon is applied on the moving organ. Here
we propose the use of force information given by a sensor
located on the tool to retrieve the deformation caused by the
surgeon’s gestures. The controller has more precise infor-
mation (workspace deformation and physiological motion),
available in real time.

This paper explains the design and implementation of
an intelligent control algorithm for robotic telechirugical
systems, using a force control scheme coupled with a linear
predictive loop which considers a simple internal model
of the robot and its environment. Section II describes the
experimental platform and its setup. Section III describes the
control algorithms used in the compensation problem. The
simulations results are presented in Section IV. Finally, the
conclusions are given in Section V.

II. EXPERIMENTAL SETUP

The experimental platform is composed by:

• a master station, the Phantom 1.5 haptic device
• a slave robot, the D2M2 robot designed for beating heart

surgery experiments [3]. It has 5 DOF with direct drive
technology providing fast dynamics and low friction.

Fig. 1. Experimental platform: D2M2 robot and Phantom 1.5 haptic device

• a one DOF system, allowing to simulate the cardiac
motion, controlled in position.

An ATI Mini 40 force sensor is attached to the D2M2
end-effector. The D2M2 is connected to a 500 MHz Intel
Pentium 3 running under RTX/Windows 2000. The closed
loop sampling time h = 0.7 ms, and the system time delay
obtained experimentally is Td = 5h. Master and slave sta-
tions are connected via UDP communication under Windows
XP. A picture of the experimental setup is represented in
Fig. 1.

A. Computed Torque

The dynamic model of the D2M2 robot is given by

Mq̈ + v(q, q̇) + g(q) + JT Fm = τ (1)

M and J are respectively the mass and Jacobian ma-
trix. v(q, q̇) is the vector of Coriolis and centripetal force,
g(q) is the gravity term and τ is the generalized torque
acting on q. Fm denotes the measured contact force at the
end-effector of the manipulator.

Using the operational space formulation, (1) can be written
as

ΛxẌs + Vx(q, q̇) + gx(q) + Fm = Fc (2)

Λx, Vx(q, q̇) and gx(q) are respectively the mass matrix,
the Coriolis and centripetal force vector and the gravity
term written in Cartesian coordinates [3], [6]. Fc denotes
the commanded force. For the desired Cartesian-decoupled
system

Ẍs = f? (3)

Fc should be1

Fc = F̂m + V̂x(q, q̇) + ĝx(q) + Λ̂xf? (4)

Equation (3) represents the dynamics of a unitary mass for
each Cartesien dimension. f? is an acceleration (see (4)),
being an input parameter.

The linearized and decoupled system in Cartesien space
scheme is showed in Fig. 2. Introducing K2 (damping
loop), Td (time delay of the system) and Ks ( environment

1The expression of form "Â" means "an estimation of the variable A"



Fig. 2. Decoupled and linearized system in Cartesien space

stiffness), since Td is small, the plant transfer function is
given by

G(s) ≈ Kse
−sTd

s(s + K2)
(5)

Using the nominal value Ks (for the desired plant), the
equivalent time representation is

ÿ(t) + K2ẏ(t) = Ksu(t− Td) (6)

where y(t) is the plant output (Cartesian force at the robot’s
end-effector), and u is the plant input (force).

B. Global System

We use the haptic system developed in [3], its global
scheme is represented in Fig. 3. It is composed by three
parts:
• a master station, which includes the human and phan-

tom. The phantom position Xhp scaled by βp is com-
pared to the end-effector position Xs, generating the 3D
Cartesian force desired Fd through the virtual coupling
Kv . The human arm perceives Fd scaled by βf , which
anticipates the real force.

• the system plant G(s) linearized in Cartesian space has
a function transfer given in (5).

• and a predictive controller described in the section
below.

Fig. 3. Global control scheme with Linear Predictive Force Controller

III. LINEAR PREDICTIVE CONTROLLER

A. MPC Strategy

The methodology of the Model Predictive Control charac-
terized by the following strategy, represented in Fig. 4:
• the future outputs for a determined horizon N , called the

prediction horizon, are predicted at each instant t using

Fig. 4. MPC Strategy

the process model. These predicted outputs ŷ(t + k|t)2

for k = 1...N depend on the known values at the instant
t (past inputs and outputs) and on the future control
signals u(t + k|t),k = 0...N − 1, which will be sent to
the system and then calculated.

• the set of future control signals is calculated by optimiz-
ing a determined criterion to keep the process as close
as possible to the reference trajectory w(t + k) (which
can be the setpoint itself or a close approximation).
This criterion takes the form of a quadratic function
of the errors between the predicted output signal and
the predicted reference trajectory. The control effort is
included in the objective function. An explicit solution
is calculated if the model is linear.

• only the first element of the sequence control calculated
u(t|t) is sent to the process. The horizon is displaced
in the future and the algorithm is repeated with updated
values.

B. Formulation of MPC

This section describes the MPC used for the experiments.
The Fig. 5 shows the structure used. The process model is
used to predict the future plant outputs, based on the past and
current values and on the proposed optimal future control
actions. These actions are calculated by the optimizer taking
into account the cost function.

Defining the state variables x1(t) = y(t) and x2(t) = ẏ(t),

2The notation indicates the value of the variable at the instant t + k
calculated at instant t

Fig. 5. Structure of MPC



(6) can be written as
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −K2

] [
x1(t)
x2(t)

]
+

[
0

Ks

]
u(t− Td)

(7)
Discretizing (7) with sampling time h, the equivalent

discrete time system is:
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (8)

The predictions along the horizon are given by

ŷ = Ψx(k) + Υu(k − 1) + Θu (9)

with

Ψ =




CA
CA2

· · ·
CAN


 Υ =




CB
...

N−1∑

i=0

CAiB




Θ =




B · · · 0
C(AB + B) · · · 0

...
. . .

...
N−1∑

i=0

CAiB · · · B




(10)

The prediction (9) is composed of three terms, the first
two depend on the past and the current states and are known
at the instant k. The third depends on the vector of future
control actions and is the key variable to be calculated.

The control sequence u is calculated by minimizing the
objective function

J = δ(Θu+Ψx̂(k)−w)T (Θu+Ψx̂(k)−w)+λuT u (11)

So the analytical solution is given by

u = (δΘT Θ + λI)−1δΘT (w −Ψx̂(k)−Υu(k − 1)) (12)

where δ and λ are respectively the error and effort control
weights. w is the future reference trajectory. Since receding
horizon strategy is used, only the first element of the control
sequence is sent to the plant and then all the computation is
repeated in the next sampling time.

IV. SIMULATION AND ROBUSTNESS TEST RESULTS

A. Analysis of Physiological Motion Data

The motion data used are showed on the Fig.(6). This
signal represents the cardiac and breathing motions (on the
vertical axe) measured on a pig’s beating heart. Its amplitude
is of about 10 mm and lasts 15 s. A spectral analysis has
been performed to evaluate the frequency components of the
signal (see Fig.(7)). The first two components (f1 = 0.34
Hz, and f2 = 0.68 Hz) are due to the respiration activity.
f1 is equal to frequency imposed by the respiratory machine
(20 cycles per minute) and f2 is its harmonic. Heart activity
provides the four other frequencies. f3 = 1.19 Hz represents
the heart beat cycle (around 70 beats per minute) and the
three others are its harmonics.

Fig. 6. Physiological motion data

Frequency (Hz) 0.34 0.67 1.19 2.38 3.57 4.76
Density 70.9% 11.5% 5.9% 8.7% 1.2% 1.8%

Fig. 7. Spectral analysis of the physiological motion

B. Simulation Results

The simulation is executed on a 2.4 MHz Intel Pentium
4 running MATLAB R2007a.

Simulations are performed in order to evaluate the per-
formance of the compensation algorithm with the Force
Predictive Controller presented in the previous section. Three
parameters are used to tune the algorithm: the horizon value
N and the weight parameters. Even though tuned intuitively,
the horizon does make a difference in the results. A longer
horizon results in more accuracy of the tracking reference
while the calculation time of the control sequence is longer.
Therefore, a horizon must be chosen such that the control
sequence can be calculated within one cycle of the control
loop. For the simulations presented below, we use a constant
horizon value of N = 15h.

The weight parameters δ and λ are used to modify the
precision and the control effort respectively. An increase in
δ implies the increase of both the accuracy and the control

(a) (b) (c)

Fig. 8. Weighting parameters influence (realised on a fixed contact)



effort. More time is consequently needed to stabilise the
robot near to the reference. We realised simulations to tune
these parameters with a sinusoidal reference and a stable
contact (see Fig.(8)). In (a) the parameters δ and λ are equal
to 0.1 and 1 respectively. In (b) the error weight is equal to
5 and the control effort is equal to 0.1. And in (c), at the
beginning, the error and effort control weights are equal to
0.01 and 5 respectively and when the effector applies a force
near the reference, the parameters changed progressively to
δ = 10 and λ = 0.1.

Now that the weights are tuned, simulations are realised
to evaluate the compensation algorithm. The motion data
analysed above is used to animate the contact. Two kinds of
reference, corresponding to desired force, are used : constant
and variable reference.

In Fig.(9), the first three graphs display the applied force
in blue and the desired force in red (set to 1 N and varying
from 0 N to 12 N ). During transient, the maximal error
is about 248 mN (275 µm with a contact stiffness of 900

Fig. 9. Simulation results for a fixed/variable consign with animated contact

Fig. 10. Simulation results with identification and estimation errors

N/m). After stabilisation (about 1 s), the maximal error is
less than 24 mN , corresponding to a position error of about
27 µm. The fourth graph shows the positions of the contact
(in red) and of the robot end-effector (in blue). The difference
between the two is due to the D2M2 end-effector penetration
in the contact, in order to apply the desired force. The last
graph represents the torque applied on the motor of the robot
for the variable reference, it’s below the acceptable limit (150
N.m).

C. Robustness Test

To evaluate the robustness of the Predictive Force Con-
trol, two kinds of errors are added in the global system,
identification and estimation errors. Firstly, we used the
computed torque to linearize the system plant. We randomly
vary the dynamic model parameters of about 40% of their
nominal values to introduce indentification errors. Secondly,
the environment stiffness Ks (robot and contact) is set to
20% of the stiffness contact value, 900 N/m, corresponding
to a piece of boneless meat, introducing an estimation error.
With these errors added, the model used by the predictive
controller is not exactly the same of the system.

To compare with the simulations presented above, we used
the sames references for the desired force. In Fig.(10), the
first two graphs display the applied force in blue and the
desired force in red (set to 1 N ). During transient, the
maximal error is about 390 mN (430 µm with a contact
stiffness of 900 N/m). After stabilisation (about 1 s), the
maximal error is less than 48 mN , corresponding to a
position error of about 53 µm. The last graph represents,
in red, the torques for the nominal model without errors,
and in blue, the torque for corrupted model.

D. Discussion of the Results

The first simulations, realised without errors introduced,
show the good performances of the controller to realise
breathing and heart beat motion compensation. For the



TABLE I
SIMULATIONS AND ROBUSTNESS TEST RESULTS

Physiological Motion Compensation
RMS Position Error (µm) Max Position Error (µm)

Nominal model Corrupted model Nominal model Corrupted model

Constant Consign (1 N )
before transient 31.2 46.2 272.2 427.6

after transient 4.7 5.8 26.9 30.1

Varying Consign (1− 10 N )
before transient 56.3 94.3 290.3 468.5

after transient 8.3 10.5 35.4 38.9

robustness test, the same method (to tune the weight parame-
ters) and motion data (used to animate the contact) are used.
The identification and estimation errors added increase the
position errors. In spite of the amplitude increase and the
high frequency components apparence, the applied torque,
with the corrupted system, is below the acceptable limit
(150 N.m). Among these results, the values of the RMS
and Maximum Position Errors are summarized3 in Table I.

V. CONCLUSIONS

This paper has presented an intelligent control algorithm
for the physiological motion compensation in the domain of
the mini-invasive cardiac surgery. It takes into consideration
the breathing and heart beat motion without adding sensors
or markers in the workspace to measure the motion. The
information is given by a force sensor located on the tool.
Depending to the workspace deformation and the physiologi-
cal motion, this information is more precise and the data used
by the controller is available in real time. The simulations
show that this algorithm provides a significant compensation
error decrease. Results are better than the best found in the
literature [1].

Future work will focus on the improvement of the physio-
logical motion compensation in two ways: on one hand, the
weight parameters (here chosen intuitively) shall be tuned
(in real time) as a function of the system’s state. Secondly,
the Linear Predictive Force Controller shall be included in
the global scheme used in [9].
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