
HAL Id: lirmm-00287761
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00287761

Submitted on 12 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concern-Sensitive Navigation: Improving Navigation in
Web Software through Separation of Concerns

Jocelyne Nanard, Gustavo Rossi, Marc Nanard, Sylvia Gordillo, Leandro
Perez

To cite this version:
Jocelyne Nanard, Gustavo Rossi, Marc Nanard, Sylvia Gordillo, Leandro Perez. Concern-Sensitive
Navigation: Improving Navigation in Web Software through Separation of Concerns. CAiSE: Confer-
ence on Advanced Information Systems Engineering, Lirmm, Jun 2008, Montpellier, France. pp.420-
434, �10.1007/978-3-540-69534-9_32�. �lirmm-00287761�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00287761
https://hal.archives-ouvertes.fr

Concern-Sensitive Navigation: Improving Navigation in
Web Software through Separation of Concerns

Jocelyne Nanard1 , Gustavo Rossi2, Marc Nanard1, Silvia Gordillo2 and Leandro
Perez2

1 LIRMM, CNRS/Univ. Montpellier, 161 rue Ada, F34392 Montpellier cedex 5, France
[jnanard, mnanard]@lirmm.fr

2 Facultad de Informática, Universidad Nacional de La Plata and Conicet Argentina
gustavo@sol.info.unlp.edu.ar

Abstract. Traditionally, the use of good techniques to improve software modu-
larity, such as advanced separation of concerns, has no impact in the user expe-
rience, for example while navigating Web software. While the intent of these
techniques is to simplify evolution and maintenance, navigation design quality
is often seen as an unrelated concern. In this paper we present a novel approach
for improving navigation in Web applications by using some of the core appli-
cation’s concerns (called navigational concerns) to derive their navigational
structure. Using some realistic examples we show that, by carefully using these
concerns, we can improve the user experience. Some implementation issues are
discussed and a thorough comparison with related ideas in the Web Engineering
field is presented.

Keywords. Separation of concerns, Concern-sensitive navigation, User experi-
ence

1 Introduction and Motivation

Web applications have evolved from being simple information repositories to com-
plex and ubiquitous platforms for performing complex business processes or for pub-
lishing and sharing multimedia information. Huge e-commerce sites such as Ama-
zon.com, blogs like Youtube or Flickr or cooperative encyclopedia like Wikipedia are
clear examples of this evolution. As these applications are being constantly modified,
maintenance implies an additional challenge to software development methodologies.
Fortunately the Web engineering community has already discussed and proposed ad-
vanced software techniques to simplify design and evolution (See for example [19],
[14]); most of them are based on variants of the separation of concerns principle [12].

However, these design techniques are usually considered orthogonal to the prob-
lem of application usability. In this way for example, the quality of navigation struc-
tures is considered a completely disparate problem with respect to, for example,
achieving design modularity. In other word, a Web software which has been con-
ceived with high standards regarding evolution and maintenance does not necessary
provide a good navigation experience to the final user.

In this paper we show how a wise separation of application concerns during mod-
eling and design, and the information recorded during those stages can be cleverly
used also towards providing a more flexible navigational structure and thus improving
the user navigation experience. Our work aims at improving the cognitive and rhetoric
access to information, which means providing the user with the needed information in
each concern, and such that it is organized and presented in a more opportunistic way
[13]. Suppose for example an application such as Amazon.com in which users navi-
gate through thousands of products with different concerns (tasks or interests) in
mind. In Fig. 1 we show a typical screen of a book with the corresponding informa-
tion and available functionality.

Fig. 1: A Book in Amazon.com.

The page for a book (like in Fig. 1) looks exactly the same independently of the

reason why the user reached it. For example it could have been accessed as a book on
Italy, it could result from an Amazon recommendation according to the user’s buying
history, or it could be also accessed from the shopping cart because the user wants to
be sure about the book’s contents before proceeding to pay for it. This “flat” structure,
in which every object looks equally regarding the context in which it is accessed,
diminishes usability and might also cause errors [3].

The contents of the book page should be improved by taking into account the
“dominant” concern in which it is being accessed. For example in Fig. 2.a we show
part of a possible Web page for the book when accessed as a recommended item and
in Fig. 2.b, the same book when accessed from the shopping cart. In Fig. 2.a there is a
link to get an explanation of why the book was recommended, and links to the previ-
ous and next recommendations. Notice that these links do not make sense when the
book is accessed with other different concern in mind. In Fig. 2.b meanwhile, there is
an indication that the book is already in the cart and that if added again, it will imply
adding a new unit. In both cases knowing the actual user’s concern helps to enrich the
information on the target page with new contents and links to simplify or clarify the
user’s task.

Some Web Engineering approaches have solved sub-sets of this problem using
specific ad-hoc techniques and/or notations. For example, OOHDM [23] uses the
concept of navigational contexts to enrich hypermedia nodes when accessed in a par-
ticular set (for example the set of recommended products). In [24] a similar idea is
used to restrict operations in the context of a business process, i.e. to avoid that the
same product is added once more in the shopping cart while checking-out. Our ap-
proach aims at providing a more systematic context-sensitive navigation.

Fig. 2.a Book accessed in the Recom- Fig. 2.b: Book accessed in the Shopping
 mendation Concern. Cart concern.

This paper has three main contributions:
• We introduce the concept of concern-sensitive navigation (CSN) as a conceptual

and practical tool towards improving the navigational structure of Web applica-
tions as perceived by the user.

• We show how to introduce CSN in Web development methodologies, emphasizing
how the use of techniques for advanced separation of application concerns can be
used not only to improve modularity, but also the user’s navigation experience.

• We show the feasibility of CSN by briefly analyzing implementation alternatives.

The rest of the paper is organized as follows. We first introduce concern-driven
navigation and illustrate the concept with simple examples. We next discuss how to
engineer applications which support concern-driven navigation discussing modeling,
design and implementation issues. Finally we compare our work with related ap-
proaches and present some further research we are pursuing. We show the design and
implementation feasibility of these ideas by providing illustrative examples.

2 Concern-sensitive navigation

The main motivation of our research is to show that by separating concerns we can
not only improve evolution and maintenance but also produce better navigation struc-
tures. In this section we explain deeply which are the issues one has to consider to re-
alize CSN.

2.1 Background

According to [17] an application concern is defined by any coherent set of require-
ments, e.g. all requirements referring to a particular theme or behavioral application
feature. More generally [25] defines a concern as a “matter of consideration in a soft-
ware system”. Concerns may reflect functional or non-functional aspects of an appli-
cation such as recommendations and checkout in E-commerce, topic areas such as
history or geography in an Encyclopedia. Concerns may be generic, when they appear
in a broad number of applications (e.g. adaptivity, usability), domain specific when
they only apply to a set of applications (payment in e-commerce), or even application

specific when they only show up in a particular kind of software (e.g. Marketplace in
Amazon.com).

A navigational concern is an application concern that affects navigation, i.e. it
manifests itself in the navigational structure of the application (the exhibited contents
and links), and which therefore impacts in the way users navigate the application. In
this paper we focus on navigational concerns and ignore others which are nevertheless
important but do not affect navigation (such as persistence or security).

Most Web applications deal with a myriad of navigational concerns and usually
(for improving usability though many times only for marketing reasons) they exhibit
information pertaining to more than one concern in the same page, i.e. in the same
page we might find contents, links and functions which belong to different concerns.
Modern software engineering techniques such as aspect-oriented development [9]
promote a clear separation of concerns during specification, design and programming
and their late weaving either during compilation or even execution. In this way one
can diminish the impact of crosscutting concerns during software evolution. However,
and as we showed before, the page in Fig. 1 looks the same independently of the con-
cern the user has in mind when accessing it (searching a product, being recommended
a product, as part of an offer, etc).

Users navigate in Web applications to perform a specific task; mature Web design
methods have already prescriptive approaches and notations to map task descriptions
(e.g. specified as use cases) into conceptual and navigational models [26]. Our ap-
proach complements these ideas with a strategy to enrich the navigation objects with
information specific to the concern that the user is traversing. The mechanics of CSN,
as well as its scope should be defined by the designer according to the user’s need and
convenience. In what follows, we show how to use the information on navigational
concerns to improve the navigation structure of the application. For the sake of con-
ciseness we only focus on navigation aspects.

2.2 Definition

To formalize our notion of CSN we refer to a navigation object type Nj (the realiza-
tion of an atomic or composite hypermedia node type) as comprising a set of proper-
ties; these properties may be further classified in media contents, anchors for links or
operations exhibited by the node and can be divided in two groups:
• properties intrinsic to the object [15] (i.e. which are present regardless the concern

in which an object is accessed). We call them core properties;
• properties which, given a concern Ci, correspond to the set of perceivable proper-

ties of Nj when accessed in the Concern Ci and which is the result of applying a
function P (Ci, Nj).
For each meaningful pair (Ci, Nj) the set of properties should be a superset of the

core properties of Nj. In Fig. 3 we illustrate the definition for the examples in Fig. 1
and 2 using a UML-like notation. Notice that the same node instance exhibits differ-
ent properties according to the concern in which it is accessed. By adjusting the
node’s properties to the concern in which it is being accessed we improve the naviga-
tional structure, by making contents more focused to the actual concern the user is
navigating (i.e. the intended task).

aBook : Book

-Name

-Cover

-Price

-Availability

-Author (Anchor)

-Why (Anchor)

-NextRecomm (Anchor)

-PrevRecomm (Anchor

Recomm Concern

aBook : Book

-Name

-Cover

-Price

-Availability

-Author (Anchor)

Intrinsic Properties

aBook: Book

-Name

-Cover

-Price

-Availability

-Author (Anchor)

-Warning

-AddAnother

Cart Concern

Fig. 3: Intrinsic Properties vs. Properties in Recommendation and Cart Concerns.

Regarding this initial definition there are some additional issues to consider:

• Notice that the perceivable properties do not depend on the user profile or identity,
which means that CSN is slightly different from adaptive navigation (See the re-
lated work section).

• Besides the so called intrinsic properties, there might be properties which pertain to
different concerns and which we want to exhibit permanently (e.g. the Add To
Wish List operation), i.e. regardless the navigation path. Though this is a design is-
sue not fully related with concern-driven navigation but with concern composition,
we only give an overview of it (See Section 3.2).

• Defining the concerns which affect a node type requires a clear understanding of
the application concerns, their relationships and the way they reflect in navigation
(See next section).

2.3 Which categories of Concerns affect Navigation?

As explained in [25] there are many different kinds of concerns which may arise in
the process of Web software development. For the sake of conciseness we enumerate
here the most important types of concerns which are exposed to the user and therefore
affect navigation:
• Task concerns are the broadest category of navigation concerns; they abstract those

concerns which relate to the different high level actions that the user can perform
in a Web application, for example exploring products, managing the shopping cart,
adding reviews, checking out, managing lists, etc. Some of these tasks are related
with finer grained application features such as services offered by the application;
in the case of Amazon, recommendations, marketplace, lists, etc. Notice that while
involved in a service the user is always performing a task.

• Topics: Pure informational sites might introduce even finer-grained concerns; for
example topics or themes such as in an Encyclopedia. Topic-based concerns are
also present in the context of tasks; for example while searching books in Ama-
zon.com, the genre of the book (thriller, travel, technical) or its theme area (Soft-
ware Engineering, Programming, etc) might itself become a concern.

• “Pure” navigational concerns, like Guided Tours or sets. These are usual abstrac-
tions in navigational design and therefore can be considered also as specific con-
cerns.

Deciding which is the appropriate level of granularity for choosing concerns during
the modeling stage is, as well as choosing the “right” concerns, part of the designer
job, and it is outside the scope of this paper. However, the reader can find good guide-
lines in the literature on Early Aspects [8], particularly in [2].

2.4 Which kinds of concern “enrichment” improve the user’s experience?

Though the answer to this question strongly depends on the specific concern, there are
two broad categories of enrichments:

Basic enrichments. We found three kinds of enrichments, namely:
• New or modified contents: As shown in the cart concern of Fig. 3, we can enrich

the node instance with new attributes
• Anchors and Links: Also in Fig. 3, in the Recommendation concern we added a

new link and the corresponding anchor to improve navigation
• Operations: A node instance might exhibit additional operations when accessed in

a concern; for example we could have added a (deleteFromCart) operation in the
Cart concern in Fig. 3.

Enrichment Patterns. For each of the previously mentioned concern types, the
following patterns are the most recurrent:
• For Task-Based Concern: When the concern is defined by a business process (like

in [24]), and operating on the target node might conflict with the process, it is ad-
visable either to eliminate operations which collide with the concern or to add spe-
cific warnings (e.g. the shopping cart or checkout concerns in Amazon).

• For Thematic concerns: when a node is accessed in that concern, add information
and links specific to the topic which is related with the node. For example the book
in Fig. 1 could be enriched with links to other books on Italy (or related to the
higher level concern, Travel)

• For Pure Navigational Concerns: When the concern can be represented as a set as
in OOHDM navigational contexts [23] (e.g. the set of recommendations, etc.), it is
wise to enrich the node with links to the index of the current set, and to the previ-
ous and next elements of the set. Another example of this kind of enrichment can
be found in tag-based navigation like in Flickr (e.g. by providing links to other
photos with the same tag).

3 Engineering Web Applications supporting CSN

Web Engineering approaches, like those in [22], support separation of the most out-
standing concerns in this kind of software: requirements’ capture, content or applica-
tion modeling, navigation and presentation design, business process modeling, etc.
(they correspond to methodology-related concerns). Some of them have also intro-
duced elements of advanced separation of concerns (such as aspect-orientation) to
deal with cross-cutting concerns [4]. Even though the kind of application concerns
which might be reflected in CSN structures does not necessarily correspond to “as-

pects” (as they may not crosscut in the standard way), we claim that the most relevant
identified concerns (e.g. following the classification in 2.3) should be designed sepa-
rately. We next explain how to map concerns into navigational structures. Though we
use OOHDM as the exemplary method, the ideas can be applied to other well-known
approaches like UWE [14], OOWS [19] or WebML [5]. In the following, we discuss
mainly the Requirement, Modeling and Navigational design issues; some Implemen-
tation aspects are then outlined. Presentation issues can be read at [10].

3.1 Requirement and Modeling Issues

In [11] we presented an approach to model navigational concerns in Web applica-
tions; the approach which derives from well-known ideas in the Early Aspect com-
munity [8] helps to elicit, identify and specify the interactions which emerge in each
navigational concern. In our work, each concern is explicitly represented using a
XML-template and for each use case in the concern a User Interaction Diagram (UID)
is built. UIDs show how the interaction proceeds in a high level way. In Fig. 5, we
show part of the definition of the Recommendation concern (on the left) and the cor-
responding UID (on the right). The UID shows in a simple state diagrams which items
are presented to the user, either as simple structures such as Book and its attributes or
as sets of structures (those which begin with “…”) and the transitions corresponding
to user’s actions such as selecting the “Why” option in the right part, or the “Next”
and “Previous” recommendation below state “C”. When comparing the UID in Fig. 4
with one in the core application concern (not shown for conciseness), we will find that
the information exhibited by books is slightly different (See state “C”); this informa-
tion will be used to define CSN as described in Section 3.2.

<Concern name="Recommendation ">

<Requirement id="1">

The system should provide personalized
recommendations according to the user’s

record.

 <Requirement id="2">

Recommended products should be
accessible from the home page and ordered

according to the level of certainty of the
recommendation

</Requirement>

<Requirement id="3">

While accessing a recommended product the

user should be able to know why he was
recommended the product and access other

recommendations easily

</Requirement>

</Requirement>

</Concern>

Book (title,

author, cover,

price, availability,

details)

...Book (title,

author, cover,

price)

Home Page

Recommended

Books

A
B

C

1

Why
Explanation

D

Next Previous

Fig. 4: Requirements corresponding to the Recommendation concern.

Once the whole set of requirements have been elicited and modeled, a conceptual

OOHDM model is built using the information collected from the UIDs, which as ex-
plained in [23], allow to define the attributes and methods of conceptual classes. Fol-
lowing the Theme approach [7] we propose to partition the conceptual model in sub-
models, one for each of the relevant concerns (See [11]). However, other approaches
(aspects, object decorators, etc) can be also used according to the kind of concern
crosscutting; this discussion is outside the scope of this paper (See for example [16]).

For the sake of conciseness, we will concentrate on navigational concerns and use
as an example a fragment of the e-store shown in previous Figures. In Fig. 5 we pre-
sent a simplified OOHDM conceptual model corresponding to this example. We only
present the conceptual sub-models corresponding to the Core and Recommendation
concerns emphasizing class structure over relationships, as they are sufficient for il-
lustrating the rationale and mechanics for building the concern-sensitive navigational
model. Following [7], each model presents the view of the application classes accord-
ing to the concern. Notice that there are two classes in the Recommendation concern
which do not appear in the Core concern. When these models are weaved some
classes may be transformed in a class containing the union of the definitions of each
model (e.g. Product), others might evolve into aspects, etc.

Store

Product

Customer

Shopping

Cart

Core Concern

Name
Address

Age

Name

Cover

Price

Availability

Author

Contents

ExpirationDate

Store

Product

Customer

Recomm

Engine

Recommendation Concern

Buying

History

Name

Cover

Price

Availability

Author ComputeRecommFor

(customer)

Name
Address

Age
List of Products

rationaleForRecomm

Fig. 5: Conceptual Model for the e-store site.

3.2 Navigational Design

Web engineering approaches provide primitives for describing the navigational struc-
ture of the application, i.e. for defining nodes, links, indexes and higher-level struc-
tures such as landmarks, guided-tours, etc. Nodes contents are usually defined oppor-
tunistically to improve usability; for this reason, many times the same node exhibits
information pertaining to different concerns (See Fig. 1). In OOHDM we do this by
defining the node’s attributes as views on the corresponding conceptual classes (even-
tually “viewing” their definitions in the different involved concerns) [23].

We are interested however, in the information and links which are only meaningful
in some specific concerns. As defined in 2.3, CSN allows enriching the contents and
links of a hypermedia node according to the current user’s concern. A navigational
model expressing concern-sensitive navigation should take into account what follows:

Identify which node types are “affected” by existing concerns. The first output of
a navigational diagram (in OOHDM and other methods) is a navigational schema
formed out of node and link types, representing the type of objects the user will per-
ceive with their attributes and the navigable relationships. As said above, these types
are obtained from the conceptual model using a view mechanism [23] which allows
gathering information according to users’ needs. A simplified “flat” navigational

schema for the e-store site is presented in Fig. 6. Again, we emphasize node’s struc-
tures and do not indicate link types’ names.

Home

Product Shopping

Cart

Recomms

RecProducts : Index

Name

Cover

Price

Availability

Author

Reviews

Products: Index

addProduct (P)

Fig. 6: Navigational Schema for the e-store site.

The navigational schema shows the specification of “natural” node types (i.e. those
which stand independently of any concern, See [15]), and the links which provide
navigation paths between node instances. For the sake of simplicity we don’t present
the OOHDM navigational contexts model in which indexes are further specified (See
[23]).

By analyzing the requirement model, particularly the specification of concerns and
their realization with UIDs, we can identify which of the node types are affected by
each concern. We do this by building a table (See Table 1) which makes explicit the
function P, described in Section 2.2. Each line corresponds to a concern. For each
concern, we add a new column for each node type affected in this concern.

Define the information, links and services to be added when accessing a node in
each particular concern. For each pair (concern, node type) we indicate the
corresponding enrichment when a node instance is accessed in that concern. This
decision takes into account the nature of the concern (i.e. the current user’s task); for
example we might decide to add more specific information to improve user’s
understanding, links to related information objects (corresponding to the same
concern) to improve the completion of the task, etc. As mentioned in 3.1, UIDs are
the first source for this information as they collect most of the data and possible
interactions corresponding to each concern. Table 1 shows a sketch of the enrichment
corresponding to the Node type Product when accessed in the Recommendation
concern (omitting the anchor’s specification for conciseness).

Table 1: Table showing the enrichment for each concern and node type.

 Nodes
Concerns

Node Type 1 … Product …

Concern 1
…

Recomm Why (Anchor)
Next (Anchor)
Prev (Anchor)

…

We represent concern-sensitive navigational diagrams with the notation of role-
enrichment. A role type (indicated as a rounded rectangle) shows, when attached to a
node, the additional information and links that will be shown in the corresponding
concern. Roles of a node type act as decorations adding the concern-specific informa-
tion. In Fig. 7 we show how we enriched the navigational diagram of Fig. 6 with con-
cern information, represented with roles. There are two roles, one for products ac-
cessed from the recommendation list (i.e. in the recommendation concern) and one for
products accessed from the cart (i.e. in the Cart concern); in both cases the role con-
tains the additional features as part of its specification. Notice for example the two
links defined from the RecommProduct role into itself and the additional Explanation
node type, which reflect the specification in the UID of Fig. 5 and the corresponding
table entry of Table 1. Also the role ProductInCart adds a behavior AddToCart which
possesses a slightly different semantics with respect to the “normal” addToCart be-
havior in Product, asking the user if he really wants to increase the number of units of
the product. The use of roles in Web Engineering has been discussed in our previous
work in [21].

Home

Product Shopping

Cart

Recomms

ProductInCart

Recomm Product

Name

Cover

Price

Availability

Author

Reviews

Products : Index

RecProducts : Index

Explanation
Next : Anchor

Prev: Anchor

Why: Anchor

Message : Text

OtherProducts :Anchor

AddToCart

Fig. 7: A concern-sensitive navigational schema.

3.3 Further Issues

An interesting modeling (and also implementation) issue arises when dealing with
families of navigational concerns. There are some concerns which are “atomic” be-
cause there is only one instance of the concern, and as a consequence all nodes af-
fected by the concern either have the same enrichment or the enrichment only de-
pends on the affected node. The best example of this kind of concerns is the Cart
concern: there is only one Shopping Cart and therefore all products navigated from
the Shopping Cart (i.e. in the Cart Concern) will have the same enrichment. Mean-
while, in the recommendation concern, the enrichment depends on the node instance
(the product) as links to other recommendations are a function of the product. In this
case, in our modeling approach, the corresponding role type can be considered a sin-
gleton (it has only one instance) which adds information somewhat parameterized by
the target node instance. This added information (See Fig. 2 and 7) is obtained by col-
laboration with the node instance.

Meanwhile, certain concerns, particularly Topic or Thematic concerns have usually
many instances, one for each possible topic. In our example of Fig. 1 and 2, we could

have been exploring books on Italy, and therefore when accessing the book, the actual
concern is Italy (which is a sub-category of the concern Travel). Even though the de-
signer should decide which the suitable level of granularity is, and eventually choose
if Italy is a possible concern (e.g. Travel might be preferred), it is obvious that we ex-
pect different additional information while exploring books on Web Engineering. In
any cases, the most elegant design solution is to consider that the concern role type
(Topic) has many instances, one for each topic; these instances are created dynami-
cally, when accessing the target node instance. If necessary, there might be a hierar-
chy of role types to cope with variants among Travel, Technical Books, Software, etc.
with respect to the specific enrichment for each concern. Fig. 8 shows the e-store
screen with this enrichment and the corresponding role and type specification to cope
with this situation; the parameter in the role specification is used at instantiation time,
i.e. when the corresponding role instance is created.

Fig. 8: Role Type parameterized with the concern instance.

3.4 Implementation

We show the feasibility of mapping the previously described navigational structures
onto a running application, by briefly describing two implementation alternatives.

The first alternative consists (as most Web design methods do) in translating the
specification of nodes into XML files which, when being populated, are themselves
translated into final interfaces by using XSL specifications. Similarly, we map the
role types into XML files which are aware of the specifications they enrich. In the
simplest case, producing the intended node instance requires the injection of the role
file into the corresponding node instance. In [10], we described how to use XML
transformations (described using XSLT) to weave two concerns together. Transfor-
mations are easy to specify and only use standard technologies. There might be cases
however, in which the enrichment requires more subtle processing, for example to
compute links which depend on the target node instances (as in the recommendation
concern), or on the combination between the concern and the node instance (as in the
case of topic-based concerns). This processing can be also specified using rules in the
transformation files. Though the details are outside the scope of the paper, we show in
Fig. 9 the simplified XML files for the core and recommendation concern and in Fig.
10 the XSLT transformation to weave them together; finally in Fig. 11 we present a

UML activity diagram illustrating the process from the user’s request to the genera-
tion of the necessary structure to realize concern-sensitive navigation.

<book>
<name>The Most Beautiful Villages of Tuscany </name>

<cover >TheMostBeautifulVillagesofTuscany .jpg</cover >
<price >40.00</price >

<availability >24 hs</availability >

<author >/search .do?author =JamesBentley </author >
</book>

<recommendation >

<why>/recommendation .do?id=2345</why>
<nextRecomm >/product?id=254</nextRecomm >

<prevRecomm >/product ?id=168</prevRecomm >

</recommendation >

Fig. 9: XML files corresponding to core and recommendation concerns.

<xsl: template match ="/book">

<book>
<xsl:copy-of select ="*"/>

<xsl:copy-of select ="document ('recomm .xml ')/ recommendation /*"/>
</book>

</xsl :template >

<xsl: template match ="@*|node()" >
<xsl:copy>

<xsl:apply-templates select ="@*|node()"/ >
</xsl :copy>

</xsl :template >

</xsl :stylesheet >

<book>

<name>The Most Beautiful Villages of Tuscany </name>
<cover >TheMostBeautifulVillagesofTuscany .jpg </cover >

<price >40.00</price >

<availability >24 hs</availability >
<author >/search .do?author =JamesBentley </author >

<why>/recommendation .do?id=2345</why>
<nextRecomm >/product ?id=254</nextRecomm >

<prevRecomm >/product?id=168</prevRecomm >

</book>

Fig. 10: XSLT transformation and the result of its application.

Fig. 11: Activity diagram for weaving a role into the core concern.

A more systematic alternative is to use a model-driven approach [26], in which the

semantics of role diagrams, such as the one in Fig. 7, feeds the transformation engine
to produce the intended behavior. In [20] we presented a framework, CAZON, which
injects irregular functionality into node instances. We have used CAZON to incorpo-
rate volatile functionality in node instances; such services are included for short peri-
ods of time (such as draws, promotions, holiday’s offers, etc.). Insofar as CAZON
uses XML files to describe nodes (both core and volatile), its underlying engine uses
the same basic ideas as the previously described transformations, relieving the de-
signer from the job of specifying them. We are currently extending CAZON to pro-
vide role enrichment, by expressing the relationships between role and node types us-
ing CAZON’s built-in mechanisms, to show relationships between base and injected
structures and behaviors.

As a summary of the previous explanation, we stress the importance of specifying
in a declarative way the relationships between role types (as realization of concern en-
richment), and node types. Even though this specification can be done using XML we
think that model-driven approaches are preferable because they relieve us of imple-
mentation details.

4 Related Work

Separation of concerns has been a driving force in Software (and Web) Engineering
for years. As mentioned in Section 1, the main rationale for improving separation of
concerns has been simplifying software evolution and maintenance by achieving
modularity. Treating concerns as “first class” artifacts in the software development
process helps to better understand the underlying domain and produce composable
modules which reflect the requirements in each concern and the relationships between
them. Approaches like Aspect-Oriented Software Development [7], [9] guarantee
modularity and seamless composition of core and aspectual functionality.

All Web Engineering approaches recognize the need to separate the design in lay-
ers which deal with clearly different concerns such as navigation, presentation and
also business processes (We call this horizontal separation of concern) and even ad-
aptation [4]. An interesting example of the use of advanced horizontal separation of
concerns in Web Engineering is [6] which proposes a formal specification of the con-
nections between different models during the development cycle to produce seamless
weaving; the weaving model itself is described as a meta-model. The main difference
between our work and existing approaches in Web engineering, is that we use also a
vertical separation of concerns related to the essence of the application, to systemati-
cally produce better navigational structures and not just to ease evolution. While we
rely on well known separation of concern techniques to specify and design each con-
cern, we use the information collected from requirements to navigational design, to
realize an improvement in the information and links perceived by the user while navi-
gating in the context of a concern. Our work also generalizes some existing ap-
proaches to enhance navigation in specific contexts such as sets of related objects
(called Navigational Contexts in OOHDM [23]) or business processes [24].

CSN has some points in common with the work on adaptive hypermedia [1]. Adap-
tive hypermedia approaches seek to improve user’s navigation by taking into account
the user’s profile and needs. In an adaptive hypermedia application, nodes and links
vary according to the characteristics of the user, his navigation history, etc. Adaptive
hypermedia systems rely on a user model which represents the meaningful user’s fea-
tures and an adaptation model in which the adaptation rules and algorithms are speci-
fied. Our work meanwhile, while also producing an improvement with respect to
“flat” navigation structures, does not pose additional requirements to Web software,
such as recording the user’s features or elaborated rules or algorithms. We rely on the
use of well-known and mainstream software practices (such as separation of con-
cerns) to generate a better navigational experience. Additionally, as the underlying
designs are modular (e.g. by the use of aspects and/or roles), adding new concerns and
their corresponding navigational adaptations is straightforward, as the core functional-
ity is oblivious with respect to the new (and of course the “old”) concerns.

6 Concluding Remarks and Further work

We have presented an approach to use separation and composition of concerns, not
only to enhance Web software modularity, but also to improve its cognitive and rheto-

ric access. While we recognize the importance of using advanced separation of con-
cerns techniques to ease application evolution, we claim that these techniques can be
further applied in the context of navigational design to obtain better navigational
models; for this aim we introduced the concept of concern-sensitive navigation. Ap-
plications supporting concern-sensitive navigation can offer the user more focused in-
formation, links and services according to his actual concern. While this idea shares
some of the objectives of adaptive and context-aware hypermedia approaches, it in-
troduces an orthogonal concept: the navigational concern. We have shown, with sim-
ple examples, that producing a concern-sensitive navigational model is rather simple,
and we have provided a proof of concept of its implementation feasibility. For this,
we have relied on standard tools and representation techniques to demonstrate that the
idea can be easily put to work without complex engines or frameworks.

We are now studying several aspects, which belong to finer grained details of con-
cern-sensitive navigation. One of them is dealing with the extent of a concern during
navigation; while the “entrance” to a concern is clearly defined at design time as
shown in the diagram of Fig. 7, many times it is not obvious when the user concern
changes, for example when navigating links which are defined in the core concern.
Related with this issue and with the enrichment patterns (See Section 3), we are also
researching on patterns for concern selection to enrich existing catalogues of Web
patterns such as [27]; in some kinds of concerns, particularly topic-based concerns,
the user can select the actual concern for example when choosing a menu option (e.g.
categories of books, subjects in an encyclopedia, etc). Knowing these patterns can
help the designer to further improve the navigational structure. We are also research-
ing on the concern-based improvement of applications in which most contents are
provided by user, such as Wikipedia. Further usage analysis is necessary to have a
clear understanding of the impact of concern driven navigation in users.

We are also finally researching on different ways of implementing concern-
sensitive navigation; particularly we are using our ideas of XML transformations [10]
and tree transformation through grammar networks [18] to ease the process of con-
cern enrichment both at the navigation and interface levels. Finally we are working in
the process of measuring the improvement provided by CSN; this can be done by ana-
lyzing how user’s tasks are simplified but will also require further experiments with
real users.

References

1. Adaptive Hypermedia Reference Library. At wwwis.win.tue.nl/ah/publications.html
2. Baniasaad, E., Clarke S.: Finding Aspects in Requirements with Theme/Doc. Proc. of

Workshop Early Aspects 2004, associated to the ACM Conf. AOSD (2004)
3. Baresi, L., Denaro, G., Mainetti, L., Paolini, P.: Assertions to Better Specify the Amazon

Bug. ACM Int. Conference Proceeding Series, Vol. 27. Proc. of the 14th Int. Conf. on
Software Engineering and Knowledge Engineering (2002)

4. Baumeister H., Knapp A., Koch, N., Zhang G.: Modelling Adaptivity with Aspects. Proc.
of the 5th Int. Conf. on Web Engineering (ICWE2005). Springer LNCS Vol. 3579 (2005)

5. Ceri, P., Fraternali, P., Bongio, A.: Web Modeling Language (WebML), A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems, 33(1-6), June
(2000) 137-157

6. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Weaving Concerns in Model Based Devel-
opment of Data-Intensive Web Applications. In Proceedings of the ACM Symposium on
Applied Computing (SAC 2006), pp 1256-1261, ACM Press (2006)

7. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Approach.
Addison-Wesley, Object Technology Series (2005) ISBN: 0-321-24674-8

8. Early Aspects Home: www.earlyaspects.net
9. Filman, R., Elrad, T., Clarke, S., Aksit, Mehmet:Aspect Oriented Software Development.

Addison Wesley (2004)
10. Ginzburg, J, Rossi, G., Urbieta, M., Distante, D.: Transparent interface composition in

Web Applications. In Proceedings of the International Conference on Web Engineering
(ICWE 2007). LNCS, pp 152, 166, Springer (2007)

11. Gordillo, S., Rossi, G., Moreira, A., Araujo, J., Vairetti, C., Urbeita, M.: Modeling and
Composing Navigational Concerns in Web Applications. Requirements and Design Issues.
Proc. of Latino American Conf. on the WWW (LA-Web 2006). IEEE Computer Society
Press (2006)

12. Harrison, W., Ossher, H, Tarr, P.: General Composition of Software Artifacts. Software
Composition 2006. Springer LNCS 4089 (2006) 194-210

13. Horchani, M., Nanard, J., Nanard, M.: Les Hypermédias comme Paradigme d’Interfaces
Adaptatives. In Les hypermédias, I. Saleh (ed), Hermès (2004) 119-146

14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering. In (22)
15. Kristensen, B.B. and Osterbye, K.: Roles, Conceptual Abstraction Theory and practical

Language Issues. Theory and Practice of Object Systems, 2(3) (1996) 143-160
16. Marin, M., Moonen, L., van Deursen, A.: A classification of Crosscutting Concerns. Proc.

IEEE Conf. on Software Maintenance (ICSM’2006). IEEE Computer Society Press (2006)
17. Moreira, A., Araujo, J., Rashid, A.: A Concern-oriented Requirement Engineering Model.

Proc. Conf. on Advanced Information Systems Engineering (CAISE’05), Springer LNCS
Vol. 3520 (2005) 293 – 308

18. Nanard, M., Nanard,J., King, P.R.: A structural computing approach to the production of
multimedia document series. NRHM Vol. 12, n°2 (2006) 165-190

19. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. Proc. Electronic Commerce and Web Technologies (EC-Web
2001). Springer LNCS Vol. 2115 (2001) 16-28

20. Rossi, G., Nieto, A., Mengoni, L., Lofeudo, N., Nuño Silva, L., Distante, D.: Model-
Based Design of Volatile Functionality in Web Applications. LA-WEB (2006): 179-188

21. Rossi, G., Nanard, J., Nanard, M., Koch, N.: Engineering Web Applications with Roles.
Journal of Web Engineering, Vol 6, N° 1, (2007) 019-048

22. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (edts): Web Engineering: Modelling and
Implementing Web Applications. Springer (2008)

23. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with OOHDM. In
(22)

24. Schmid, H., Rossi, G.: Modeling and Designing Processes in E-Commerce Applications.
IEEE Internet Computing 8 (1) (2004) 19-27

25. Sutton, S. and Rouvellou, I.: Modeling of Software Concerns in Cosmos. Proc. of ACM
Conf. AOSD 2002, ACM Press (2002)

26. Valderas, P., Fons, J., Pelechano, V.: Transforming Web Requirements into Navigational
Models: An MDA-based Approach. ER 2005: Springer, LNCS Vol. 3716 (2005) 320-336

27. Van Duyne, D.K., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns for Creating
Winning Websites. Prentice Hall (2006)

