Improving Recommendations by Using Personality Traits in User Profiles

Abstract : By storing Personality Traits in User Profiles we able Recommender Systems to deduce more interesting recommendations for users acting pro-actively in order to offer for them products/services as a prediction of their future needs and behavior. This paper is proposed as an alternative to improve the robustness of recommendations by using psychological aspects, as Personality Traits. This paper is a part of a PhD ongoing work. It is presented as follow: firstly we give a brief introduction about the importance of using psychological aspects in User Profiles during the decision making process; secondly, we describe studies done in Psychology describing Personality, Traits and Tests in order to formalize how to define, to model and to extract Personality Traits of user to define his identity and to build his Profile; after, we describe how the User Reputation is formalized followed by a brief consideration about Recommender Systems; finally we present our experimentation followed by results and conclusions.
Type de document :
Communication dans un congrès
International Conferences on Knowledge Management and New Media Technology, Sep 2008, Graz, Austria, pp.92-100, 2008, 〈http://triple-i.tugraz.at/i_know〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00288128
Contributeur : Maria Augusta S. N. Nunes <>
Soumis le : mercredi 17 septembre 2008 - 03:48:10
Dernière modification le : jeudi 24 mai 2018 - 15:59:23
Document(s) archivé(s) le : vendredi 28 mai 2010 - 22:24:40

Fichier

Nunes-IKnow08-CameraReady_last...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00288128, version 1

Collections

Citation

Maria Augusta Silveira Netto Nunes, Stefano A. Cerri, Nathalie Blanc. Improving Recommendations by Using Personality Traits in User Profiles. International Conferences on Knowledge Management and New Media Technology, Sep 2008, Graz, Austria, pp.92-100, 2008, 〈http://triple-i.tugraz.at/i_know〉. 〈lirmm-00288128〉

Partager

Métriques

Consultations de la notice

722

Téléchargements de fichiers

1294