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Current Progress on Pathological Tremor Modeling and Active
Compensation using Functional Electrical Stimulation

Ferdinan Widjaja, Cheng Yap Shee, Dingguo Zhang, Wei Tech Ang, Philippe Poignet, Antonio P. L. Bo and
David Guiraud

Abstract— Pathological tremor is an involuntary and roughly
periodic movement of a body part. It is the most common
movement disorder and its incidence increases with aging.
Upper limb tremor can cause difficulties in performing simple
activities of daily living like buttoning, inserting a key into a
keyhole and writing. The proposed active tremor compensation
method involves 3 stages: sensing, filtering and actuation.
Tremor and intended motion are observed by means of motion
and neuromuscular sensors and a filtering algorithm is applied
to separate such movements. Then, the antagonist of the
trembling muscle is actuated in anti-phase with respect to the
tremor signal using Functional Electrical Stimulation (FES).
The project long term goal is to provide a wearable tremor
suppression orthosis for the upper limb. This paper reports the
current progress in each portion of the project.

I. I NTRODUCTION

T REMOR is the most common movement disorder [1],
defined as the involuntary rhythmic or semi rhythmic

body part oscillation resulting from alternating simultaneous
antagonistic muscle group contractions [2]. The two major
types of tremors are physiological and pathological tremor.
Pathological tremor, whose incidence is higher on the upper
limb, is classified into rest (e.g. Parkinson’s disease), postural
(essential tremor) and kinetic tremor (multiple sclerosis).

The patient with pathological tremor on the upper limb,
specially on the hands, has difficulties in performing ac-
tivities of daily living, like buttoning, inserting a key to
keyhole and writing. This condition may even lead to social
embarrassment and isolation. Moreover, considering that the
pathology is more common in elder patients, tremor diseases
increase economic and social costs of elderly care.

Two common options for tremor treatment are medication
and surgery. Medication is individualized for each patient
and normally conducted in a trial and error method. Side
effects, addiction and withdrawal symptoms are common
risks [3]. Also, about 50% of the tremor patients do not
present adequate response to pharmacological therapy. When
medication fails and tremor is severe, brain stereotactic
surgery, such as Deep Brain Stimulation (DBS), although
risky and expensive, may be undertaken. Good results have

Manuscript received April 30th, 2008. This work was supported in part
by Singapore National Medical Research Council under IRG M48050092
and by Neuromedics, France.

F. Widjaja, C. Y. Shee and W. T. Ang are with Biorobotics Lab,
School of Mechanical and Aerospace Engineering in Nanyang Technological
University, Singapore (e-mail: ferd0003, cyshee, wtang@ntu.edu.sg).

D. Zhang, A. P. L. Bo, D. Guiraud and P. Poignet* are with LIRMM
Robotics Department, University of Montpellier II in France(e-mail: ding-
guo.zhang, antonio.bo, poignet, david.guiraud@lirmm.fr).*Corresponding
author

Task

Pathological 
Tremor Model

Zero-phase 

Filtering and 

Learning 

Algorithm

Sensor Fusion

Muscle 
Actuation

Tremor

Intended motion
+

Tremor

EMG

Accelerometer

Functional
Electrical

Stimulation

Pathological
Tremor

Fig. 1. Active tremor compensation using wearable orthosis.

been achieved with this technique, but adverse effects may
still occur, like brain hemorrhage, seizures, marked cognitive
problems and death.

The recent rise of assistive technology gives alternatives
for tremor suppression. Recent examples include the Bionic
Glove [4], DRIFTS [5] and Micron [6]. Our approach
employs the same paradigm in DRIFTS and Micron, i.e.
sensing-filtering-actuation. The tremor suppression method is
given in Fig. 1. Motion (accelerometer) and neuromuscular
(sEMG) information from the sensing module contain tremor
and intended motion, hence a filtering algorithm is applied
to separate such movements. Then, the antagonist of the
trembling muscle is actuated using Functional Electrical
Stimulation (FES) in order to attenuate the tremor, but still
allowing the performance of intended motions.

Recent advances in technology have seen a growth of
interest in wearable sensors and systems [7]. The interest is
also fostered by the increasing challenge in providing contin-
uous healthcare outside the clinical environment. Hence, the
implementation of the proposed method will in a wearable
orthosis for the upper limb expected. However, since the
project is still on its starting phase, the current sensing
system is not portable yet. Once the whole concept has
been successfully implemented and proved, the sensing,



filtering and actuation subsystems will be miniaturized into
the wearable device. In this paper, the current progresses on
the three main portions of the project and also the expected
future works are presented.

II. SENSING

Tremor detection and quantification are of clinical in-
terest for neurological disorders diagnostics and objective
evaluation of their treatment. To prescribe proper therapy
for pathological tremor, clinicians have to correctly classify
different types of pathological tremor and distinguish it from
other movement disorders. When the patient’s condition is
advanced, diagnosis is easier due to the presence of other
distinctive symptoms.

A sensing system for quantification of tremor has been
developed [8]. It consists of accelerometers (ACCs) and sur-
face electromyography (sEMG) system, both of them ”self-
contained” and, therefore, suitable for a wearable system.In
clinical settings, ACCs and sEMG have already been used to
gain more understanding about pathological tremor. In [9],
the source of bilateral tremor (tremor on both limbs) was
investigated based mainly on EMG data and ACCs data as
the mechanical reference. ACC and EMG signals have also
been used for differentiation of pathological tremors with
statistical techniques [10], using data mining methods [11]
and to identify functional activity [12].

An optical tracking system is used as reference for the
aforementioned sensors. This system will be useful for clini-
cal diagnosis of tremor patients, as it can provide quantitative
assessment of the tremor. For engineering purpose, the data
obtained by the system can be used to model the tremor. The
experiment setup for the sensing system is shown in Fig. 2.

A. Data analysis

The sensing system developed has been used to record the
data from normal subjects and patients with tremor. Subject
recruitment was done with the help of our collaborators
at local institutes. In the first phase of data collection, 7
Parkinson’s Disease (PD) patients, 7 Essential Tremor (ET)
patients, 2 psychogenic tremor patients, 3 Holmes’ Tremor
(HT) patients and 1 stroke patients have participated. Data
from 18 normal subjects has also been collected. In this
section, the measurement results from a PD patient is shown.
The data was taken at resting position and the focus will
be at wrist flexion-extension of the right hand. In addition,
comments are added concerning data acquired from a HT
patient.

The cardinal feature in PD patients is resting tremor
(resembling pill-rolling) with a frequency of 3-6 Hz [13].
Therefore, it is expected to see this feature from the record-
ings at resting posture. The tremor in PD patients is also
usually asymmetric. However, since tremor is not the only
symptoms of PD, this does not mean that the patient’s
performance is as good as normal subjects aside from the
resting position tremor. The other two prominent features
are muscle rigidity and bradykinesia, the effects of which

Fig. 2. The whole setup for the sensing system developed.

can be seen from tests such as finger tapping, alternating
movement and fist closing and opening.

All the data shown in Fig. 3 have been passed through a
bandpass filter to remove the noise at higher frequency and
the slow movement (intentionally or not) which is not tremor.
The cutoffs frequencies used are 1 and 15 Hz for the high
and low pass filters respectively. The filter implemented is a
zero-phase Butterworth filter as given by Matlab.

The burst frequency (recorded from each sensor) is given
in the figures (4.785Hz for sEMG, 4.785Hz for ACC and
4.736 Hz for Vicon MX), so we can see that there is a
visible resting tremor in the region of 4.8Hz. Because the
frequencies of the flexor and extensor EMG signals are the
same, we can use cross correlation function to calculate the
delay between those two signals. Calculating the correlation
between the flexor and extensor EMG signals, we obtain a
delay of 3 samples. With 50Hz sampling rate and a signal of
roughly 5Hz, 3 samples of delay corresponds to about90o

phase difference. By using the cross correlation function,it
can also be observed that during the postural position there
is a window of time when the flexor and extensor EMG
signals are actually in phase. The delay calculated from the
cross correlation function is zero and using visual inspection
the zero delay is also observed. Clinically this can explain
the rigidity suffered by the patient.

Another data set was obtained from a HT patient. In
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Fig. 3. Measurement result of PD patient during resting and its power spectrum from EMG, ACC and Vicon.

that data, the amplitude of the wrist flexor EMG signal
is irregular, whereas for the extensor it is more regular.
One of the possible clinical explanations for that fact is the
existence of a tremor at the wrist extensor muscle and that
the nervous system is constantly trying to compensate the
tremor by sending a counter signal to the wrist flexor. The
jerky behavior of the wrist flexor can be explained by the
the irregularity in amplitude commonly found on Holmes’
tremor.

Those hypothetical explanations require further investiga-
tion in order to confirm whether the phenomena observed are
explained by them. However, those examples show already
that the system may be used to help tremor analysis and
diagnose, as the tremor may be better appreciated compared
to observation by naked eye only and other traditional
techniques.

B. Sensor fusion

The next step after the tremor data is available is to fuse
the signals from accelerometers and surface electromyogra-
phy. The integration of ACCs and sEMG data may provide
a better estimation of the tremor. Also, it is important
during the operation of the compensation system, since the
accelerometers are mainly used to provide information about
the compensated motion and the sEMG information used
to continuously provide estimates of the trembling muscles
states.

One of the most common sensor fusion algorithms is the
Kalman filter, but extensive literature concerning its applica-
tion to the fusion of motion and neuromuscular data is not
available. In [14], a first attempt to develop Kalman filtering
algorithms to fuse the data from both sensing modalities in
order to estimate the joint angle of the affected limb was
presented. This effort provided promising results for further
exploration.

The tremor model developed employs the fact that tremor
is approximately rhythmic and roughly sinusoidal. Ify(k)
is defined as the joint angle of the trembling limb, then the
tremor may be modeled as a single sinusoidal signal, i.e.

y(k) = r sin(ωkT ), (1)

wherer is the tremor amplitude,ω is the tremor fundamental
frequency inrad/s andT is the sampling time ins. Both r
and ω are assumed to be constant in that initial study. The
state vector for the KF is the joint angle and its angular
velocity as shown in (2).

Thus, the process model in (3) uses the sinusoidal signal
as the predictor, while the EMG and ACC measurements in
(4) serve as the corrector:

x(k) =
[

y(k) ẏ(k)
]

(2)

x(k + 1) =

[

cos(ωT ) sin(ωT )
ωT

−ωT sin(ωT ) cos(ωT )

]

x(k) + w(k) (3)

z(k) =

[

EMG(k)
ACC(k)

]

=

[

cEMG(1) 0
cACC(1) 0

]

x(k) +

[

cEMG(2)
cACC(2)

]

+ v(k),

(4)

whereEMG(k) and ACC(k) are the measurements from
both EMG and ACC, respectively. The coefficientscEMG

and cACC in (4) are calculateda priori by applying linear
regression between both EMG and ACC data with joint angle
data obtained by the optical tracking system. This implies
the relationships between them are modeled as linear first
order polynomials, although the relationships are definitely
nonlinear, as discussed in [14]. Lastly, the process noise,
w(k), and the measurement noise,v(k), are considered
additive and mutually independent white Gaussian noise with
zero mean.
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Fig. 4. Result of Kalman filter from a PD patient [14].

Fig. 5. Bandlimited-Multiple FLC [16].

The result of applying the KF equations to data from the
same PD patient whose data has been presented is shown
in Fig. 4. The KF algorithm estimates the wrist flexion-
extension angle from the ACC (placed on dorsum of hand)
and EMG data (wrist flexor and extensor). Then the angle
estimate is compared with the joint angle obtained from
the optical tracking system. From the data, the RMS error
between the actual angle (recorded by the optical tracking
system) and the estimated angle (from Kalman filtering) is
about 0.65°, while the tremor is about 8° peak-to-peak.

Present work related to ACC and sEMG sensor fusion
concerns the use of different sensor fusion algorithms. Mod-
ifications of Kalman Filter, such as Extended Kalman Filter
and Unscented Kalman Filter [15] are currently pursued.
Also, different models to describe tremor motion are being
evaluated, like Fourier series or harmonic models and also
Auto-Regressive (AR) models. The goal is also to design a
sensor fusion algorithm that performs online estimation of
the model parameters.

III. F ILTERING

The key technical challenge in tremor filtering is the real-
time criterion of the application. In order to filter intended
motion from the composed motion to obtain its pathological
component, one approach would be to apply classical low-
pass filters. However, most classical frequency selective
filters cause phase shift in the filtered signal, which means
that the filtered pathological motion that we attempt to cancel
would be a time delayed version of the actual physical
motion. Therefore, adaptive zero-phase filtering algorithms
are studied and proposed to overcome this problem.

One possible alternative is to use a mathematical model
to characterize tremor and perform an online identification
of that model with the low-pass filtered tremor signal. The
Weighted-Fourier Linear Combiner (WFLC) [17] is an algo-
rithm that may be used with that purpose, modeling tremor
as an harmonic model. It may be considered, in this case,
as a zero-phase adaptive notch or band-stop filter with the
stop band centered at the dominant fundamental frequency
estimated by the filter. This zero-phase characteristic of
the filter and its iterative nature are crucial for developing
a real-time tremor compensation system as shown in Fig.
1. The algorithm estimates the unknown tremor frequency,
tracking its modulation in order to maintain the proper notch
frequency.

WFLC itself is able to estimate the dominant frequency
and the amplitude of a tremor signal. However, for the case
of tremor with high frequency variation or multiple compo-
nents, the performance of the WFLC will deteriorate. Hence,
a modification of the WFLC has been presented in [16].
The proposed algorithm (Bandwidth-Limited FLC) is able to
track modulated signals with multiple frequency components
with better performance. Instead of adopting a Fourier series
model, where the harmonics frequencies are multiples of the
fundamental frequency, it uses a nonharmonic model. Firstly,
the frequency band of interest is divided into a finite number
of divisions L = (f − f0)G, where G(≥ 1) ∈ N is the
scaling number that decides the step-size of the series (Fig.
5). For estimation of the unknown signal, we then form the
following series comprising of sine and cosine components:

yk =

L
∑

r=0

ar sin(2π(f0 +
r

G
)k)+br cos(2π(f0 +

r

G
)k). (5)

In (5), if G is increased, the divisions become smaller
and the accuracy in estimation can be increased according to
the tremor complexity. We then adopt the LMS algorithm to
adapt the weightsar andbr in accordance with the unknown
tremor signal. The algorithm equations are the following:

xrk =

{

sin(2π(f0 + r−1
G

)k) , 1 ≤ r ≤ L

cos(2π(f0 + (r−L)−1
G

)k) , L + 1 ≤ r ≤ 2L

ǫk = sk − w
T

k xk (6)

wk+1 = wk + 2µxkǫk.

The algorithm has been tested in real physiological tremor
signal and the results are shown in Table I. It is clear that
BMFLC outperforms the WFLC in the presence of two
frequencies.

Concerning present activities related to the filtering portion
of the project, further improvement of WFLC based algo-
rithms is being pursued. In addition, different algorithmsare
being evaluated for harmonic and nonharmonic models, like
the EKF, and also different models to characterize tremor,
like the AR model.

IV. A CTUATION

After the desired sensing information is acquired and the
filtering algorithms processed, this information is used to



TABLE I

COMPARISON OFWFLC AND BMFLC IN MULTIPLE FREQUENCY

SIGNAL [16]. FREQUENCY IN (HZ), ERROR IN (RMS) AND

COMPENSATION IN (%).

f1 f2 WFLC BMFLC
Error Compens. Error Compens.

8 8 0.0135 98.7 0.117 96.16
8 8.2 0.5 84.22 0.117 96.16
8 8.6 0.56 81.5 0.116 96.17
8 9 0.765 75.06 0.116 96.17
8 10 1.22 59.83 0.116 96.19
6 12 2.33 23.48 0.124 95.91

regulate the stimulator in order to actuate on the trembling
muscles appropriately. This section discusses some of the
control algorithms studied and evaluated for this task.

Until today, due to some hardware challenges and the
need for approval of the proposed medical protocols, only
simulation studies have been carried out. Hence, great effort
has been spent in the development of suitable musculoskele-
tal models for the project. The models developed take into
account either the sEMG or the FES signal as inputs. Those
models may be used not only to validate the control ap-
proaches in simulation, but also in the design of model-based
controllers. For the models developed for control design,
there is need for a compromise between model simplicity and
estimation quality, while for compensation validation more
precise models may be used.

Concerning the sEMG model, surface electromyography
has a specific importance in the tremor suppression problem
when compared with other available sensing signals, such
as joint angle, angular velocity and acceleration. sEMG is
a more stable index to continuously estimate pathological
tremor while compensation is active, since the motion sen-
sors measure the compensated motion and not the muscle
trembling activity. Also, sEMG provides valuable informa-
tion to indicate the muscle groups responsible for the tremor
and hence allows a better characterization of tremor. Finally,
there is a time delay between the sEMG signal and the actual
contraction of the muscle (usually called electromechanical
delay [14], between 20 and 100ms). That means sEMG
signals precedes the motion, which may also be a valuable
information.

sEMG signal have been used to predict the acceleration
of tremor based on a simplified musculoskeletal model [18],
which is meaningful to design a model-based predictive
control for tremor suppression in future. The main advantage
of this model, compared to classical model, is the direct
measurability of the angular acceleration. In classical Hill
model, the output is torque and we cannot measure this
directly. The model diagram is shown in Fig. 6. Equivalent
muscles are modeled as Contractile Elements (CEs), as they
are described in Hill’s work, with a second order linear
differential equation. They drive a phenomenological part
consisting of virtual spring-damper system as shown in the

SEMG1
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CE1

CE2

F ∗

1

F ∗

2

F ∗

res
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c

ϕ̈

Fig. 6. Structure of the phenomenological motivated tremor-specific
antagonistic muscle model consisting of two Contractile Elements (CE)
feeding virtual force (F ∗

1
, F

∗

2
) into the virtual spring-damper system. [18]
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1 + F ∗

2
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c

s2 + ds + c
.F ∗

res =
ω2

s2 + 2Dω0s + ω2
0

.F ∗

res,

(7)

where−ω1, −ω2, K1, K2, Td1 andTd2 are parameters to be
identified because they are different from person to person.
However, they can be determined in a simple identification
procedure [18]. The tremor frequency is theω0.

An essential problem when using sEMG on patients that
are also receiving electrical stimulation is that the natural
EMG is contaminated by FES. The stimulation artifacts (SA)
and the corresponding M-wave must be filtered from the raw
EMG as the sensor fusion and filtering algorithms proposed
assume that the EMG signal is not corrupted by SA and
M-wave.

A solution to this problem is proposed in [19]. In the paper,
SA is eliminated via software using the blocking (blanking)
window. The width of blocking window is set at 25ms, and
the EMG signals are zeroed during this period, which has
the same function as the EMG amplifier being shut down.
Therefore, the high amplitude SA can be effectively reduced.
There is a compromise regarding the width of blocking
window. If the width is too long, it can ensure the complete
elimination of SA, but much of the natural EMG will also be
lost. The ideal range for the blocking window width depends
on the stimulation intensity and electrode position. Normally
it is about 20 to 25ms.

To eliminate the M-wave, the popular method ”comb
filter” is used, which is a type of Infinite Impulse Response
(IIR) filter. The algorithm is simple to be implemented:

y(k) =
x(k) − x(k − Ts)√

2
(8)

x(k) is the raw EMG signal,Ts is the inter-stimulus time
between two neighboring electrical pulses andy(t) is the
filtered signal. The scale factor

√
2 is added to keep the

same power in the signal before and after filtering. Result is
shown in Fig. 7.
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Regarding the FES modeling, a model specifically de-
signed to simulation studies before the real experiments take
place has been proposed in [20]. This musculoskeletal model
is a one-joint elbow model containing two muscles, biceps
and triceps. The muscle model is not represented by simple
linear transfer functions as in [18]. It incorporates both the
electrical (activation) and mechanical (contraction) properties
of the real muscle and several physiological phenomena in
order to improve the fidelity of the model. In the future, that
model should be extended for multiple joints and muscles.

About the control approaches already evaluated, in [20],
the angle and angular velocity of the joint affected by the
pathological motion are used as feedback information for a
multiloop controller, composed by a fuzzy logic and classical
controllers. Also, using the model developed in [18], a
model-based acceleration controller has been developed.

V. CONCLUSIONS ANDFUTURE WORKS

This paper reports the current progress in the study
conducted to evaluate the use of superficial FES on the
active compensation of pathological tremor on the upper
limb. The method would serve as an alternative to the other
treatments available, like pharmacological treatment, DBS
and externally actuated orthosis. Initial results are promising
and in the future improvements are expected.

About the sensing part, quantitative online information
about tremor is already provided and different sensor fusion
algorithms and models will yet be explored. Concerning the
real-time filtering requirements, similar models are being
evaluated and improvements of WFLC pursued. Lastly, in
the actuation portion of the project, different muscle models
have been proposed in order to allow the design of model-
based controllers and also the validation of the those control
algorithms. The simulations have shown satisfactory results
and current effort is concentrated on the confirmation of these
results on real experiments.
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