
HAL Id: lirmm-00289250
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00289250v1

Submitted on 20 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Structural Properties of the Logic of Rules
Jean-François Baget, Marie-Laure Mugnier, Michel Leclère, Eric Salvat

To cite this version:
Jean-François Baget, Marie-Laure Mugnier, Michel Leclère, Eric Salvat. Some Structural Properties
of the Logic of Rules. RR-08016, 2008. �lirmm-00289250�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00289250v1
https://hal.archives-ouvertes.fr

Some Structural Properties of the Logic of Rules

Jean-François Baget
INRIA / LIRMM

baget@lirmm.fr

Michel Leclère
LIRMM

leclere@lirmm.fr

Marie-Laure Mugnier
LIRMM

mugnier@lirmm.fr

Éric Salvat
IMERIR

salvat@imerir.com

Abstract

We study the properties of semantic consequence in a partic-
ular subset of first-order logic with equality and no function
symbols, under the unique name assumption. Formulas in
this subset of logic are rules of form ∀~x(H → ∃~yC) where
the hypothesis H and the conclusion C are conjunctions of
atoms (possibly with equality), ~x contains the variables in H
and ~y the variables in C that are not in H . This subset is
particularly expressive since it can encode a universal Turing
machine, at the cost of decidability of reasoning.
We propose new decidable subclasses of this problem, by
combining restrictions on both the structure of the rules them-
selves and the structure of the interactions between rules,
encoded in the graph of rule dependencies. The most gen-
eral decidable subclass presented here is based on a mixed
forward/backward chaining algorithm. Finally, we relate
our rules to other notions (tuple-generating dependencies in
databases, conceptual graph rules, the TBox in description
logics) and explain how the associated deduction problems
could benefit from our results.

Introduction
In this paper, we study satisfiability, validity, and semantic
consequence of formulas in the rule fragment of first-order
logic (FOL) without functions, with equality, and under the
unique name assumption, as often the case in KR. Its formu-
las are rules of form ∀~x(H → ∃~yC) where the hypothesis
H and the conclusion C are conjunctions of atoms. This
fragment of FOL is particularly expressive: it is a computa-
tion model (it can encode a universal Turing machine), but
satisfiability and deduction are undecidable.

Our goal is to present new decidable subsets of this rule
logic. To achieve that goal, we study the internal struc-
ture of rules as well as the structure of their interactions,
and combine them in a mixed forward/backward chaining
framework. The foundations of this work have been de-
veloped using the conceptual graphs (CGs) formalism: a
graph-theoretical encoding of these formulas highlighting
their structure. This work extends our previous results by
considering a more expressive language (equality is added),
and by strictly generalizing the decidable fragment of rules
(the notion of finite unification sets is new).

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the first section, we show that we can restrict our study,
without loss of generality, to the satisfiability and validity of
standard knowledge bases, partitioned into facts, standard
rules, constraints, and equality rules, and to deducing a fact
from such a KB. In the following section, we present a for-
ward chaining algorithm (SM96) that allows us to state the
complexity and decidability of our three decision problems
in different fragments of our logic of rules. Finite expansion
sets of (BM02) ensure that forward chaining will generate
in finite time a fact that contains all information that can be
deduced from rules. Then, we present the backward chain-
ing mechanism of (SM96). Its originality resides in its abil-
ity, in the rewriting of queries, to erase more than one atom
(since the unifiers involved unify whole subsets of atoms at
the same time). The finite unification sets introduced here
ensure that backward chaining will generate a finite num-
ber of non redundant rewritings of the query. The next sec-
tion combines finite expansion and finite unification sets in a
mixed forward/backward chaining algorithm, relying on the
graph of rule dependencies of (Bag04). From this algorithm
stems a new decidable fragment for the logic of rules. Fi-
nally, we relate our rules to other notions (tuple-generating
dependencies in databases, conceptual graph rules, the TBox
in description logics) and explain how the associated deduc-
tion problems could benefit from our results.

Preliminaries
Definition 1 (Facts, rules) An atom is either a standard
atom p(t1, . . . , tk) built from a predicate p of arity k and a
k-tuple of terms (variables or constants, but no other func-
tion symbols), the true atom �, the false atom � or an equal-
ity atom x=̇y between two terms. A fact is a set of atoms.
A rule is a couple (H,C) of facts where H is called the
hypothesis of the rule and C its conclusion. We note respec-
tively terms(X), vars(X) and consts(X) the sets of terms,
variables and constants appearing in the atoms of a fact or
a rule X . If R = (H,C) is a rule, we call frontier of R and
note fr(R) the set of variables that appear both in H and C.

Semantics
The translation Φ assigns a closed formula in first-order
logic (FOL) to each fact or rule. If F is a fact, we
note F∧ the conjunction of all atoms in F . Then Φ(F)
is the existential closure of F∧. If R = (H,C) is a

rule, then Φ(R) = ∀h1 . . . ∀hk(H∧ → (∃c1 . . . ∃cqC∧))
where {h1, . . . , hk} = vars(H) and {c1, . . . , cq} =
vars(C) \ vars(H). Φ(R) can be equivalently written as
∀f1 . . . ∀fp((∃h1 . . . ∃hlH

∧) → (∃c1 . . . ∃cmC∧)) where
{f1, . . . , fp} = fr(R), {h1, . . . , hl} = vars(H) \ fr(R) and
{c1, . . . , cm} = vars(C) \ fr(R). Every formula in the FOL
fragment naturally associated with the forms above can be
translated back into a fact or a rule (this inverse transla-
tion removes multiple occurrences of the same atom). We
consider the usual semantics of FOL formulas with equal-
ity, assuming, as often in KR, the unique name assump-
tion (two distinct constants cannot have the same interpre-
tation). A model of a fact or rule X is thus a model of
the formula Φ(X), X is said valid (resp. satisfiable) when
Φ(X) is valid (resp. satisfiable), and X is a semantic con-
sequence of the facts or rules X1, . . . , Xp (and we note
X1, . . . , Xp |= X) when Φ(X) is a semantic consequence
of Φ(X1), . . . ,Φ(Xp). Two facts or rulesX andX ′ are said
equivalent (and we noteX ≡ X ′) iffX |= X ′ andX ′ |= X .

Since any fact F is equivalent to a rule (∅, F), we can
consider that a knowledge base (KB) is composed of rules.
The general problems we address here can be stated as fol-
lows: given a KB, is its set of rules satisfiable (resp. valid)
? Given a KB and a rule R, is R a semantic consequence
of the rules in the KB ? We respectively call these decision
problems SATISFIABILITY?, VALIDITY? and DEDUCTION?.

Standard knowledge bases
We will now distinguish between different kinds of rules,
and refine the above problems according to the kinds of rules
that composes the KB.
Definition 2 (Standard KBs) A standard fact is either a
fact that contains only standard atoms or the absurd fact
{�}. A standard rule is a rule (H,C) where both H and
C are non empty disjoint sets of standard atoms. A con-
straint is a rule of form (H, {�}) where H is a non empty
set of standard atoms. We note this constraint ¬H since
Φ((H, {�})) ≡ ¬Φ(H). An equality rule is a rule of form
(H, {t=̇t′}) where H is a non empty set of standard atoms
and t, t′ are either two distinct variables in vars(H) or a
constant and a variable in H . A standard KB is a KB that
contains one standard fact, a set of standard rules, a set of
constraints, and a set of equality rules.

Property 1 (Standard KBs) Any rule KB is semantically
equivalent to a standard KB.

Computing an equivalent standard KB takes linear time.
From now on, we thus focus on standard KBs.

Depending on the kind of rules a (standard) KB contains,
different logical fragments are obtained. Let us note F a
standard fact, R a set of standard rules, E a set of equality
rules and C a set of constraints. The fragment FRCE is ob-
tained with KBs of form K = (F ,R, E , C), it thus encodes
the whole rules fragment (PROP. 1). More specific frag-
ments are obtained by considering only some of the above
sets (they are denoted by the names of the sets considered,
e.g. the F-fragment or the FC-fragment). A short notation
for “the problem P in the fragment f”, will be f -P , e.g.
F-DEDUCTION?.

From deduction of rules to deduction of facts
The general deduction problem (which asks if a given rule
can be deduced) can be reformulated as the deduction prob-
lem of a fact instead of a rule, as pointed out below.

Definition 3 (Substitution) A substitution is a mapping
from a set V of variables to a set T of terms. Let σ : V → T
be a substitution, and F be a fact. We note σ(F) the fact
obtained by replacing, for each variable x ∈ V ∩ terms(F),
each occurrence of x in F by σ(x). If R = (H,C) is a rule,
we note σ(R) = (σ(H), σ(C)).

A safe substitution is a bijection from V to a set of new
variables (i.e. that does not appear in the formulas involved
in the reasoning). A freezing substitution is a bijection from
V to a set of new constants.

Property 2 Let R be a set of rules, and R = (H,C) be a
standard rule. Then R |= R iff σ(H),R |= σ(C) where σ
is a freezing substitution of vars(H).

DEDUCTION? can be recast, without loss of generality, as
“is a fact Q a semantic consequence of a standard KB?”.

The Case of Constraints
Finally, to further bound the our investigation, and without
loss of generality, let us consider the following properties:

Property 3 (Constraints) Let us consider a standard KBK
containing a set C of constraints. Since no constraint is
valid, K is valid iff C = ∅ and K \ C is valid. K is un-
satisfiable iff K \ C is unsatisfiable or there is ¬H ∈ C such
that K \ C |= H . Let Q be a fact, then K |= Q iff K is
unsatisfiable or K \ C |= Q.

Semantic properties of a standard KB with constraints can
thus be reformulated in terms of those of a standard KB
without constraints. The next section is devoted to solving
problems in FRE with a forward chaining mechanism.

Forward Chaining in FRE
We will first concentrate on the F fragment, which pro-
vides the basic mechanism for reasoning, namely homomor-
phism.Then we focus on reasoning with standard and equal-
ity rules, in a forward chaining framework.

Reasoning in F and FC
The problems F-SATISFIABILITY? and F-VALIDITY? are
trivial: the only valid standard fact is the empty fact ∅ and
the only unsatisfiable standard fact is the absurd fact {�}.

Note that the computation of validity and satisfiability
of facts was already included when computing the standard
equivalent KB, but this computation took only linear time.

Solving F-DEDUCTION?, is based on a particular kind of
substitution called a homomorphism (it is indeed a homo-
morphism, if we see facts as algebraic structures).

Definition 4 (Homomorphism) Let F and Q be two facts.
A homomorphism from Q to F is a substitution such that
σ(Q) ⊆ F .

Theorem 1 (F-DEDUCTION?) Let F and Q be two stan-
dard facts. Then F |= Q iff F = {�} or there is a ho-
momorphism from Q to F .

Proof: This result is basically from (CM92) (soundness and
completeness of the simple CGs homomorphism). �

Deciding whether there is a homomorphism from Q to F
is NP-complete. It becomes polynomial whenQ has a struc-
ture decomposable into trees. More precisely, let FOL(∃,∧)
be the fragment of FOL composed of existentially closed,
positive and conjunctive formulas, i.e. formulas correspond-
ing to facts. Let k be a fixed positive integer. If in all prob-
lem instances, Q is in the k-variable fragment of FOL(∃,∧),
or equivalently if it has a treewidth less than k when seen as a
graph, then homomorphism checking is polynomial (KV00).
Similarly, if Q is a k-guarded formula, or equivalently if has
a hypertreewidth bounded by k when seen as a hypergraph,
then homomorphism is polynomial too (GLS01).

From PROP. 3 and the complexity of the decision prob-
lems in F , it follows that FC-VALIDITY? can be decided
in linear time, FC-SATISFIABILITY? is co-NP-complete
and FC-DEDUCTION? is NP-complete. Note that FC-
SATISFIABILITY? and FC-DEDUCTION? become polyno-
mial when we impose the same restrictions on constraints
that the above-mentioned restrictions on Q.

Reasoning in FREC
Let us now consider reasoning in general standard KBs
(thanks to PROP. 3, we can restrict that study to FRE).

Property 4 (Validity of standard and equality rules)
There is no valid equality rule. A standard rule (H,C) is
valid iff σ(H) |= σ(C) where σ is a freezing substitution of
vars(H) (this is indeed a particular case of PROP. 2).

As a consequence, FR-VALIDITY? is an NP-complete
problem (and so is FR-VALIDITY?). It can be solved in
linear time when there is no standard rule in the KB.

Definition 5 (Application of a rule) Let F be a standard
fact and R = (H,C) be a standard rule or an equality rule.
Then R is applicable to F iff there is a homomorphism σ
from H to F . The application of R on F according to σ
produces a standard fact α(F,R, σ) (called an immediate
derivation of F) built as follows: ifR is a standard rule, then
α(F,R, σ) = F ∪ σ(σ′(C)) where σ′ is a safe substitution
of vars(C) \ fr(R); and if R is an equality rule, then either
a variable (say t) of the equality t=̇t′ is mapped by σ to a
variable, or none is. In the first case, α(F,R, σ) = σ′(F),
where σ′ is the substitution from {σ(t)} that maps σ(t) to
the constant a if t′ = a, and to σ(t′) otherwise. In the sec-
ond case, if σ(t) = σ(t′) or σ(t) = t′, then α(F,R, σ) = F ,
otherwise α(F,R, σ) = {�}.
Definition 6 (Derivation) Let F and F ′ be two standard
facts, and R be a set of standard and equality rules. F ′

is called an R-derivation of F if there is a finite sequence
(called the derivation sequence) F0 = F, F1, . . . , Fk = F ′

of standard facts such that ∀1 ≤ i ≤ k, there is a rule
R = (H,C) ∈ R and a homomorphism σ from H to Fi−1

with Fi = α(Fi−1, R, σ).

Since standard rules cannot yield unsatisfiability:

Property 5 (FRE-SATISFIABILITY?) A FR KB is unsat-
isfiable if and only if F = {�}. A FRE KB (F,R, E) is
unsatisfiable iff {�} is an (R∪ E)-derivation of F .

Theorem 2 (FRE-DEDUCTION?) Let K = (F,R, E) be a
FRE KB, and Q be a standard fact. Then K |= Q iff there
is a homomorphism from Q or {�} to a (R∪ E)-derivation
of F .

IfQ is a semantic consequence of the KBK = (F,R, E),
then a breadth-first exploration of all possible rule applica-
tions will necessarily generate either the absurd fact (when
we have deduced that two constants are equal, which is ab-
surd due to the unique name assumption) or a standard fact
containing an answer to Q. No sound and complete algo-
rithm, however, is ensured to stop on all negative instances
of the problem: FRE-DEDUCTION? is a semi-decidable
problem (see in particular (BM02)).

As a consequence, FRE-UNSATISFIABILITY? is also
semi-decidable, and thus FRE-SATISFIABILITY? is un-
decidable. Note that, since the application of an equality
rule either merges two variables or replaces a variable by a
constant, an E-derivation has a length less than |terms(F)|.
Thus bothFE-DEDUCTION? andFE-SATISFIABILITY? are
NP-complete problems (and so are FEC-DEDUCTION? and
FEC-SATISFIABILITY?).

Decidable subclasses of FRE-DEDUCTION?
Since the satisfiability and deduction problems are no longer
decidable as soon as standard rules are involved, finding de-
cidable cases, as expressive as possible, is extremely impor-
tant. We recall below definitions and results from (BM02),
which are adapted to include equality rules (see the section
about related works for more details). A set of rules is called
a finite expansion set if it is guaranteed for any fact that after
a finite number of rule applications, all further rule applica-
tions will become redundant. More precisely:

Definition 7 (Finite expansion set and full derivation) A
set of standard or equality rules R is called a finite expan-
sion set iff for any standard fact F , there is a R-derivation
F ′ of F s.t. for every rule R = (H,C) ∈ R, for every
homomorphism σ from H to F ′, there is a homomorphism
from α(F ′, R, σ) to F ′ (called a fullR-derivation of F).

IfR∪ E is a finite expansion set, then a forward chaining
algorithm that checks whether a rule has effectively added
non redundant information and stops when all rule applica-
tions produced redundancy is still complete, and is ensured
to stop in finite time. This algorithm effectively produces
a standard fact that contains all information that can be de-
duced from F . However, finite expansion sets are an abstract
characterization of such a behavior, that does not help us
to predict that forward chaining will effectively stop (note,
moreover, that all decidable subclasses of the problem do
not rely upon finite expansion sets). As a concrete exam-
ple of finite expansion sets, let us cite the range restricted
rules, used in particular in positive Datalog, that do not gen-
erate any new variable (i.e. standard rules (H,C) such that
vars(C) ⊆ vars(H)) and disconnected rules (standard rules

R such that fr(R) = ∅). As stated above, a set of equality
rules is also a finite expansion set. Note that the union of two
finite expansion sets is not necessarily a finite expansion set
((BM02) shows that any Turing machine can be encoded by
a set of range restricted and disconnected standard rules).

(BM02) proves that if standard rules are restricted to
either range-restricted rules or disconnected rules, FR-
DEDUCTION? is NP-complete (provided that the arity of
predicates is bounded by a constant). We have shown here
that the same result holds for equality rules. It follows that,
assuming the same restrictions, FREC-DEDUCTION? and
FREC-SATISFIABILITY? are also NP-complete.

The forward chaining paradigm is used to define finite
expansion sets and characterize some decidable subclasses
of FREC-DEDUCTION?. The backward chaining paradigm
that we present now allows for a new characterization of de-
cidable subclasses, namely finite unification sets.

Backward Chaining in FR
A backward chaining mechanism is generally based upon
a unification operation, that matches part of a current goal
with a rule conclusion. This mechanism is typically used in
logic programming, where rules have a conclusion restricted
to one literal. Since standard rules have a more complex
conclusion, the associated unification operation is also more
complex. It relies on the piece notion (which stems from a
graph vision of rules (SM96)).

Definition 8 (Cut points, Pieces) Let F be a fact and T ⊆
terms(F). A piece of F according to T is a subset of F
recursively defined as follows: two atoms p and q are in the
same piece iff either (vars(p) ∩ vars(q)) \ T 6= ∅; or there
is an atom r ∈ F such that p and r are in the same piece
and r and q are in the same piece. The cut points of a rule
R = (H,C) is the set of terms cutp(R) = fr(R)∪consts(C).
A piece of R is a piece of C according to cutp(R).

A piece notion represents a “unit” of knowledge brought
by a rule application. As expressed below, a rule R can be
decomposed into an equivalent set of rules with exactly one
piece in conclusion.

Property 6 The conclusion of standard rule R = (H,C)
can be partitioned into k pieces C1, . . . , Ck. R is semanti-
cally equivalent to the set {(H,Ci)}1≤i≤k.

Rewritings in FR
The definitions and results concerning rewritings presented
hereafter are a reformulation of those of (SM96).

Definition 9 (Unifier) Let Q be a standard fact and R =
(H,C) be a standard rule. A unifier of Q with R is a tuple
µ = (TQ, Q

′, σQ, σC) where:
• TQ is a subset of terms(Q), and Q′ is a fact composed of

all atoms in one or more pieces of Q w.r.t. TQ;
• σQ is a substitution from the variables of TQ to

consts(C) ∪ TQ and σC is a substitution from fr(R) to
consts(C) ∪ TQ;

• there is a homomorphism σ from σQ(Q′) to σC(C) s.t. for
all t ∈ TQ, there is t′ ∈ cutp(R) with σ(σQ(t)) = σC(t′).

Definition 10 (Rewriting of a fact) Let Q be a standard
fact, R = (H,C) be a standard rule, and µ =
(TQ, Q

′, σQ, σC) be a unifier of Q with R. The rewriting
of Q according to R and µ produces a fact β(Q,R, µ) =
σ′(σC(H)) ∪ σQ(Q \ Q′), where σ′ is a safe substitution
from vars(H) \ fr(R).

The two following lemmas state the precise relationships
between an immediate derivation and a rewriting.
Lemma 1 Let µ be a unifier of a standard fact Q with a
standard rule R = (H,C). Then there is a homomorphism
σ from H to F = β(Q,R, µ) such that there is a homomor-
phism from Q to α(F,R, σ).
Lemma 2 Let us consider a standard ruleR, and F, F ′ and
Q three standard facts such that F ′ = α(F,R, σ) and there
is a homomorphism from Q to F ′ that is not a homomor-
phism from Q to F . Then there is a unifier µ of Q with R
such that there is a homomorphism from β(Q,R, µ) to F .

These lemmas are used to prove inductively (on the length
of the derivation / rewriting) that a derivation sequence and
a rewriting sequence encode the same reasoning in FR.
Definition 11 (Rewriting sequence) Let Q and Q′ be two
standard facts, andR be a set of standard rules. We say that
Q′ is aR-rewriting of Q iff there is a finite sequence (called
the rewriting sequence) Q0 = Q,Q1, . . . , Qk = Q′ such
that ∀1 ≤ i ≤ k, there is a rule R = (H,C) ∈ R and a
unifier µ of Qi−1 with R such that Qi = β(Qi−1, R, µ).
Property 7 Let F and Q be two facts, and R be a set of
standard rules. Then there is a R-rewriting Q′ of Q and a
homomorphism from Q′ to F iff there is a R-derivation F ′
of F and a homomorphism of Q to F ′.

Then , as a direct consequence of the previous property:
Theorem 3 (Backward Chaining in FR) Let
K = (F,R) be a FR KB, and Q be a standard fact.
Then F,R |= Q iff there is a R-rewriting Q′ of Q such that
there is a homomorphism from Q′ to F .

Note that using backward chaining to check the unsatis-
fiability of a KB K = (F,R, C) requires to check whether
the hypothesis of a constraint can be deduced from (F,R).

Though we could define a unifier that takes equality rules
into account, both space requirements as well as the ineffi-
ciency of the obtained algorithm led us to take only standard
rules into account in this backward chaining framework.

Finite unification sets
Finite expansion sets are used to ensure that all information
deducible from a fact in forward chaining can be encoded in
a finite standard fact computed in finite time. The finite uni-
fication sets we present hereafter are used to ensure that only
a finite number of rewritings will be necessary in backward
chaining.
Definition 12 (Finite unification sets) A set of standard
rules R is said a finite unification set (f.u.s.) iff for every
fact Q, there is a finite set Q of R-rewritings of Q such that
for any Q′ ∈ Q, for any rule R ∈ R, for any unifier µ of
Q′ with R, there is a homomorphism from a fact in Q to
β(Q′, R, µ). We say that Q is a fullR-rewriting set of Q.

If the set of standard rules involved is a f.u.s., then the
backward chaining algorithm that does not rewrite facts
more specific than those that have already been explored is
still complete and is ensured to stop in finite time. Simi-
larly to f.e.s., f.u.s. provide an abstract characterization, that
should be instantiated with concrete examples. We introduce
in this paper two kinds of f.u.s.: the atomic hypothesis rules,
and the domain restricted rules.

Definition 13 (Atomic hypothesis rules) A standard rule
R = (H,C) is called an atomic hypothesis rule (a.h.) if
H contains only one (standard) atom.

Property 8 A set of atomic hypothesis rules is a f.u.s.

Proof: See that for any standard fact Q, if R = (H,C) is
a.h., and µ = (TQ, Q

′, σQ, σC) is a unifier of Q with R,
then |Q| ≥ |β(Q,R, µ)| (since the rewriting removes the
non empty Q′ and adds a specialization of the unique atom
in H). There is a bounded N number of facts (up to a vari-
able renaming) of size≤ |Q| built from the bounded number
of constants and predicates appearing in the KB. Thus if R
contains only a.h. rules, the number ofR-rewritings of Q is
bounded by N . �

Definition 14 (Domain restricted rules) A standard rule
R = (H,C) is called a domain restricted (d.r.) rule if each
atom of C contains all or none of the variables of H .

Note that d.r. rules strictly generalize the class of discon-
nected rules, since d.r. rules with fr((H,C)) = vars(H) 6=
∅ are not disconnected.

Property 9 A set of domain restricted rules is a f.u.s.

Proof: Let us call k-limited fact, a fact Q such each piece
P of Q according to consts(Q) is such as |vars(P)| ≤ k.
There is a finite number N of facts with at most k variables
(up to a variable renaming), and a bounded number of con-
stants and predicates. Thus, a k-limited fact containing more
than N pieces contains equivalent pieces which can be re-
moved to obtain a fact with at most N pieces. We observe
that if a rewriting according to a d.r. rule produces a new
variable, then it also produces a new piece which is the only
piece containing this variable. Indeed, either the unifier con-
cerns an atom that contains all variables of H and it does
not generate new variables, or it creates a new piece. Thus
if R contains only d.r. rules, the number of R-rewritings of
Q without duplicate pieces is bounded by N . �

Since the number N involved in the previous proofs is
polynomial w.r.t. the size of the knowledge base (provided
that the arity of all predicates is bounded by a constant),
then the restrictions of FR-SATISFIABILITY? and FR-
DEDUCTION? to knowledge bases containing either a.h. or
d.r. rules are NP-complete problems.

The graph of rules dependencies
Both f.e.s. and f.u.s. allows to characterize decidable subsets
of the rule fragment of FOL by checking independently on
each rule if they verify some properties. We now present the
graph of rules dependencies as a mean to explore new de-
cidable subsets by studying the structure of the interactions
between these rules.

Let us rephrase lemma 1. Its converse means that if R is a
standard rule and there is no unifier of a fact Q with R, then
the set of homomorphisms from Q to any fact F and the set
of homomorphisms from Q to α(F,R, σ) are the same. In
other words, there is no need to check the applicability of
a rule (H,C) at a point of the forward chaining algorithm
when there is no unifier of H with a rule that produced new
information during a previous step of the algorithm. More-
over, as shown in (Bag04), an off-line computation of uni-
fiers allows us not only to reduce the number of applicability
checks during the execution of forward chaining, but also to
reduce the search space for the remaining ones.

We define the graph of rules dependencies as a structure
that encodes all necessary information to take advantage of
the above-mentioned property in forward chaining. It allows
us to compute a smaller number of rules application checks,
and to compute these checks more efficiently. In this pa-
per, however, we focus the structural properties of this graph
leading to new decidability results in FREC.

F.e.s., f.u.s., and the graph of rule dependencies
Definition 15 (GRD) LetR be a set of standard rules. The
graph of rules dependencies of R, noted GRD(R) is a di-
rected labeled graph whose vertices are the rules of R and
whose arcs are the couples (R,R′) such that there is a uni-
fier of the hypothesis of R′ with R.

Property 10 Let R be a set of standard rules such that
GRD(R) contains no circuit. Then R is a both a finite ex-
pansion set and a finite unification set.

Proof: The f.e.s. part of that property has been proven in
(Bag04). The f.u.s. is an immediate consequence of a prop-
erty exposed in (BS06): if there is an unifier µ′ of R′ with
Q′ = β(Q,R, µ) such that β(Q′, R′, µ′) is not a rewriting
of Q according to R′, then there is an unifier of the hypoth-
esis of R with R′. In other terms, to rewrite β(Q,R, µ), we
only have to explore the predecessors of R in the GRD. �

Note that a loop (a self-unifiable rule) in the GRD is con-
sidered as a circuit, and is sufficient to yield undecidability.
Indeed, it has been shown in (Bag01) that a KB containing a
single rule can encode a universal Turing machine.

Finite expansion sets and finite unification sets relied
upon the structural properties of the rules themselves to en-
sure decidability. PROP. 10 relies upon the structure of possi-
ble interactions between all rules appearing in the KB. The
next theorem presents a generalization of both approaches
(and is proven in (Bag04) for the f.e.s. part, while the f.u.s.
part is a similar extension of PROP. 10):

Theorem 4 Let K = (F,R) be a KB such that all strongly
connected components of the graph GRD(R) are finite ex-
pansion sets (resp. finite unification sets). ThenR is a finite
expansion set (resp. finite unification set).

Note that a strongly connected component restricted to a
single rule, and without loop, is both a f.e.s. and a f.u.s.

F.e.s and f.u.s respectively rely upon forward and back-
ward chaining to achieve finite reasoning mechanisms. Let
us now present a combined algorithm that is ensured to stop
on more general subclasses of the deduction problem.

Property 11 Let R1 and R2 be two sets of standard rules
such that there is no arc from a rule of R2 to a rule of R1

in GRD(R1 ∪ R2). Let F and Q be two standard facts.
Then F,R1,R2 |= Q iff there is a standard fact F ′ such
that F,R1 |= F ′ and F ′,R2 |= Q.

Definition 16 (Finitely combined sets) A partition
(R1,R2) of standard rules is said to be finitely com-
bined ifR1 is a f.e.s.,R2 is a f.u.s., and there is no arc from
a rule of R2 to a rule of R1 in GRD(R1 ∪ R2). A finitely
combined set is a set of standard rules that admits a finitely
combined partition.

Theorem 5 (FR combined scheme) Let (R1,R2) be a
finitely combined partition of standard rules, and F and Q
be two standard facts. Then F,R1,R2 |= Q iff there is a ho-
momorphism fromQ′ to F ′, where F ′ is a fullR1-derivation
of F and Q′ belongs to a fullR2-rewriting set of Q.

As a consequence, FR-DEDUCTION? is decidable when
standard rules are restricted to finitely combined sets.

Adding constraints and equalities
It follows from PROP. 3, that FRC-SATISFIABILITY? and
FRC-DEDUCTION? are decidable when the problems are
restricted to finitely combined sets of standard rules.

Let us now consider a mixed FC/BC scheme that takes
equality rules into account in its forward chaining phase.

Theorem 6 (FRE combined scheme) Let (R1,R2) be a
finitely combined partition of standard rules, E be a
set of equality rules such that for every equality rule
(H, {t=̇t′}) ∈ E , H only unifies with range restricted
rules of R1, and F and Q be two standard facts. Then
F,R1,R2, E |= Q iff there is a homomorphism from Q′ to
F ′, where F ′ is a fullR1∪E-derivation of F and Q′ belong
to a fullR2-rewriting set of Q.

In that case, FRE-DEDUCTION? and FRE-
SATISFIABILITY? are decidable, and it follows, thanks
to PROP. 3, that FREC-SATISFIABLITY? and FREC-
DEDUCTION? are also decidable.

Relationships to other formalisms
This section details the relationships between our rules and
other notions in other formalisms. It indicates how our re-
sults extend known results and explains what the potential
benefit of our results could be for these related formalisms.

Clauses and rules
A clause (without function symbols) is a logical formula of
form ∀x1 . . . ∀xk(N∨ ∨ P∨) where P∨ is a disjunction of
atoms,N∨ is a disjunction of negated atoms, and x1, . . . , xk

are the variables appearing in P∨ and N∨. Such a formula
is trivially equivalent to the formula: ∀n1 . . . ∀nk(N

∧ →
(∀p1 . . . pqP

∨)) where N
∧

is the conjunction of the atoms
appearing in N∨, the ni are the xq appearing in N∨ and the
pj are the xq appearing in P∨ but not in N∨. This rewrit-
ing points out the difference between clauses and rules: they
have the same “hypothesis”, but the conclusion of our rules

is an existentially quantified conjunction, while the “con-
clusion” of a clause is an universally quantified disjunction.
Note that a formula F = ∀x1 . . . ∀xq(H∧ → C) is both
a clause and a rule when C contains only 0 or 1 positive
atoms, and all variables of C appear in H∧. The intersec-
tion of rules and clauses can thus be characterizes as “range
restricted Horn clauses”.

Another interesting subset of rules, that we name atomic
conclusion rules, is restricted to rules having at most one
atom in their conclusion. This subset has the same expres-
sivity as the general rule fragment: any standard rule R =
(H,C) can be encoded by an equivalent set of atomic con-
clusion rules {(H,A = {R(t1, . . . , tk)}), (A, {Aq})}Aq∈C

where the predicate R is associated to the rule R and the
ti are the terms of C. An immediate question arises:
why study these general rules, since unifiers with atomic
conclusion rules are (i) well known, and (ii) much sim-
pler. Our answer is that the GRD of these equivalent for-
mulas contains more arcs, encoding “fake” unifications,
and thus leads to more restricted decidable fragments, as
shown by the following example. Consider the standard
rule R = (H, {p(x, y), q(y, z)}) where (R) = {x} and
the fact Q = {s(x, y), q(y, z)}. There is no unifier, ac-
cording to our definition, of Q with R. Let us con-
sider now the equivalent set of rules {R1, R2, R3} where
R1 = (H, {R(x, y, z)}), R2 = ({R(x, y, z)}, {p(x, y)})
and R3 = ({R(x, y, z)}, {q(y, z)}). In the GRD, there is an
arc from R1 to R2 and R3, and there exists a unifier of Q
with R3. Indeed, we have lost the information that R2 and
R1 cannot be applied independently.

Tuple-Generating Dependencies in Databases

The rules studied in this paper correspond to the logi-
cal translation of generalized dependencies in databases,
namely Tuple Generating Dependencies (TGDs) and Equal-
ity Generating Dependencies (EGDs), which provide of uni-
form way of expressing most of the database dependencies
(AHV95). More precisely, the logical translation of a TGD
is a standard rule, and the logical translation of an EGD is
an equality rule. The only notable difference is that TGDs
and EGDs have no constants.

A fundamental problem for these generalized dependen-
cies is the implication problem. This problem takes a set of
generalized dependencies S and a generalized dependency t
as input, and asks if every database instance that satisfies S
also satisfies t, i.e., in logical terms, if S |= t. It is processed
by the so-called chase procedure, which was proven sound
and complete with respect to semantics of dependencies in
(BV84). This procedure can be identified with our forward
chaining mechanism when t is a TGD. The backward chain-
ing can be seen as an alternative to the chase (as proposed in
(Cou03)). The rule dependency graph studied in this paper
can be used to improve the chase. It would be interesting
to study the properties of the dependency graph depending
on the specific kinds of dependencies taken into account and
compare the decidability results obtained to those already
known.

Conceptual Graphs
Conceptual graphs have been presented in (Sow76) as a
graphical interface for databases. Indeed, the formulas we
have studied here admit a very intuitive graph encoding,
where terms are labeled vertices of the graph and atoms
are represented by labeled hyperarcs whose ends are the ar-
gument of the predicate. Semantic consequence between
facts (called simple CGs) is computed by a graph homo-
morphism, hence the name of our elementary operation. We
have developed most results presented in this paper under
this graph paradigm, and the family of conceptual graphs
languages presented in (BM02) is closely related to the fam-
ily presented here. Indeed, the basic CG language SG en-
codes standard facts (without equality) and standard rules of
form ({p(x1, . . . , xn}, {p′(x1, . . . , xn}) that are used to en-
code hierarchies of types. The language SGC further adds
constraints, that can be positive or negative. Negative con-
straints correspond to the constraints presented here, while
the essentially non-monotonic positive constraints cannot be
represented by rules. Finally, the language SRC also con-
sider rules that are equivalent to the standard rules presented
here. The rule fragment of logic FRC can thus be identi-
fied with the CG language SRC− restricted to negative con-
straints. Note that FREC can also be encoded in SRC−, a
language that does not include the unique name assumption.

Finally, note that the main difference between these CG
languages and the logic of rules is that CGs consider rules
encoding type hierarchies (typing rules) as different objects,
with a algorithmic specific role. By example, our defini-
tion of homomorphism becomes: “a substitution σ such
that for every atom p(t1, . . . , tk) ∈ Q, there is an atom
p′(t′1, . . . , t

′
k) ∈ F with p′ ≤ p in the type hierarchy and

∀1 ≤ i ≤ k, σ(ti) = t′i”. This allows for a compilation
of type hierarchies, optimizing the search for substitutions.
Type hierarchies are integrated in the same way in unifiers,
effectively removing from the GRD circuits formed of typ-
ing rules, that do not correspond to an increase of the com-
plexity of the deduction problem. Similarly, forbidden types
encode constraints of form ¬{p1(x), . . . , pk(x)}. They are
used to reduce the number of unifiers of a fact with a rule.

Description logics
We intend to use our results in the rules fragment of FOL to
study the deduction problem in logic-based knowledge rep-
resentation languages. Our general approach can be stated
as follows: consider a language L, such that there exists
a transformation τL from the expressions of L to standard
facts and constraints, and a fixed set of standard and equality
rules RL such that for all expressions L,L1, . . . , Lk of L,
L1, . . . , Lk |=L L iff τL(L1), . . . , τL(Lk),RL |= τL(L).
Assuming we can obtain such an encoding of the language
L, we can study the properties of that language by study-
ing the properties of GRD(RL). Sometimes such an en-
coding cannot be obtained, but a weaker form may still
be found, when there exists a transformation τ ′L from the
expressions of L to rules such that L1, . . . , Lk |=L L iff
τ ′L(L1), . . . , τL(Lk), |= τ ′L(L). In that case, the GRD does
not provide us with properties of the language, but of the
specific instance we have transformed.

This latter method was recently applied in (BLMS08) to
study particular subsets of description logics (BCM+03),
namely DL-Lites (CGL+05; CGL+07). In particular, the
GRD obtained was sufficient to prove the FOL-reducibility
of a specific DL-Lite. That FOL-reducibility property can
be stated as follows: there exists a transformation ρ that
maps each standard fact to a finite set of database conjunc-
tive queries and a linear transformation δ that maps each KB
to a relational database instance such that, for any KBK, for
any standard fact Q, K |= Q if and only if δ(K) contains an
answer to one of the queries in ρ(Q). Since homomorphisms
in F are equivalent to the answering of positive, conjunctive
queries in database, it follows that if the set of rules encoding
the semantics of our problem is always a finite unification set
(or, more generally, a finitely combined set whose f.e.s. sub-
set of rule generates a full graph in linear time), then the de-
duction problem in the studied language is FOL-reducible.
In order to study more expressive DL-Lites, equality rules
were required: they will allow, by example, to encode func-
tional roles by adding the rule ({R(x, y), R(x, z)}, {y=̇z})
for each functional rule R.

References
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

J.-F. Baget. Représenter des connaissances et raisonner avec des hypergraphes: de
la projection à la dérivation sous contraintes. PhD thesis, Université Montpellier II,
Nov. 2001.

J.-F. Baget. Improving the forward chaining algorithm for conceptual graphs rules.
In KR, pages 407–414, 2004.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Characterizing FOL-
Reducibility of Some DL-Lites by Structural Properties of SR Rules. In Proceed-
ings of DL’08, 2008. To appear.

J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. JAIR,
16:425–465, 2002.

J.-F. Baget and E. Salvat. Rules dependencies in backward chaining of conceptual
graphs rules. In ICCS, pages 102–116, 2006.

C. Beeri and M.Y. Vardi. A proof procedure for data dependencies. Journal of the
ACM, 31(4):718–741, 1984.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Dl-lite:
Tractable description logics for ontologies. In AAAI, pages 602–607, 2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The l-lite family. J.
Autom. Reasoning, 39(3):385–429, 2007.

M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle, 6(4):365–406, 1992.

Stéphane Coulondre. A top-down proof procedure for generalized data dependen-
cies. Acta Inf., 39(1):1–29, 2003.

G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions: A survey.
MFCS’01, 2136:37–57, 2001.

P. G. Kolaitis and M. Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. Journal of Computer and System Sciences, 61:302–332, 2000.

E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chain-
ings of Graph Rules. In Proc. of ICCS’96, volume 1115 of LNAI, pages 248–262.
Springer, 1996.

J. F. Sowa. Conceptual Graphs. IBM Journal of Research and Development, 1976.

