The Hoàng-Reed Conjecture holds for tournaments
Frédéric Havet, Stéphan Thomassé, Anders Yeo

To cite this version:

HAL Id: lirmm-00292710
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00292710
Submitted on 2 Jul 2008
Hoàng-Reed conjecture holds for tournaments

Frédéric Havet * Stéphan Thomassé † Anders Yeo‡

Abstract

Hoàng-Reed conjecture asserts that every digraph D has a collection C of circuits $C_1, \ldots, C_{\delta^+}$, where δ^+ is the minimum outdegree of D, such that the circuits of C have a forest-like structure. Formally, $|V(C_i) \cap (V(C_1) \cup \ldots \cup V(C_{i-1}))| \leq 1$, for all $i = 2, \ldots, \delta^+$. We verify this conjecture for the class of tournaments.

1 Introduction.

One of the most celebrated problems concerning digraphs is the Caccetta-Häggkvist conjecture (see [1]) asserting that every digraph D on n vertices and with minimum outdegree n/k has a circuit of length at most k. Little is known about this problem, and, more generally, questions concerning digraphs and involving the minimum outdegree tend to be intractable. As a consequence, many open problems flourished in this area, see [4] for a survey. The Hoàng-Reed conjecture [3] is one of these.

A circuit-tree is either a singleton or consists of a set of circuits C_1, \ldots, C_k such that $|V(C_i) \cap (V(C_1) \cup \ldots \cup V(C_{i-1}))| = 1$ for all $i = 2, \ldots, k$, where $V(C_j)$ is the set of vertices of C_j. A less explicit, yet concise, definition is simply that a circuit-tree is a digraph in which there exists a unique xy-directed path for every distinct vertices x and y. A vertex-disjoint union of circuit-trees is a circuit-forest. When all circuits have length three, we speak of a triangle-tree. For short, a k-circuit-forest is a circuit-forest consisting of k circuits.

Conjecture 1 (Hoàng and Reed [3]) Every digraph has a δ^+-circuit-forest.

This conjecture is not even known to be true for $\delta^+ = 3$. In the case $\delta^+ = 2$, C. Thomassen proved in [6] that every digraph with minimum outdegree two has two circuits intersecting on a vertex (i.e. contains a circuit-tree with two circuits). The motivation of the Hoàng-Reed conjecture is that it would imply the Caccetta-Häggkvist conjecture, as the reader can easily check. Our goal in this paper is to show Conjecture 1 for the class of tournaments, i.e. orientations of complete graphs. Since this class is notoriously much simpler than general digraphs, our result is by no means a first step toward a better understanding of the problem. However, it gives a little bit of insight in the triangle-structure of a tournament T, that is the 3-uniform hypergraph on vertex set V which edges are the 3-circuits of T.

Indeed, if a tournament T has a δ^+-circuit-forest, by the fact that every circuit contains a directed triangle, T also has a δ^+-triangle-forest. Observe that a δ^+-triangle-forest spans exactly $2\delta^+ + c$ vertices, where c is the number of components of the triangle-forest. When T is a regular tournament with outdegree δ^+, hence with $2\delta^+ + 1$ vertices, a δ^+-triangle-forest of T is necessarily a spanning δ^+-triangle-tree. The main result of this paper establish the existence of such a tree for every tournament.

Theorem 1 Every tournament has a δ^+-triangle-tree.
2 Components in bipartite graphs.

We first need two lemmas in order to get lower bounds on the largest component of a bipartite graph in terms of the number of edges.

Lemma 1 Let $k \geq 1$ and let a_1, a_2, \ldots, a_k and b_1, b_2, \ldots, b_k be two sequences of positive reals. Let $A = \sum_{i=1}^k a_i$ and $B = \sum_{j=1}^k b_j$. If $\sum_{i=1}^k a_i b_i = \frac{AB}{2} + q$, where $q \geq 0$, then there is an i such that $a_i + b_i \geq \frac{A+B}{2} + \sqrt{q}$.

Proof. If $k = 1$, then the lemma follows immediately as $q = \frac{AB}{2}$ and $A + B \geq \frac{A+B}{2} + \sqrt{AB}$. So assume that $k > 1$. Without loss of generality, we may assume that $(a_1, b_1) \geq (a_2, b_2) \geq \ldots \geq (a_k, b_k)$ in the lexicographical order. Let r be the minimum value such that $b_r \geq b_i$ for all $i = 1, 2, \ldots, k$. Note that $a_1 \geq |A|/2$, since otherwise $\sum_{i=1}^k a_i b_i < \sum_{i=1}^k A b_i/2 = AB/2$. Analogously $b_r \geq |B|/2$. Define a' and b' so that $a_1 = A/2 + a'$ and $b_r = B/2 + b'$.

If $r \neq 1$, then the following holds:

$$\sum_{i=1}^k a_i b_i \leq a_1 b_1 + \sum_{i=2}^k a_i b_r = a_1 (B - b_r) + (A - a_1) b_r = (\frac{A}{2} + a') (\frac{B}{2} - b') + (\frac{A}{2} - a') (\frac{B}{2} + b') = \frac{AB}{2} - 2a'b' \leq \frac{AB}{2}$$

As $q \geq 0$, this implies we have equality everywhere above, which means that $b_1 = B - b_r$. As $B = b_1 + b_r$, we must have $k = 2$. As there was equality everywhere above we have $b' = 0$ or $a' = 0$ which implies that $a_1 = a_2 = A/2$ or $b_1 = b_2 = B/2$. In both cases we would have $r = 1$, a contradiction.

Suppose now that $r = 1$. Then

$$\frac{AB}{2} + q \leq a_1 b_1 + (A - a_1)(B - b_1) = (\frac{A}{2} + a')(\frac{B}{2} + b') + (\frac{A}{2} - a')(\frac{B}{2} - b')$$

This implies that $q \leq 2a'b'$. The minimum value of $a'+b'$ is obtained when $a' = b' = \sqrt{q/2}$. Therefore the minimum value of $a_1 + b_1$ is $A/2 + B/2 + 2\sqrt{q/2}$. This completes the proof of the lemma.

Corollary 1 Let G be a bipartite graph with partite sets A and B. If $|E(G)| = \frac{|A||B|}{2} + q$, where $q \geq 0$, then there is a component in G of size at least $|V(G)|/2 + \sqrt{2q}$.

Proof. Let Q_1, Q_2, \ldots, Q_k be the components of G. Let $a_i = |A \cap Q_i|$ and $b_i = |B \cap Q_i|$ for all $i = 1, 2, \ldots, k$. We note that $\sum_{i=1}^k a_i b_i \geq \frac{|A||B|}{2} + q$. By Lemma 1, we have $a_i + b_i \geq \frac{A+B}{2} + \sqrt{q}$ for some i. This completes the proof.

Lemma 2 Let T be a triangle-tree in a digraph D, and let $X \subseteq V(T)$ and $Y \subseteq V(T)$ be such that $|X| + |Y| \geq |V(T)| + 2$. Then there exists a triangle C in T such that the three disjoint triangle-trees in $T - E(C)$ can be named T_1, T_2, T_3 such that Y intersects both T_1 and T_2 and X intersects both T_2 and T_3.

Proof. We show this by induction. As $|X| + |Y| \geq |V(T)| + 2$, we note that T contains at least one triangle. If T only contains one triangle then the lemma holds as either X or Y equals $V(T)$, and the other has at least two vertices. Assume now that the lemma holds for all smaller triangle-trees and that T contains at least two triangles. Let $T = T_1 \cup C$, where C is a triangle and T_1 is a triangle-tree. If $|X \cap V(T_1)| + |Y \cap V(T_1)| \geq |V(T_1)| + 2$, then we are done by induction. So assume that this is not the case. As $|V(T_1)| = |V(T)| - 2$ this implies that $|X \setminus V(T_1)| + |Y \setminus V(T_1)| \geq 3$.

Without loss of generality assume that $|X \setminus V(T_1)| \geq 2$ and $|Y \setminus V(T_1)| \geq 1$. Let T_2 be the singleton-tree consisting of a vertex in $Y \setminus V(T_1)$ and let T_3 be the singleton-tree $X \setminus (V(T_1) \cup V(T_2))$. Note that
$T - E(C)$ consists of the triangle-trees T_1, T_2 and T_3. By definition, X intersects both T_2 and T_3 and Y intersects T_2. If Y also intersects T_1, we have our conclusion. If not, since $|X| + |Y| \geq |V(T)| + 2$, we have $Y = T_2 \cup T_3$ and $X = V(T)$, and free to rename T_1, T_2, T_3, we have our conclusion.

3 Proof of Theorem 1.

We will need the following results:

Theorem 2 (Tewes and Volkmann [5]) Let D be a p-partite tournament with partite sets V_1, V_2, \ldots, V_p. Then there exists a partition Q_1, Q_2, \ldots, Q_k of D such that

- each Q_i induces an independent set or a strong component,
- there are no arcs from Q_j to Q_i for all $j > i$, and there is an arc from Q_i to Q_{i+1} for all $i = 1, 2, \ldots, k - 1$.

Theorem 3 (Guo and Volkmann [2]) Let D be a strong p-partite tournament with partite sets V_1, V_2, \ldots, V_p. For every $1 \leq i \leq p$, there exists a vertex $x \in V_i$ which belongs to a k-circuit for all $3 \leq k \leq p$.

Now, we assume that D is a strong tournament as otherwise we just consider the terminal strong component. Let T be a maximum size triangle-tree in D, and assume for the sake of contradiction that $|V(T)| < 2\delta^+(D) + 1$. Let D^{MT} be the multipartite tournament obtained from D by deleting all the arcs with both endpoints in $V(T)$. Let V_1, V_2, \ldots, V_i be the partite sets in D^{MT} such that $V_i = V(T)$ and $|V_i| = 1$ for all $i \geq 1$.

Let Q_1, Q_2, \ldots, Q_k be a partition of $V(D^{MT})$ given by Theorem 2. If there is a Q_i with $Q_i \cap V_1 \neq \emptyset$ and $Q_i \subseteq V_1$ then we obtain the following contradiction. Since $Q_i \subseteq V_1$, we observe that Q_i contains at least two partite set. In addition, note that at least three partite sets intersect Q_i as $D^{MT}(Q_i)$ would not be strong if there were only two partite sets since $|V_i| = 1$ for all $i > 1$. By Theorem 3, in the subgraph of D^{MT} induced by Q_1, there is a 3-circuit containing exactly one vertex from V_1. This contradicts the maximality of T. So every set Q_i is either a subset of V_1 or is disjoint from V_1.

Note that $Q_1 \cap V_1 \neq \emptyset$ and $Q_k \cap V_1 \neq \emptyset$, as otherwise D would not be strong. Applying the observation above, we obtain $Q_1 \cup Q_k \subset V_1$. Let $T' = D(V_1)$. If there is a vertex $x \in Q_k$ with $d^+_D(x) = \frac{|V_1| - 1}{2}$, then $d^+_D(x) \leq \frac{|V_1| - 1}{2}$, which implies that $|V(T)| \geq 2\delta^+(D) + 1$, a contradiction. So $d^+_D(x) \geq \frac{|V_1| + 1}{2}$ for all $x \in Q_k$, as $|V_1|$ is odd.

Let G_1 denote the bipartite graph with partite sets Q_k and $V_1 - Q_k$, and with $E(G_1) = \{uv \mid u \in Q_k, v \in V_1 - Q_k, uv \in E(D)\}$. Note that the following now holds by the above.

$$|Q_k| - \frac{|V_1| + 1}{2} \leq \sum_{u \in Q_k} d^+_D(u) = \left(\frac{|Q_k|}{2}\right) + |E(G_1)|$$

This implies that $|E(G_1)| \geq \frac{|Q_1|(|V_1| - |Q_k|)}{2} + |Q_k|$, which by Corollary 1 implies that there is a component in G_1 of size at least $|V_1|/2 + \sqrt{2|Q_k|} \geq |V_1|/2 + \sqrt{2}$. As the size of the maximum component in G_1 is an integer it is at least $|V_1|/2 + 3/2$. Two cases can now occur:

- If $|Q_{k-1}| > 1$ or $Q_{k-2} \subseteq V_1$ (or both). If $|Q_{k-1}| > 1$ then let $Z = \{z_1, z_2\}$ be any two distinct vertices in Q_{k-1} otherwise let Z be any two distinct vertices in $Q_{k-1} \cup Q_{k-2}$. By the definition of the Q_i’s we note that $Z \cap V_1 = \emptyset$ and there are all arcs from $(V_1 - Q_k)$ to Z and from Z to Q_k. We let $X = Y$ be the vertices of a component in G_1 of size at least $(|V_1| + 3)/2$ and use Lemma 2 to find a triangle C in T, such that the three disjoint triangle-trees, T_1, T_2 and T_3, of $T - E(C)$ all intersect
X (as X = Y). As X are the vertices of a component in G1 there are edges, u1v1 and u2v2, from G1 such that the following holds. The edge u1v1 connects T3 and Tj, where u2v2 connects T3−j and Tj ∪ T3. Generality assume that u1, u2 ∈ Qk and v1, v2 ∈ V1 − Qk. Now T − E(C) together with the vertices z1 and z2 as well as the 3-circuits v1z1u1v1 and v2z2u2v2 is a triangle-tree in D with more triangles than T, a contradiction.

• If |Qk−1| = 1 and Qk−2 ⊆ V1. Note that k > 3, as otherwise |V(D) \ V(T)| = 1 and we have a contradiction to our assumption. This implies that k > 4 as Q1 ⊆ V1, which implies that Q2 ⊆ V1.

Now let Qk−1 = {z1} and let z2 ∈ Qk−3 be arbitrary. Let G2 denote the bipartite graph with partite sets A = Qk ∪ Qk−2 and B = V1 − A, and with E(G2) = \{uv \mid u ∈ A, v ∈ B, uv ∈ E(D)\}.

Recall that dG2(x) ≥ |V2|/2 + 1 for all x ∈ Qk. Analogously we get that dG2(y) ≥ |V2|/2 + 1 for all y ∈ Qk−2 (as |Qk−1| = 1). This implies the following.

\[|A||V2|/2 + |Qk−2| ≤ \sum_{u \in A} dG2(u) = \left(\frac{|A|}{2}\right) + |E(G2)| \]

This implies that |E(G2)| ≥ \frac{|A||V2|−|A|}{2} + |A| − |Qk−2|, which by Corollary 1 implies that there is a component in G2 of size at least \frac{|V1|}{2} + 2. As |A| − |Qk−2| = |Qk|. Note that |Qk| > 1, as otherwise the vertex in Qk−1 only has out-degree one, a contradiction. Therefore there is a component in G2 of size at least \frac{|V1|}{2} + 2 and so at least |V1|/2 + 5/2 as V1 is odd.

Let X be the vertices of a component in G1 of size at least |V1|/2 + 3/2 and let Y be the vertices in a connected component of G2 of size at least \frac{|V1|}{2} + 5/2. Now use Lemma 2 to find a triangle C in T, such that the three disjoint triangle-trees, T1, T2 and T3, of T − E(C) have the following property. The set Y intersects T1 and T2 and the set X intersects T2 and T3. Due to the definition of X and Y there exists edges, u1v1 ∈ E(G1) and u2v2 ∈ E(G2), such that the following holds.

The edge u1v1 connects T3 and Tj, where j ∈ \{1, 2\} and u2v2 connects T3−j and Tj ∪ T3. Without loss of generality assume that u1, u2 ∈ Qk and v1, v2 ∈ V1 − Qk. Now T − E(C) together with the vertices z1 and z2 as well as the 3-circuits v1z1u1v1 and v2z2u2v2 is a triangle-tree in D with more triangles than T, a contradiction. This completes the proof.

References