The Hoàng-Reed Conjecture holds for tournaments

Frédéric Havet, Stéphan Thomassé, Anders Yeo

To cite this version:

Frédéric Havet, Stéphan Thomassé, Anders Yeo. The Hoàng-Reed Conjecture holds for tournaments.
Discrete Mathematics, 2008, 308, pp.3412-3415. 10.1016/j.disc.2007.06.033 . lirmm-00292710

HAL Id: lirmm-00292710
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00292710
Submitted on 2 Jul 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hoàng-Reed conjecture holds for tournaments

Frédéric Havet * Stéphan Thomassé ${ }^{\dagger}$ Anders Yeo ${ }^{\ddagger}$

Abstract

Hoàng-Reed conjecture asserts that every digraph D has a collection \mathcal{C} of circuits $C_{1}, \ldots, C_{\delta^{+}}$, where δ^{+}is the minimum outdegree of D, such that the circuits of \mathcal{C} have a forest-like structure. Formally, $\left|V\left(C_{i}\right) \cap\left(V\left(C_{1}\right) \cup \ldots \cup V\left(C_{i-1}\right)\right)\right| \leq 1$, for all $i=2, \ldots, \delta^{+}$. We verify this conjecture for the class of tournaments.

1 Introduction.

One of the most celebrated problems concerning digraphs is the Caccetta-Häggkvist conjecture (see [1]) asserting that every digraph D on n vertices and with minimum outdegree n / k has a circuit of length at most k. Little is known about this problem, and, more generally, questions concerning digraphs and involving the minimum outdegree tend to be intractable. As a consequence, many open problems flourished in this area, see [4] for a survey. The Hoàng-Reed conjecture [3] is one of these.

A circuit-tree is either a singleton or consists of a set of circuits C_{1}, \ldots, C_{k} such that $\mid V\left(C_{i}\right) \cap\left(V\left(C_{1}\right) \cup\right.$ $\left.\ldots \cup V\left(C_{i-1}\right)\right) \mid=1$ for all $i=2, \ldots, k$, where $V\left(C_{j}\right)$ is the set of vertices of C_{j}. A less explicit, yet concise, definition is simply that a circuit-tree is a digraph in which there exists a unique $x y$-directed path for every distinct vertices x and y. A vertex-disjoint union of circuit-trees is a circuit-forest. When all circuits have length three, we speak of a triangle-tree. For short, a k-circuit-forest is a circuit-forest consisting of k circuits.
Conjecture 1 (Hoàng and Reed [3]) Every digraph has a δ^{+}-circuit-forest.
This conjecture is not even known to be true for $\delta^{+}=3$. In the case $\delta^{+}=2$, C. Thomassen proved in [6] that every digraph with minimum outdegree two has two circuits intersecting on a vertex (i.e. contains a circuit-tree with two circuits). The motivation of the Hoàng-Reed conjecture is that it would imply the Caccetta-Häggkvist conjecture, as the reader can easily check. Our goal in this paper is to show Conjecture 1 for the class of tournaments, i.e. orientations of complete graphs. Since this class is notoriously much simpler than general digraphs, our result is by no means a first step toward a better understanding of the problem. However, it gives a little bit of insight in the triangle-structure of a tournament T, that is the 3 -uniform hypergraph on vertex set V which edges are the 3 -circuits of T.

Indeed, if a tournament T has a δ^{+}-circuit-forest, by the fact that every circuit contains a directed triangle, T also has a δ^{+}-triangle-forest. Observe that a δ^{+}-triangle-forest spans exactly $2 \delta^{+}+c$ vertices, where c is the number of components of the triangle-forest. When T is a regular tournament with outdegree δ^{+}, hence with $2 \delta^{+}+1$ vertices, a δ^{+}-triangle-forest of T is necessarily a spanning δ^{+}-triangletree. The main result of this paper establish the existence of such a tree for every tournament.

Theorem 1 Every tournament has a δ^{+}-triangle-tree.

[^0]
2 Components in bipartite graphs.

We first need two lemmas in order to get lower bounds on the largest component of a bipartite graph in terms of the number of edges.

Lemma 1 Let $k \geq 1$ and let $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{k}$ be two sequences of positive reals. Let $A=\sum_{i=1}^{k} a_{i}$ and $\bar{B}=\sum_{j=1}^{k} b_{j}$. If $\sum_{i=1}^{k} a_{i} b_{i}=\frac{A B}{2}+q$, where $q \geq 0$, then there is an i such that $a_{i}+b_{i} \geq \frac{A+B}{2}+\sqrt{2 q}$.

Proof. If $k=1$, then the lemma follows immediately as $q=\frac{A B}{2}$ and $A+B \geq \frac{A+B}{2}+\sqrt{A B}$. So assume that $k>1$. Without loss of generality, we may assume that $\left(a_{1}, b_{1}\right) \geq\left(a_{2}, b_{2}\right) \geq \ldots \geq\left(a_{k}, b_{k}\right)$ in the lexicographical order. Let r be the minimum value such that $b_{r} \geq b_{i}$ for all $i=1,2, \ldots, k$. Note that $a_{1} \geq|A| / 2$, since otherwise $\sum_{i=1}^{k} a_{i} b_{i}<\sum_{i=1}^{k} A b_{i} / 2=A B / 2$. Analogously $b_{r} \geq|B| / 2$. Define a^{\prime} and b^{\prime} so that $a_{1}=A / 2+a^{\prime}$ and $b_{r}=B / 2+b^{\prime}$.

If $r \neq 1$, then the following holds:

$$
\begin{aligned}
\sum_{i=1}^{k} a_{i} b_{i} & \leq a_{1} b_{1}+\sum_{i=2}^{k} a_{i} b_{r} \\
& \leq a_{1}\left(B-b_{r}\right)+\left(A-a_{1}\right) b_{r} \\
& =\left(\frac{A}{2}+a^{\prime}\right)\left(\frac{B}{2}-b^{\prime}\right)+\left(\frac{A}{2}-a^{\prime}\right)\left(\frac{B}{2}+b^{\prime}\right) \\
& =\frac{A B}{2}-2 a^{\prime} b^{\prime} \\
& \leq \frac{A B}{2}
\end{aligned}
$$

As $q \geq 0$, this implies we have equality everywhere above, which means that $b_{1}=B-b_{r}$. As $B=b_{1}+b_{r}$, we must have $k=2$. As there was equality everywhere above we have $b^{\prime}=0$ or $a^{\prime}=0$ which implies that $a_{1}=a_{2}=A / 2$ or $b_{1}=b_{2}=B / 2$. In both cases we would have $r=1$, a contradiction.

Suppose now that $r=1$. Then

$$
\frac{A B}{2}+q \leq a_{1} b_{1}+\left(A-a_{1}\right)\left(B-b_{1}\right)=\left(\frac{A}{2}+a^{\prime}\right)\left(\frac{B}{2}+b^{\prime}\right)+\left(\frac{A}{2}-a^{\prime}\right)\left(\frac{B}{2}-b^{\prime}\right)
$$

This implies that $q \leq 2 a^{\prime} b^{\prime}$. The minimum value of $a^{\prime}+b^{\prime}$ is obtained when $a^{\prime}=b^{\prime}=\sqrt{q / 2}$. Therefore the minimum value of $a_{1}+b_{1}$ is $A / 2+B / 2+2 \sqrt{q / 2}$. This completes the proof of the lemma.
Corollary 1 Let G be a bipartite graph with partite sets A and B. If $|E(G)|=\frac{|A||B|}{2}+q$, where $q \geq 0$, then there is a component in G of size at least $|V(G)| / 2+\sqrt{2 q}$.

Proof. Let $Q_{1}, Q_{2}, \ldots, Q_{k}$ be the components of G. Let $a_{i}=\left|A \cap Q_{i}\right|$ and $b_{i}=\left|B \cap Q_{i}\right|$ for all $i=1,2, \ldots, k$. We note that $\sum_{i=1}^{k} a_{i} b_{i} \geq \frac{|A||B|}{2}+q$. By Lemma 1, we have $a_{i}+b_{i} \geq \frac{A+B}{2}+\sqrt{2 q}$ for some i. This completes the proof.

Lemma 2 Let T be a triangle-tree in a digraph D, and let $X \subseteq V(T)$ and $Y \subseteq V(T)$ be such that $|X|+|Y| \geq|V(T)|+2$. Then there exists a triangle C in T such that the three disjoint triangle-trees in $T-E(C)$ can be named T_{1}, T_{2}, T_{3} such that Y intersects both T_{1} and T_{2} and X intersects both T_{2} and T_{3}.

Proof. We show this by induction. As $|X|+|Y| \geq|V(T)|+2$, we note that T contains at least one triangle. If T only contains one triangle then the lemma holds as either X or Y equals $V(T)$, and the other has at least two vertices. Assume now that the lemma holds for all smaller triangle-trees and that T contains at least two triangles. Let $T=T_{1} \cup C$, where C is a triangle and T_{1} is a triangle-tree. If $\left|X \cap V\left(T_{1}\right)\right|+\left|Y \cap V\left(T_{1}\right)\right| \geq\left|V\left(T_{1}\right)\right|+2$, then we are done by induction. So assume that this is not the case. As $\left|V\left(T_{1}\right)\right|=|V(T)|-2$ this implies that $\left|X \backslash V\left(T_{1}\right)\right|+\left|Y \backslash V\left(T_{1}\right)\right| \geq 3$.

Without loss of generality assume that $\left|X \backslash V\left(T_{1}\right)\right| \geq 2$ and $\left|Y \backslash V\left(T_{1}\right)\right| \geq 1$. Let T_{2} be the singletontree consisting of a vertex in $Y \backslash V\left(T_{1}\right)$ and let T_{3} be the singleton-tree $X \backslash\left(V\left(T_{1}\right) \cup V\left(T_{2}\right)\right)$. Note that
$T-E(C)$ consists of the triangle-trees T_{1}, T_{2} and T_{3}. By definition, X intersects both T_{2} and T_{3} and Y intersects T_{2}. If Y also intersects T_{1}, we have our conclusion. If not, since $|X|+|Y| \geq|V(T)|+2$, we have $Y=T_{2} \cup T_{3}$ and $X=V(T)$, and free to rename T_{1}, T_{2}, T_{3}, we have our conclusion.

3 Proof of Theorem 1.

We will need the following results:
Theorem 2 (Tewes and Volkmann [5]) Let D be a p-partite tournament with partite sets $V_{1}, V_{2}, \ldots V_{p}$. Then there exists a partition $Q_{1}, Q_{2}, \ldots, Q_{k}$ of D such that

- each Q_{i} induces an independent set or a strong component,
- there are no arcs from Q_{j} to Q_{i} for all $j>i$, and there is an arc from Q_{i} to Q_{i+1} for all $i=$ $1,2, \ldots, k-1$.

Theorem 3 (Guo and Volkmann [2]) Let D be a strong p-partite tournament with partite sets $V_{1}, V_{2}, \ldots V_{p}$. For every $1 \leq i \leq p$, there exists a vertex $x \in V_{i}$ which belongs to a k-circuit for all $3 \leq k \leq p$.

Now, we assume that D is a strong tournament as otherwise we just consider the terminal strong component. Let T be a maximum size triangle-tree in D, and assume for the sake of contradiction that $|V(T)|<2 \delta^{+}(D)+1$. Let $D^{M T}$ be the multipartite tournament obtained from D by deleting all the arcs with both endpoints in $V(T)$. Let $V_{1}, V_{2}, \ldots, V_{l}$ be the partite sets in $D^{M T}$ such that $V_{1}=V(T)$ and $\left|V_{i}\right|=1$ for all $i>1$.

Let $Q_{1}, Q_{2}, \ldots, Q_{k}$ be a partition of $V\left(D^{M T}\right)$ given by Theorem 2 .
If there is a Q_{i} with $Q_{i} \cap V_{1} \neq \emptyset$ and $Q_{i} \nsubseteq V_{1}$ then we obtain the following contradiction. Since $Q_{i} \nsubseteq V_{1}$, we observe that Q_{i} contains at least two partite set. In addition, note that at least three partite sets intersect Q_{i} as $D^{M T}\left\langle Q_{i}\right\rangle$ would not be strong if there were only two partite sets since $\left|V_{i}\right|=1$ for all $i>1$. By Theorem 3, in the subgraph of $D^{M T}$ induced by Q_{i}, there is a 3 -circuit containing exactly one vertex from V_{1}. This contradicts the maximality of T. So every set Q_{i} is either a subset of V_{1} or is disjoint from V_{1}.

Note that $Q_{1} \cap V_{1} \neq \emptyset$ and $Q_{k} \cap V_{1} \neq \emptyset$, as otherwise D would not be strong. Applying the observation above, we obtain $Q_{1} \cup Q_{k} \subset V_{1}$. Let $D^{\prime}=D\left\langle V_{1}\right\rangle$. If there is a vertex $x \in Q_{k}$ with $d_{D^{\prime}}^{+}(x) \leq \frac{\left|V_{1}\right|-1}{2}$, then $d_{D}^{+}(x) \leq \frac{\left|V_{1}\right|-1}{2}$, which implies that $|V(T)| \geq 2 \delta^{+}(D)+1$, a contradiction. So $d_{D^{\prime}}^{+}(x) \geq \frac{\left|V_{1}\right|+1}{2}$ for all $x \in Q_{k}$, as $\left|V_{1}\right|$ is odd.

Let G_{1} denote the bipartite graph with partite sets Q_{k} and $V_{1}-Q_{k}$, and with $E\left(G_{1}\right)=\{u v \mid u \in$ $\left.Q_{k}, v \in V_{1}-Q_{k}, u v \in E(D)\right\}$. Note that the following now holds by the above.

$$
\begin{equation*}
\left|Q_{k}\right| \frac{\left|V_{1}\right|+1}{2} \leq \sum_{u \in Q_{k}} d_{D^{\prime}}^{+}(u)=\binom{\left|Q_{k}\right|}{2}+\left|E\left(G_{1}\right)\right| \tag{1}
\end{equation*}
$$

This implies that $\left|E\left(G_{1}\right)\right| \geq \frac{\left|Q_{k}\right|\left(\left|V_{1}\right|-\left|Q_{k}\right|\right)}{2}+\left|Q_{k}\right|$, which by Corollary 1 implies that there is a component in G_{1} of size at least $\left|V_{1}\right| / 2+\sqrt{2\left|Q_{k}\right|} \geq\left|V_{1}\right| / 2+\sqrt{2}$. As the size of the maximum component in G_{1} is an integer it is at least $\left|V_{1}\right| / 2+3 / 2$. Two cases can now occur:

- If $\left|Q_{k-1}\right|>1$ or $Q_{k-2} \nsubseteq V_{1}$ (or both). If $\left|Q_{k-1}\right|>1$ then let $Z=\left\{z_{1}, z_{2}\right\}$ be any two distinct vertices in Q_{k-1} otherwise let Z be any two distinct vertices in $Q_{k-1} \cup Q_{k-2}$. By the definition of the Q_{i} 's we note that $Z \cap V_{1}=\emptyset$ and there are all arcs from $\left(V_{1}-Q_{k}\right)$ to Z and from Z to Q_{k}. We let $X=Y$ be the vertices of a component in G_{1} of size at least $\left(\left|V_{1}\right|+3\right) / 2$ and use Lemma 2 to find a triangle C in T, such that the three disjoint triangle-trees, T_{1}, T_{2} and T_{3}, of $T-E(C)$ all intersect
X (as $X=Y$). As X are the vertices of a component in G_{1} there are edges, $u_{1} v_{1}$ and $u_{2} v_{2}$, from G_{1} such that the following holds. The edge $u_{1} v_{1}$ connects T_{3} and T_{j}, where $u_{2} v_{2}$ connects T_{3-j} and $T_{j} \cup T_{3}$. generality assume that $u_{1}, u_{2} \in Q_{k}$ and $v_{1}, v_{2} \in V_{1}-Q_{k}$. Now $T-E(C)$ together with the vertices z_{1} and z_{2} as well as the 3 -circuits $v_{1} z_{1} u_{1} v_{1}$ and $v_{2} z_{2} u_{2} v_{2}$ is a triangle-tree in D with more triangles than T, a contradiction.
- If $\left|Q_{k-1}\right|=1$ and $Q_{k-2} \subseteq V_{1}$. Note that $k>3$, as otherwise $|V(D) \backslash V(T)|=1$ and we have a contradiction to our asumption. This implies that $k>4$ as $Q_{1} \subseteq V_{1}$, which implies that $Q_{2} \nsubseteq V_{1}$. Now let $Q_{k-1}=\left\{z_{1}\right\}$ and let $z_{2} \in Q_{k-3}$ be arbitrary. Let G_{2} denote the bipartite graph with partite sets $A=Q_{k} \cup Q_{k-2}$ and $B=V_{1}-A$, and with $E\left(G_{2}\right)=\{u v \mid u \in A, v \in B, u v \in E(D)\}$. Recall that $d_{D^{\prime}}^{+}(x) \geq \frac{\left|V_{1}\right|+1}{2}$ for all $x \in Q_{k}$. Analogously we get that $d_{D^{\prime}}^{+}(y) \geq \frac{\left|V_{1}\right|+1}{2}-1$ for all $y \in Q_{k-2}$ (as $\left.\left|Q_{k-1}\right|=1\right)$. This implies the following.

$$
\begin{equation*}
|A| \frac{\left|V_{1}\right|+1}{2}-\left|Q_{k-2}\right| \leq \sum_{u \in A} d_{D^{\prime}}^{+}(u)=\binom{|A|}{2}+\left|E\left(G_{2}\right)\right| \tag{2}
\end{equation*}
$$

This implies that $\left|E\left(G_{2}\right)\right| \geq \frac{|A|\left(\left|V_{1}\right|-|A|\right)}{2}+|A|-\left|Q_{k-2}\right|$, which by Corollary 1 implies that there is a component in G_{2} of size at least $\left|V_{1}\right| / 2+\sqrt{2\left|Q_{k}\right|}$, as $|A|-\left|Q_{k-2}\right|=\left|Q_{k}\right|$. Note that $\left|Q_{k}\right|>1$, as otherwise the vertex in Q_{k-1} only has out-degree one, a contradiction. Therefore there is a component in G_{2} of size at least $\left|V_{1}\right| / 2+2$ and so at least $\left|V_{1}\right| / 2+5 / 2$ as V_{1} is odd.
Let X be the vertices of a component in G_{1} of size at least $\left|V_{1}\right| / 2+3 / 2$ and let Y be the vertices in a connected component of G_{2} of size at least $\left|V_{1}\right| / 2+5 / 2$. Now use Lemma 2 to find a triangle C in T, such that the three disjoint triangle-trees, T_{1}, T_{2} and T_{3}, of $T-E(C)$ have the following property. The set Y intersects T_{1} and T_{2} and the set X intersects T_{2} and T_{3}. Due to the definition of X and Y there exists edges, $u_{1} v_{1} \in E\left(G_{1}\right)$ and $u_{2} v_{2} \in E\left(G_{2}\right)$, such that the following holds. The edge $u_{1} v_{1}$ connects T_{3} and T_{j}, where $j \in\{1,2\}$ and $u_{2} v_{2}$ connects T_{3-j} and $T_{j} \cup T_{3}$. Without loss of generality assume that $u_{1}, u_{2} \in Q_{k}$ and $v_{1}, v_{2} \in V_{1}-Q_{k}$. Now $T-E(C)$ together with the vertices z_{1} and z_{2} as well as the 3 -circuits $v_{1} z_{1} u_{1} v_{1}$ and $v_{2} z_{2} u_{2} v_{2}$ is a triangle-tree in D with more triangles than T, a contradiction. This completes the proof.

References

[1] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congress. Numer., XXI (1978), 181-187.
[2] Y. Guo and L. Volkmann, Cycles in multipartite tournaments. Journal of Combinatorial Theory, Series B, 62 (1994), 363-366.
[3] C.T. Hoàng and B. Reed, A note on short cycles in digraphs, Discrete Math., 66 (1987), 103-107.
[4] B.D. Sullivan, A summary of results and problems related to the Caccetta-Häggkvist conjecture, preprint.
[5] M. Tewes and L. Volkmann, Vertex deletion and cycles in multipartite tournaments, Discrete Math., 197/198 (1999), 769-779.
[6] C. Thomassen, The 2-linkage problem for acyclic digraphs, Discrete Math., 55 (1985), 73-87.

[^0]: ${ }^{*}$ Projet Mascotte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France fhavet@sophia.inria.fr
 ${ }^{\dagger}$ LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, thomasse@lirmm.fr
 ${ }^{\ddagger}$ Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK, anders@cs.rhul.ac.uk

