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161, rue Ada, 34392 Montpellier Cedex 05, France - firstname.lastname@lirmm.fr

KEY WORDS: lidar, waveform analysis, signal processing, modelling, generalized Gaussian

ABSTRACT:

Unlike airborne multi-echo laser scanner systems, full-waveform systems are able to digitize and record the entire backscattered signal

of each laser pulse. It has been demonstrated that decomposing the return waveforms into a mixture of Gaussian components was

suitable. In this paper, we focus on the improvement of peak detection and of raw signal modelling. Refined peak detection greatly

increased the number of detected targets as well as their positional accuracy. Models more complex than the Gaussian model, such

as the Lognormal or generalized Gaussian functions, were introduced and their contribution to waveform processing was studied. In

this way, fitting of asymmetric, peaked or flattened echoes located both in urban and forested areas could be improved. Moreover,

introduction of new echo parameters allowed the extraction of additional information on the target shape. This should make easier the

decorrelation of geometric and radiometric influences on the signal and, as a consequence, the improvement of point cloud classification

algorithms.

1 INTRODUCTION

Airborne laser scanning is an active remote sensing technique

providing range measurements between the laser scanner and the

Earth topography. Well-known direct georeferencing processes

turn such distance measurements into 3D point clouds with high

accuracy and relevancy. Even for small footprints, there may be

several objects of different range within the travel path of the

laser pulse that generate individual backscattered echoes. Conse-

quently, conventional lidar systems measure the first echo of the

incoming signal (”first pulse”) and the last echo (”last pulse”).

Some are able to measure up to six pulses and more advanced

systems also provide signal intensity.

During the last decade, a new generation of airborne laser scan-

ners that are able to digitize and record the entire backscattered

signal of each emitted pulse has appeared. They are called full-

waveform (FW) lidar systems.

Historically, the first FW lidar systems were designed in the 1980s

for bathymetric purposes (Guenther and Mesick, 1988). The first

operational topographic system, developed by the NASA, ap-

peared in 1999. The LVIS sensor (Laser Vegetation Imaging

Sensor) was an improved version of a former satellite system,

SLICER, developed in 1994 (Blair et al., 1999). SLICER was

designed to describe the vertical structure of the canopy over

extensive areas (Harding et al., 2001). LVIS data processing

demonstrated the potential of recording return waveforms to char-

acterize woodland areas and to measure the Earth topography,

even ground beneath the canopy. First algorithms for classifying

ground points by analysing the return waveform were developed

and then resumed for the following system, GLAS, carried by the

ICESAT satellite (2003-2006) (Zwally et al., 2002).

The first airborne commercial full-waveform lidar system has been

operational since 2004 (LiteMapper-5600 lidar system based on

the Riegl LMS-Q560 laser scanner) (Hug et al., 2004) and several

features are now available for cartographic purposes.

Full waveform data hold large potentialities since it may over-

come many drawbacks of classical multi-echo lidar data. More

control is given to an end user in the interpretation process of

the physical measurement. FW lidar data yield more than a ba-

sic geometric representation of the Earth topography. Instead of

3D point clouds, more detailed and additional information are

provided about the structure of the illuminated surfaces with off-

line processes. Thus, in addition to single range measurements,

further physical properties of the objects included in the diffrac-

tion cone may be found with a backscattered waveform analy-

sis. For example, in vegetated areas, more 3D points may be

extracted, low vegetation can be separated from ground and both

canopy and ground heights can be measured with higher accuracy

(Dubayah and Blair, 2000).

Many studies have already been carried out to perform full wave-

form lidar data processing and analysis. Return waveform (1D

signal) processing to extract more information than a single range

measurement is the first main step. Non-linear least-squares (NLS)

methods (Hofton et al., 2000, Reitberger et al., 2006) or maxi-

mum likelihood estimation using the Expectation Maximization

(EM) algorithm (Persson et al., 2005) are typically used to fit the

signal to a mixture of Gaussian functions to detect and parametrize

the peaks. It was found in general that small-footprint lidar wave-

forms can be well modelled with a sum of Gaussian pulses (Wag-

ner et al., 2006).

Geometric and radiometric influence of the hit targets have not

been yet decorrelated. Therefore, point cloud segmentation algo-

rithms using peak intensity and width still lead to a certain rate of

misclassification without a good theoretical understanding of the

waveform response for different targets (Ducic et al., 2006).

The aim of this study is to investigate further lidar return wave-

form processing. First, a raw signal modelling is proposed with

Gaussian, Lognormal and generalized Gaussian functions. In-

deed, waveforms can be very similar to an ideal Gaussian func-

tion (Wagner et al., 2006) whereas other laser impulse responses

are slightly asymmetric (Hofton et al., 2000, Jutzi and Stilla,

2006). Consequently, approximating the waveforms using a sum

of Gaussians may not be an accurate representation depending on

the application and the target.



Figure 1: Amplitude image of the first echoes detected by the embedded real-time system, displayed in the sensor geometry.

A NLS algorithm is then performed with robust initial parameter

estimates to improve usual approaches.

Finally, the contribution of proposed functions is discussed as

well as the potentialities of new echo parameters for both urban

and vegetation area mapping.

2 FULL-WAVEFORM LIDAR DATA

The data acquisition was performed in September 2006 with

the RIEGL LMS-Q560 system over the city of Biberach (Bade

Wutermberg, Germany). The main technical characteristics of

this sensor are presented in (Wagner et al., 2006). The lidar

system operated at a pulse rate of 100 kHz. The flight altitude

was about 500 m and the footprint size was 0.25 m. RIEGL full-

waveform system allows to determine the vertical distribution of

targets within the diffraction cone with a temporal resolution of

around 1 ns. The target resolution of the system is close to 0.6 m

and the spatial resolution (i.e. the distance between two samples)

is 0.3 m. The surveyed area includes both residential, industrial

and dense vegetated areas (figure 1). The point density is about

2.5 pts/m2.

Each return waveform is composed of one or two sequences of

60 samples that is to say an altimetric profile of 18 m (or 36 m).

For each emitted pulse, the emitted signal (60 samples) and the

echoes found by the embedded real-time detection algorithm are

given as well as their amplitude and width (figure 2).
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Figure 2: Example of a measured waveform for RIEGL LMS-

Q560 system. Dashed lines indicate the position of the echoes

detected by the system. The background noise is relatively low

within the observed waveforms.

3 WAVEFORM PROCESSING

Waveform processing consists in decomposing the waveform

into a sum of components or echoes, so as to characterise the dif-

ferent targets along the path of the laser beam. It is a parametric

approach to estimate a mathematical model. The aim of wave-

form processing is therefore to extract as many peaks from the

signal as possible, but also information for each echo. It consists

in two main steps : first, the number of components and initial

values are estimated. Then the parameters are optimized. The

optimization process is well-known and it has been demonstrated

that either the Expectation-Maximization algorithm (Maximum

Likelihood estimates) (Persson et al., 2005) or the Levenberg-

Marquardt algorithm (non-linear least-squares method) (Hofton

et al., 2000, Wagner et al., 2006) give good results. Nevertheless,

optimization relies strongly on initial parameters. They therefore

must be estimated very carefully to avoid erroneous results. In

this study, an improvement of usual peak detection has been first

performed. Then a new waveform modelling has been proposed

with different functions to improve signal fitting.

3.1 Methodology

A full waveform extracted from the RIEGL LMS-Q560 system is

composed of one or two sequences of 60 points uniformly-spaced

{(xi, yi)}i=1,..,N
sampled at 1 GHz. We aim at decomposing

each sequence into a sum of components representing the targets

located within the travel path of the laser beam as

y = f(x) =

n
∑

j=1

fj(x) (1)

where n is the number of components, fj a given function that

may be a Gaussian, Lognormal or a generalized Gaussian (see

section 3.3).

For each sequence, the background noise is first thresholded.

Then, a basic detection method is used to estimate the number

and the position of the components. Other function parameters

are fixed with constant values. A first fit is computed, using a

non-linear least-squares method. A fine detection using the fitting

result is then performed to find missing peaks (cases of complex

overlapping echoes, see figure 3). If new peaks are detected, a

second fit is processed with the same method.

3.2 Peak detection and initial parameters estimation

The basic detection method is based on the zero crossings of

the first derivative on the thresholded version of the waveform.

The detection algorithm takes into account a minimal number of

samples separating two detected peaks (spatial resolution of the

system). A non-linear least-squares method with the Levenberg-

Marquardt algorithm implemented in the GSL (GNU Scientific

Library) is then used to compute the fit. The quality of the results



is evaluated by

ξ =
1

N − p

N
∑

k=1

(yk − f(xk))2 (2)

where the numerator is the sum of the residual differences be-

tween the observed waveform and the fitting function, N is the

number of samples and p is the number of parameters of the fit-

ting function.

In case of complex overlapping echoes, zero crossings of the

first derivative are not sufficient to detect all real peaks. Indeed,

a finer peak detection is needed when two overlapping echoes

are so close that a single maximum is found, but three inflexion

points (instead of two for a standard echo) exist. One solution is

to perform a second pulse detection on the thresholded difference

between the observed waveform and the previous fit. If a peak is

detected, a new fit is run with the new component. The resulting

ξ value is compared to the previous one and this step is repeated

until the ξ factor stops decreasing.
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Figure 3: Example of complex waveform. The RIEGL system

data is in red colour (continuous line) and the fitted result in blue

(dashed line). Data is first thresholded to the value of 4 before

pulse detection. Top: Fit with only a coarse pulse detection. Bot-

tom: Fit with a fine detection. Two echoes are now found.

3.3 Modelling functions

Each laser output pulse shape is assumed to be Gaussian, with

a specific and calibrated width. The collected pulse is therefore

a convolution between this Gaussian distribution and a ”surface”

function, depending on the hit objects. It has been shown that if

the vertical height distribution of the elements within the diffrac-

tion cone follows a Gaussian law, the reflected waveform can be

approximated by a sum of Gaussians (Zwally et al., 2002). Wag-

ner (Wagner et al., 2006) has shown that more than 98% of the

observed waveforms with the RIEGL system could be fitted with

a sum of Gaussian functions.

Nevertheless, this assumption is not always satisfactory. De-

pending on the lidar system, the transmitted signal is not always

Gaussian but can be slightly distorted (asymmetric, flattened or

peaked). For the LMS-Q560 waveforms, a steeper ascending part

as well as a longer but weaker descending one than the Gaussian

model can be noticed. Moreover, the Gaussian height distribution

of the targets has only be statistically shown for large-footprint li-

dar systems (Carabajal et al., 1999). For small-footprint systems,

there is no assuming that the height distribution is Gaussian, even

over vegetated areas. Therefore modelling full-waveform lidar

data with a sum of Gaussian functions can be inaccurate. It is

of interest to extend waveform processing capabilities by using

more complex parametric models. It enables to both improve

signal fitting and extract more information from the raw signal.

Standard extensions of Gaussians are Lognormal and generalized

Gaussian functions. The detected peaks can be asymmetric and

modelled with a Lognormal function (see figure 4a). Besides,

some symmetric waveforms are observed to be distorted over

forested areas and over some building roofs. Using the gener-

alized Gaussian model (see figure 4b) can improve signal fitting

for complex waveform shapes.

Gaussian (G), Lognormal (L) and generalized Gaussian (GG)

models have the following analytical expressions (see figure 4

for plots) :

fG,j(x) = aj exp

(

− (x − µj)
2

2σ2

j

)

(3)

fL,j(x) = aj exp

(

− (ln (x − sj) − µj)
2

2σ2

j

)

(4)

fGG,j(x) = aj exp

(

−|x − µj |α
2

j

2σ2

j

)

(5)

The observation of data on the whole survey area shows that

most of the asymmetric peaks are in fact so close overlapping

echoes that the third inflexion point is hardly visible. As a con-

sequence, with the coarse pulse detection, fitting the waveform

with a mixture of Lognormal results in a better quality of fit (i.e.

a lower value of ξ) than fitting with a sum of Gaussians. How-

ever, improving the peak detection as presented before leads to

the detection of two echoes. Gaussian fitting is then better.

Figure 4: Left: Comparison between Gaussian (continuous line)

and Lognormal (dotted line) functions. Right: The generalized

Gaussian function: α=1 = Laplace function (dashed line), α=
√

2
= Gaussian function (continuous line) and α=2 (dotted line).

The generalized Gaussian model enables to simulate both Gaus-

sian shapes when α =
√

2, peaked shapes when 1 ≤ α <
√

2
(α = 1 gives the Laplace function) and flattened shapes when

α >
√

2 (see figure 4b). Therefore it should improve the quality

of the fit in most of the cases. But with a simple NLS algorithm,

it will also increase the number of fits that do not converge, just

like the Lognormal. It is due to the increasing number of degrees

of freedom of the function and also to the more complex expres-

sion of the gradient (Aiazzi et al., 1999).

The generalized Gaussian is also used to model SAR amplitude

(Moser et al., 2006), image texture or even outliers in image

matching (Hasler et al., 2003). The α parameter is yet very in-

teresting for waveform analysis because it provides another piece

of information about the shapes of the echoes, in addition to their

width, and it could be useful for classification purposes (see sec-

tion 4.3).



Figure 5: Difference of last pulse altitude between post-processing algorithm and real-time process. Only height differences greater

than 2 m has been displayed.

4 RESULTS AND DISCUSSION

4.1 Point extraction

Lidar waveform post-processing allows to densify the final point

cloud up to 50 % on forested areas (see table 1). The Gaussian fit

was successful for about 99.3% of waveform profiles. A wave-

form was considered to be well fitted if the quality factor ξ < 0.5.

It has been observed that ξ < 0.1 on urban areas with a single

pulse of Gaussian shape and that ξ ≤ 0.5 even for complex tar-

gets consistently fitted.

Analysing the differences between fitted waveforms and the de-

livered point cloud, one can notice that weak and overlapping

echoes are now detected. As expected, the additional points are

located near the tree canopy and in low ground vegetation areas.

Only few points are additionally detected on the ground beneath

the canopy, due to the survey low point density and the small

laser footprint. Finally, more echoes are also detected on artifi-

cial objects in urban areas, because of multiple pulse reflections

at building edges.

The fine peak detection performed after the first two steps (coarse

detection and signal fitting) allows to detect up to 10 % more

points than a unique coarse echo detection. Low intensity echoes

close to strong ones are henceforth extracted (figure 3). The qual-

ity of the fit is therefore improved: figure 6 shows a significant

decreasing of ξ median value. The fine peak detection enhances

the stability of NLS method whatever the fitting function. Indeed,

when providing relevant estimates of echo positions as input data,

the fitting procedure finds a solution for almost all return profiles

(99.99 % for the Gaussian, 99.8 % for the the generalized Gaus-

sian and 99.05 % for the Lognormal function).
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Figure 6: Histogram of ξ values for the Gaussian model : coarse

detection (black) and fine detection (grey).

As expected, full-waveform lidar data enables to penetrate

deeper in forested areas. Nevertheless, there is still no assuming

the last detected pulse is the ground. Figure 5 shows the differ-

ence of last pulse altitude between post-processing algorithm and

real-time method. It illustrates that extracted points are signif-

icantly closer to the ground over vegetated areas (until 10 m).

Moreover, the first pulse detection is also bettered over vege-

tated areas. Statistical results are summarized in table 1 where

the mean difference ∆Height between post-processing detected

pulse height and real-time one is always positive for the last pulse

(e.g. +1.58 m for dense vegetation) and always negative for the

first pulse (e.g. −0.42 m).

Area

Whole Dense

Vegetation Residential Downtown
Area Vegetation

Nb profiles 2027547 70074 23368 93690 66264

Non fitted (%) 0.01 0.004 0.008 0.01 0.02

Nb points extracted 2903976 147218 46246 120813 85520

Additional points (%) 24 55 51 9 10

∆Height first (m) -0.13 -0.42 -0.34 -0.04 -0.04

∆Height last (m) 0.36 1.58 1.36 0.07 0.05

Table 1: Statistics on point extraction on different test areas. The

figures of non-fitted profiles and difference of height measure-

ment are given for the Gaussian model.

4.2 Comparison between modelling functions

As mentioned in other publications (Reitberger et al., 2006, Wag-

ner et al., 2006), the Gaussian decomposition of lidar waveforms

is a good approximation of the signal (ξ < 0.5 for 99.3% of the

processed waveforms).

ξ > 0.5 means that the Gaussian model is not appropriate for

modelling complex waveform. Such values are particularly ob-

served on forested areas. Even for small ξ values, the Gaussian

decomposition can be inaccurate. Indeed, for high and narrow

echoes as well as for weak and large ones, Gaussian fitting could

be improved. Such cases are difficult to quantify.

Modelling raw signals with the Lognormal function does not

improve the waveform fitting for the whole survey area but lo-

cally. ξ values are globally higher than for the Gaussian model.

Besides, inconsistencies are found for more than 5 % (i.e. ξ > 5)

and the NLS algorithm diverges more often than for other func-

tions (1 % compared to 0.01 % for the Gaussian model).

Nevertheless, in very few cases, ξ values are lower for the Log-

normal decomposition than for a sum of Gaussians. It shows that

some backscattered echoes are asymmetric. Such cases are ob-

served on streets and some building roofs. Further experiments

have to be carried out to draw more conclusions.

It seems that a high value of ξ only means that the lidar wave-

form is not well modelled with Lognormal functions. But it does

not mean that all the waveform echoes are inconsistently mod-

elled. Thus modelling waveforms with a sum of different func-

tions could be appropriate.



The generalized Gaussian function allows to model flattened,

narrow and high pulses. ξ values are lower for such model than

for the Gaussian function. Figure 7 shows the ξ histograms of

Gaussian and generalized Gaussian models. The latter improves

the global fitting quality. Still a higher number of inconsistent

fitting results is noticed (about 0.4%). Theoretically the general-

ized Gaussian should always fit at least as well as the Gaussian

function. But in practice, this is due to a minimization problem

in the NLS method.

In the streets (asphalt or pavement), the fitting procedure works

as well as for the Lognormal function. Indeed, the observed

pulses have a high intensity and a low width (α →5), what can be

well modelled with the Lognormal function. But for asymmetric

echoes, the generalized Gaussian model is not suitable.
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Figure 7: Histogram of ξ values for Gaussian fit (black) and gen-

eralized Gaussian fit (grey) using fine detection.

4.3 Contribution of the generalized Gaussian function

As expected, the generalized Gaussian model improves signal

fitting. Furthermore, a new parameter α is estimated giving in-

formation about the sharpness of the detected echo. The para-

metric description of the targets given by the signal processing

step contains significant information on the roughness, slope and

reflectivity of the target surface. The main issue is that geometric

and radiometric influences are correlated in one single shape. It

seems difficult to decorrelate them with only return intensity and

pulse width estimation.

A close observation of the data gives some hints on an empirical

classification based on α:

• α > 1.9 (rare) concerns pulses belonging to building edges

and both to the top of the canopy and below the canopy.

Simulations have to be performed to investigate whether

echoes in forested areas concern low ground vegetation or

bare ground;

• 1.6 < α < 1.9 is typical of vegetated areas (first echoes

more than the other ones) but also of artificial planar areas

(asphalt streets for example);

• 1.3 < α < 1.6 (associated to Gaussian shape) is found on

natural ground (beaten-earth floor, grass) and building roofs;

• α <1.3 (very rare) concerns tree canopy and building

boundaries.
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Figure 8: Histogram of α values over three homogeneous test ar-

eas (more than 15000 waveforms each) : building roofs (black),

asphalt streets (dark grey) and dense vegetation (grey).

Figure 8 shows the distribution of α values over three test ar-

eas. The three mean values are all close to 1.55, meaning that the

general shape of the backscattered echoes is close to a slightly

flattened Gaussian. Extreme values (< 1.3 and > 1.9) are found

on forested areas where, for small-footprint lidar systems, there is

no assuming the value of the shape parameter. For urban areas, it

can help to segment building and artificial ground areas. Further

work have to be done to perform such classification algorithm,

maybe with the help of both intensity and width pulse values.

The potentialities of the scale parameter α of the generalized

Gaussian model can be shown on terrain areas. On flat areas,

α seems less sensitive to radiometric changes than the two other

ones. For example, intensity and width values are affected by

the presence of zebra-crossings on the streets, of tracks on car

parks, of moisture on natural surfaces, whereas α parameter is

estimated almost constant. It could therefore be useful to clas-

sify geometrically similar areas as shown in figure 9. Although α

values images are very noisy, α could be a discriminative param-

eter if associated to other variables in a supervised classification

framework.

Figure 9: Comparison between the amplitude (a), α (b) and width

parameters (c) on artificial (tracks on car park, top) and natural

(moisture on tennis courts, bottom) ground areas.



5 CONCLUSIONS AND FUTURE WORK

The problem of modelling full-waveform lidar data has been in-

vestigated in this paper. It is known that the decomposition of an

observed lidar waveform into its components not only improves

the ranging accuracy of the measurement but also enables the

determination of the heights of various reflecting surfaces within

the laser diffraction cone. The traditional Gaussian fitting gives

in general good results for all kind of areas. Providing the in-

tensity and the width for each echo is however not sufficient for

classification purposes.

We introduced the mixture of Lognormal functions to fit asym-

metric echoes, especially on streets and roofs. Nevertheless, such

model is not suitable for eclectic landscapes. The main limitation

is that return bumps are not always of the same nature: it can be a

mixture of Lognormal, Gaussian and other functions. We finally

introduced the generalized Gaussian model to fit distorted peaks

and still enables to fit Gaussian shapes. The modelling method-

ology is thus improved compared to the Gaussian adjustment. A

practical limitation has however been observed since the fitting

procedure gives inconsistent results for several waveforms due to

optimization problems in the NLS method. But the contribution

of this function is all the more significant since a new parameter

is estimated for each peak, providing new information about its

shape. A first visualization shows its potentialities for classify-

ing extracted point cloud especially in urban areas. Waveform

simulations have to be carried out to understand its global contri-

bution.

Improving peak detection was shown in this paper to be very

successful to extract additional targets in the return waveforms.

However, for classification purposes, it could be more interesting

to fit a wide flattened echo with only one generalized Gaussian

instead of two basic Gaussians: parameter α would provide in-

formation to classify the group of two overlapping echoes that

otherwise would not be available. Depending on the application,

two approaches are conceivable. On the first hand a coarse pulse

detection with a suitable model can be used for classification. On

the other hand, an improved point detection with just a Gaus-

sian model can be performed to describe accurately 3D vegeta-

tion structure.

Both Lognormal and generalized Gaussian functions contribute

to improve lidar waveform modelling but not in the same way.

Consequently, the three functions have to be gathered to take ben-

efit from their specific advantages. Besides, other suitable func-

tions have to be tested in order to best describe the return wave-

form. As the Gaussian fitting is already almost successful all the

time, new modelling functions with different parameters have to

be found. They could provide new information about the peaks

and therefore contribute to lidar point cloud segmentation.

A combination of several suitable functions have therefore to be

performed to assess this solution. A Reversible Jump Monte

Carlo Markov Chain (RJMCMC) method could, for example, be

implemented thanks to its high flexibility. Jumps between models

of different dimensions (the number of parameters) are possible

and consequently each raw signal can be segmented by different

functions.
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