N
N

N

HAL

open science

Exception Handling in a Replicated Agent Environment
Zeina Azmeh, Christophe Dony, Chouki Tibermacine, Christelle Urtado,
Sylvain Vauttier

» To cite this version:

Zeina, Azmeh, Christophe Dony, Chouki Tibermacine, Christelle Urtado, Sylvain Vauttier. Exception
Handling in a Replicated Agent Environment. 2008. lirmm-00293673

HAL Id: lirmm-00293673
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293673
Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293673
https://hal.archives-ouvertes.fr

Exception Handling in a Replicated Agent
Environment

Semestrial report 2 — FACOMA — LIRMM partner

Zeina Azmeh', Christophe Dony!, Chouki Tibermacine!, Christelle Urtado?,
Sylvain Vauttier?

! LIRMM - CNRS and Montpellier IT University - 161 rue Ada
34 392 Montpellier - France
{azmeh, dony, Chouki.Tibermacine}@lirmm.fr

2 LGI2P - Ecole des Mines d’Alés - Parc scientifique G. Besse - 30 035 Nimes - France
{Christelle.Urtado, Sylvain.Vauttier}@site-eerie.ema.fr

1 Introduction

This document is the semestrial report of the LIRMM partner for the FAcoMA
project. It concludes semester 2 — out of 6 — for the project. During this
semester, partners from LIRMM and LGI2P have worked on:

— defining an exception handling system for agents. This work is based on
previous work that has been done by these partners on the SaGE exception
handling system that was adapted to the context of the FACOMA project.

— refining their knowledge and understanding of the Dimax?® replicated agent
environment provided by the LiP6 partner.

— setting the first elements of a specification of an exception handling system
dedicated to agents that evolve in a replication-based environment.

Indeed, exception handling and replication are two mechanisms that increase
the reliability of an application. Exceptions are situations in which the normal
flow of a program cannot continue. Replication prevents an application from
suffering from system failures. Exceptions and system failures do not apply to
the same situations and therefore are complementary to each other. One of the
objective of the FACOMA project is to study how an exception handling system
and a replication mechanism can combine to increase the reliability of agent-
based applications.

The remainder of this document is structured as follows. Section 2 specifies an
exception handling system dedicated to agents. Then, Section 3 provides prelim-
inary elements of a specification of an exception handling system for replicated
agents.

3 DiMAX is the result of the integration of an agent platform nammed DiMA and a
replication framework nammed DARX.

2 An exception handling system dedicated to agents

As agent programming becomes more and more common, agent platforms need
to integrate sophisticated mechanisms to ensure the reliability of agent-based
applications. Exception handling is one of these capabilities that are widely
accepted in most (sequential) programming languages but not yet common in
agent platforms.

While the masterpieces of a generally accepted solution for exception han-
dling in sequential programs are known, this is not yet the case for concurrent
systems [1], even if some agreements exist. When systems with asynchronous
communications are concerned, research works are still much more scattered.
Initial actor languages included basic proposals to cope with exceptions [2] in
which handlers were some specialized actors, ancestors of today’s exception su-
pervisors, that had the same lacks, regarding handler contextualization (see Sect.
2.2), as Smalltalk or Ada initial lexical-scope handlers. Asynchrony has more re-
cently motivated many research works in various contexts [3,4,5,6,7,8,9,10] but
they only partially address agent needs, even if some agent systems integrate
achieved exception handling proposals [11]. For example, the supervisor model
described in [12,13] does not properly handle contextualization. Guardian [14,15]
is a general and powerful solution which nonetheless proves to be complex to
master and use. As explained in [14], “Often exception handling in a program is
the most complez [...] part of the system [...] and has to be either simplified or
taken out of the hand of the average programmer” and a solution for this is to
“separate global level exception handling from the application agents”.

We have imagined an alternative solution consisting in analyzing and design-
ing a language-level exception handling system dedicated to agents that:

— integrates what we consider to be the major research results from studies in
sequential, concurrent or asynchronous contexts, and is expressive enough
to address standard exception handling situations,

— reflects the way agents and agent-based applications are structured?,

— is simple enough to be used by standard programmers.

The key requirements of the system are: to enforce encapsulation, to provide
a representation for collaborative concurrent activities [1] so that they can be
coordinated and controlled [16], to achieve caller contextualization [17,18] for
handler definition and execution, to handle concurrent exceptions with resolution
functions [19,20], to support asynchronous signaling and handler search and thus
maintain object reactivity and to cope with broadcast messages, widely used in
the request / response protocol.

Section 2 is organized in four parts. Subsection 2.1 recalls some basic vo-
cabulary and introduces an example. Subsection 2.2 presents the rationale of

4 We have considered agents in their less constrained form i.e., as autonomous entities
that provide inter and intra-object concurrency, interact via a request /response
protocol and use one-way asynchronous communications.

our main conceptual choices. Subsection 2.3 describes the system specification
focusing on the description of the asynchronous handler search policy.

Broker

O

Contact
parties

providers

Poll

Select
an offer
Client
(:%) Organize

a travel /

Validate Contact the

Provider 3
(selected)

Get

price

Establish Validate

the contract

provider
Contac
the client
Captions:
Agent Bgroup Service Request
o —

Provider 1

@)

Get
price

Rrovider 2

kS

Figure 1. Execution resulting from a request to a travel agency

2.1 Definition, Terminology and Example

Agents communicate by exchanging messages that carry information [21]. Mes-
sages are queued in the object’s message-box. Each agent executes a thread
dedicated to managing its message-box: its scans and interprets the received
messages to trigger corresponding actions. These actions are called services.
Agents can execute several services concurrently in dedicated threads (intra-

agent concurrency).

The request /response interaction protocol generally comes along with a
contract-based approach of software development. It states that whenever an
agent accepts a request, it must provide a response, either standard or excep-

tional. Our agents use one-way communications® which means that responses to
requests are not carried back away in the same communication channel that has
carried the request, but by sending new separated messages back to callers [21].
Agents are autonomous: they can independently decide to start any activity or
to handle any received message in whatever order. A collaborative activity is an
activity that involves several agents or several services of an agent in achieving
a common goal.

As an illustration, we use the canonical Travel Agency example in which a
Client can send a B roker a reservation message to request a bid for a travel.
The contacted broker then sends a bid request to several travel providers and
waits for their responses. Then, the Broker selects the best offer and requests
the Client and the selected Provider to contract (cf. Fig. 1).

Our code examples use a Java-like syntax. Figure 2 shows examples of service
definitions: lines 11-22 define the Poll providers service and lines 24-41 the
Contact Parties service. We call complex services, services the code of which
contains other messages and atomic services the others. In the example, Get
price, that returns a Provider’s bid, is an atomic service (cf. Fig. 1) and Organize
a travel, which handles a Client’s initial request, is a complex one.

Broadcast messages that contain collective requests, are frequently used by
agents. They are generally delivered via entities that represent groups of agents
as, for example, roles in MadKIT or topics in J2EE MDBs. We take this kind of
requests into account and use entities that we call bgroups (for broadcast groups)
to denote such groups of agents. A bgroup possesses an (implicit) complex service
that broadcasts the requests it receives to all agents in its collection.

This simple example brings to the fore many pertinent issues:

— How to control and interpret an exception asynchronously raised by one of
the travel providers ?

— Where is the best place to interpret such an exception ?

— Should all providers be notified when one of them fails 7

— Should the broker be able to cancel all requests to travel providers for a
given reason 7

— Where and how to associate a handler for the collaborative activity that
consists in requesting several travel providers concurrently ?

— When should such a handler be invoked and in which context ?

2.2 Rationale for the SaGE Exception Handling System

Each of the following paragraphs discusses the rationale of some of our choices.

® Two-ways asynchronous communications generally use future objects [3] which are
more restrictive because the order in which they are read imposes synchronization
constraints.

AN ~A~A~~NA~ A

(

1)
2)
3)
4)
5)
6)
7

(10)
(11)
12)
(13)
(14)
(15)
(16)
an
(18)
(19
20)
21
(22)
(23)
(24)
(25)
(26)
27
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37
(38)
(39
(40)
(41)
(42)
(43)

public class Broker implements SaGEAgent
{

public void handle (GlobalNetworkException exc)
// handler associated to the Broker agent

{ ...}

class PollProviders implements Service

{

public void body ()
{ ...}
public void handle (BadParameterException exc)
// handler associated to the PollProviders service
{ signal (new NoAirportInDestinationException (...); }
public void handle (NoProviderException exc)
// handler associated to the PollProviders service

{...}
}
class ContactParties implements Service
{
public void body (O
{

sendMessage (new RequestMessage (aClient,
"ContactSelectedProvider")
{
public void handle (OffLineException exc)
// handler associated to a request
{
wait (120) ;
retry();
}
B

Figure 2. Service and handler definitions in SaGE

Coordination of Concurrent Activities. As shown in several concurrent
systems [16,1] and in our previous work [22,23], efficiently handling exceptions
in concurrent systems using asynchronous communications requires cooperative
concurrency to be supported. This amounts to provide a representation of col-
lective activities and a way to define handlers at all places, in a program, where
several concurrent participants are working together to the achievement of a
global task. In the example, such a handler should be defined somewhere at the
level of the requesting Broker agent, should be invoked whenever one or more
travel providers signal an exception, and should be able to access the Broker
context.

Encapsulation. A well-known consequence of the introduction of exception
handling primitives in a language is that it gives programmers constructs to
break encapsulation [24]. If it seems unavoidable to pass arguments from sig-
nalers to handlers, it is possible to act on another concern with encapsulation
which occurs each time handlers are executed in a context where the data they
need is not accessible. This can globally be the case in object languages with
all kinds of supervisor-based models for exception handling [2,25,12] or, more
marginally, in procedural languages with handlers associated to shared data, as
initially suggested by [26].

Supervisors are agents dedicated to exception handling, which can be con-
sidered themselves as handlers or to which handlers can be attached. The actor
proposal for exception handling [2] is based on this idea. The issue with this
approach is that supervisors are not encapsulated within the agents that experi-
ence the failure and therefore cannot access their internal state without breaking
encapsulation. Our solution to prevent this, experimented in [18,22], is to define
and encapsulate handlers within the agent or activity they control.

Contextualization. Contextualization refers to two connected issues: the scope
of handlers and the context in which they are executed. The scope of a handler
determines the way and the order in which they are searched for. It directly
impacts the exception signaling algorithm. The way handlers are defined and
executed determines their context. Two main approaches can globally be distin-
guished. In the static approach, handlers have a lexical scope and are executed
in an environment that lexically contains the signaling environment. Its main
advantages are its simplicity and the fact that it requires no additional language
constructs. Its main drawback is that it fails to achieve fault tolerant encapsula-
tions [18]. In the dynamic approach, handlers have a dynamic scope: the portion
of the program they control is execution dependent.

Caller contextualization is a variant of the dynamic approach in which
handlers have a dynamic scope and are executed in the lexical context of the
caller of the faulty routine. A simple example of the interest of caller contextu-
alization is the DivideByZero exception. It is easy to verify that, whatever the
reason DivideByZero has been raised, only the caller of the divide operation can
give a semantically founded interpretation of the reason why the divisor equals

zero and can take an appropriate decision, in its context. This policy has been
globally accepted as the best one for achieving fault-tolerant encapsulations in
contract-based request / response interactions in all sequential languages (from
PL/I, Clu, Mesa, Lisp, Flavors, Clos, C++, ANSI Smalltalk, to Java).

As far as agents are concerned, a choice has to be made among various alter-
natives. Original actor languages proposed dynamic scope handlers. [2] associates
an exceptional continuation actor to each message sending. However, such an ac-
tor is unable to access the calling context and therefore to give context-dependent
answers to exceptions. The exception handling systems based on supervisors [12]
and those that do not propagate exceptions outside of the thread in which they
are signaled (as J2EE MDBs) suffer from the same lack. Some languages propose
both static and dynamic scope handlers to respectively achieve fault tolerance
and exception handling. It is the case of Beta [27] and Smalltalk in its original
blue book version®. They propose two kinds of exceptions and two means to
signal them. The issue for a programmer with such a system is to know which
kind of exceptions to signal.

In fact, caller contextualization is equally well adapted to both sequential
and concurrent contexts. It has been made available to agent systems by recent
research proposals [22,15]. It has to be noted that applying it to its whole extent
excludes solutions in which an exception in a participant of a collaborative task is
signaled to its brother participants. In our example, this means that an exception
in a single Travel provider would be signaled to all the other providers working
on the same request. Although of effective potential interest [28], we reject this
solution because of its intrinsic complexity for programmers. In our example,
it could lead to very complex and intricate situations as soon as several travel
providers signal exceptions concurrently.

Resolution, Criticality. Entities that represent a set of collaborating agents
are a natural place where to enable programmers to specify policies to deal with
the multiple exceptions the agents may concurrently signal. Some resolution
mechanisms to “concert” or ‘resolve” such exceptions have been proposed in
[19,4,29]. A resolution function is a user defined function that can be attached
to entities that represent collaborative activities (complex services or bgroups).
It is invoked to concert the set of exceptions that have been signaled to the entity
in which it is defined. It receives the exception object as an argument. Its role
is to analyze the situation, to block and monitor under-critical exceptions [30]
or to let pass through critical (concerted) ones. A concerted exception globally
reflects the incorrect behavior of the collective activity. In the example, when a
Provider-Bgroup sends n requests to n providers, a resolution function attached
to the bgroup can determine that the failure of one of them is not critical for
the collective activity and simply has to be monitored and that the failure of 90
percent of them should entail the signaling of a concerted one. In an asynchronous

6 In the original Smalltalk, lexical scope handlers are standard methods and dynamic
scope handlers are lexical closures passed as arguments (e.g.: aCollection find:
anObject ifAbsent: [...]).

communication world, we propose to improve these ideas by calling the resolution
function (1) as soon as an exception is signaled in a thread of a collective activity
and (2) each time an exception is signaled, without waiting for the termination
of all the services that constitute the collective activity. The signaling algorithm
will be responsible for achieving these requirements.

2.3 Specification of the SaGE Exception Handling System for
Agents

Our specification classically comes in four steps indicating: to which program
units to attach exception handlers, how to signal exceptions, what can be written
within handlers to put the system back into a coherent state and in which order
handlers are searched for.

Data Structures for Coordination and Contextualization. Coordination
and contextualization require that some dedicated internal data structures be
defined. Caller contextualization first requires that a doubly-linked tree of service
execution contexts be monitored. In such a tree, a node represents a complex
service execution context and a leaf the one of an atomic service. Callee to
caller links are used to look for handlers. Caller to callee are used, for example,
to kill the sub-services of a terminating complex service. Figure 1 shows the ex-
ecution context tree that results from the services executed in the travel agency
example. Complex services execution contexts are also used to collect and mon-
itor the results of the execution of their sub-services, either they be standard
results or exceptions.

Attaching Handlers. The standard FIPA request / response interaction pat-
tern is divided in four main steps:

— Request and acknowledgment: a sender agent sends a request to a re-
ceiver agent 7, which can be an individual agent or a bgroup.

— Acceptation: the receiver indicates whether he accepts the request or not.
Acceptation is a commitment to provide a response, either normal or excep-
tional.

— Execution: the receiver executes a service.

— Response: the service execution is finished and the receiver either sends
back a normal response or signals an exception.

These steps highlight the role of four key entities in this interaction pattern:
the request, the service, the active agent, the bgroup. They are the four program
units to which exception handlers could be attached:

" The complete protocol includes an acknowledgment step to check that the message
has not been lost. For the sake of simplicity, we will always consider here that sent
requests arrive to their destination and that it is the transport layer (middleware)
responsibility to guarantee this.

— Handlers attached to requests allow, for example, to specify two different
reactions to the occurrences of two exceptions raised by two invocations of
the same service. Figure 2 (lines 29-38) shows how a handler can be attached
to a specific request.

— Handlers attached to services allow to treat exceptions that are raised,
directly or indirectly, by their execution. If the service is complex, the handler
has to be able to deal with concurrent exceptions, to compose with partial
results or to ignore partial failures. Figure 2 (lines 16-22) shows an example
in which two handlers are attached to a service.

— Handlers attached to bgroups amount to attach them to their implicit ser-
vice (see 2.1).

— Finally, handlers attached to agents (see Fig. 2, lines 5-7) are handlers
common to all services, designed, for example, to maintain in an uniform
way the coherence of the agent private data.

These capabilities are powerful enough to encompass most cases and simple
enough to be easy to learn and use. Other systems are either more complex or less
expressive but the comparison requires that the signaling algorithm be presented.
All handlers have a dynamic scope. Resolution functions will be considered later.

Signaling. Signaling is done by the means of a classical signal primitive (cf. Fig.
3). Signaling is possible anywhere in the code. This includes the possibility of
signaling an exception from within handlers.

signal (new SaGEException("select_error",getownerQueue()));

Figure 3. The signal primitive

Defining Handlers. Exception handlers are classically [31] defined by the set
of exception types they can catch and by their body (as illustrated by Fig. 2,
lines 32-37). There are three main actions a handler can classically have:

— A handler can restore whatever should be, to put back data into a coherent
state, and can return a value that becomes the value of the expression the
handler is associated to. In case of a message sending expression (standard or
broadcast), the value returned by the handler is the value of the expression.
In case of a handler attached to a service, the value becomes the result of
the service execution. In case of a handler attached to an agent, the value
becomes the result of the execution of the service that raised the exception.

— A handler can signal a new exception (generally of a higher conceptual
level) or re-signal the original one. This behavior is illustrated on Fig. 2
line 18. Of course, handlers cannot protect themselves from the exceptions
they signal.

— A handler can retry the execution of the program unit it is attached to. To
retry [32,33] amounts to entirely re-execute the program unit it is attached
to, generally after having modified the local environment, but in the same
historical context. This possibility is illustrated on Fig. 2, lines 32-37. In
case of handlers attached to agents, retrying means re-executing the service
that signaled the exception.

Handler Search. Let S, be the service in which an exception E is raised
i.e.i.e., that contains the signaling point (the “call-site”). When E is raised, the
execution of S, is suspended (cf. Algo. 1) and handler search is done using the
thread of S,,. If S,, is complex, it continues to monitor responses and other excep-
tions coming from its sub-services, the execution of which is not yet interrupted.
If a concurrent sub-service signals another exception Fs during handler search
for E, it will be either ignored or considered later if no handler is executed for
E. It may happen that no handler be executed for F when a resolution function
considers that E is not critical.

Algorithm 1 The signal primitive

Require: Exception exc // raised exception object
Service sce < service in which the signal primitive is called
if sce’s state is "suspended" // exc is signaled during a handler execution then

if the handler that is being executed is attached to a request then
ezecute LocalSearch (exc, sce)
else
call CallerSearch (exc, calling-service)
terminate sce
end if
else
// exc is signaled from outside a handler
sce ’s state < "suspended"
erecute LocalSearch (exc, sce)
end if

Then, a handler for E is searched for locally:

— first, in the list of handlers associated to S, ,
— then, in the list of handlers associated to the owner agent of S,.

If a suitable handler H is found there, it is executed and its execution termi-
nates the execution of S,,. Along with the execution of H, all pending sub-services
of S, if any, are terminated. The caller service of S,, (and all of its other sub-
services) remain unaffected and normally pursue their execution concurrently
with H’s.

If no handler is found locally, the search proceeds in the calling context
(service S,_1), in order to guarantee caller contextualization (c¢f. 2.2). First,

Algorithm 2 Handler Search - LocalSearch (Exception exc, Service sce)

Require: Exception exc of type T, Service sce // raised exception object and current
service
if a handler Hr exists attached to sce then
evecute Hr
else
if a handler Hr exists attached to the agent to which sce belongs then
ezecute Hr
else
if a calling service exists then
call CallerSearch (exc, calling-service)
else
ezecute default handler // top-level has been reached
end if
end if
end if
terminate sce // terminates the service and (if it is a complex one) recursively all its
sub-services

S, _1 is suspended and the search for a handler initiated. The search in S,,_; is
done concurrently with the termination of S,,. This original capability guarantees
that all activities that have become useless because of a failure are terminated
as soon as possible. This preserves system resources. The process carries on as
follows:

— first, it searches the list of handlers associated to the request which initiated
S,. There, the resolution function associated to S,,_1 is executed. If it lets
the exception pass through, the search process continues. If not, the search
process stops and no handler will be executed (cf. Sect. 2.3).

— then, it searches the list of handlers associated to S, _1

— finally, it searches the list of handlers associated to the owner of S, _1.

Algorithm 3 Handler Search - CallerSearch (Exception exc, Service sce)

Require: Exception exc of type T, Service sce // raised exception object and current
service
if a handler Hr exists attached to the request sent by sce then
erecute Hr
else
log exc into sce’s exception log
execute sce’s resolution function®
if the resolution function returns a concerted exception then
sce s state < "suspended"
ezecute LocalSearch (exc, sce)
end if
end if

If no handler is found, the same three steps are repeated once again into
the caller’s caller context (S,—2). This process iterates until either an adequate
handler is found and executed or the root of the service tree is reached. In the
latter case, a default top-level handler is executed.

Algorithm 1 describes the signaling of an exception. Algorithms 2 and 3 de-
scribe the local and the caller’s context part of the handler search process. To
ease the reading of these algorithms, let us note Hpr an exception handler de-
fined to treat exceptions of type T. Let us also define two primitives to call
sub-procedures: ezecute, to denote a sequential call and call, to denote an asyn-
chronous concurrent call. When a procedure is called through the ezecute prim-
itive, it executes in the same thread as its caller. When a procedure is called
through the call primitive, it executes in a thread different from its caller’s. The
remaining instructions in its caller’s context are then executed concurrently with
the called procedure.

Concerted Exception Support. SaGE provides exception resolution support
(¢f. 2.2) integrated to the handler search. It enables resolution functions to be
defined at places where concurrent activities are launched and have to be co-
ordinated (i.e., at the complex service level). There is no need for a resolution
function either at the request level, because requests are atomic, or at the agent
level because all semantically sound activities of agents, that need to be co-
ordinated, are accessible via services. Bgroups own resolution functions that are
attached to the implicit complex service they execute. A bgroup first acts as
a request broadcaster and then as a response collector in order to send back
a single (composite) response to its client agent. The default behavior of the
resolution function associated to a bgroup service is, once all recipients have
replied, to aggregate all the exceptions that occured into a concerted one. Of
course, a programmer can define his own exception resolution function as in the
example of Fig. 4.

In our model, a resolution function is executed each time an exception handler
is searched for in the caller’s context (¢f. Algorithm 3). Whatever is done in the
function, three cases are finally possible:

— the exception is critical for the service. The resolution function returns the
exception object and the handler search process carries on.

— the resolution function evaluates that the exception is under-critical and that
nothing more should be done yet. The exception is logged, the resolution
function returns null and the handler search process stops. The collective
activity is not affected. The only service that is terminated is the defective
sub-service.

— the resolution function evaluates that the exception is under-critical but that
there is a need to signal something, for example because too many under-
critical exceptions have been logged. The resolution function returns a special
exception that reflects the situation and the handler search carries on.

8 This is also valid in the case of a Bgroup because the resolution function is in fine
attached to the (default) broadcasting service.

public SaGEException concert (Vector subServicesInfo)

{
int failed = 0;

// count the number of exceptions raised in subservices and
// the number of subservices that are still running
for (int i=0; j<subServicesInfo.size(); i++)
{
if ((ServiceInfo) (subServicesInfo.elementAt(i)).getRaisedException()
'= null)
failed++;

}

// if more than 30% failed, there are too many bad providers
if (failed > (0.3*subServicesInfo.size()))
return new SaGEException("too_many_bad_providers",getAddress());

// computing still running - no critical situation
return null;

Figure 4. Java-like code of an exception resolution function associated to the Provider
Bgroup

Such a use of resolution for concerted exception differs from the original work
of [34,20] in that it is adapted to a context in which there are no synchronization
points. A mechanism to calculate the time when the resolution function should
be executed has been proposed in [30]. Our solution consists in tightly integrating
the execution of the resolution function to our handler search mechanism. Our
resolution function is executed each time the handler search process goes back
from a context to its caller. At each step, it can stop the process or let it continue
(with either the original exception or a new, concerted one). This characteristic
makes our system more reactive, because our resolution function evaluates the
situation each time an exception is signaled.

3 Preliminary Specification of an Exception Handling
System Dedicated to Replicated Agents

The goal of the system we have to develop is to give agents programmers (user
of the Dimax replicated agent platform) an exception handling system that
works correctly in presence of replication. Replication provides automated fault-
tolerance at the system level while exception handling allow programmers to
develop additional programmed fault-tolerance at the application level. Putting
the two systems together amounts to adapt exception handling solutions so that
replication remains as transparent to programmers that it is without exception
handling.

3.1 Overview of the Replicated Agent Platform

This section presents an overview of the DARX replication framework we have
to adapt to.

Building a multi-agent system in the DIMAX framework requires that every
DiMA agent extends the DarxTask class, in order to give the DARX middleware
the ability to manage agents (start, stop, replicate, ..) and so that every agent
be wrapped by a TaskShell that manages its input / output messages.

Every agent in the DARX framework has an underlying replication group,
which is the set of all replicas corresponding to the same agent. Every replication
group must have at least one active replica, considered as the leader. It can also
have other active, semi-active or passive replicas, depending on the replication
strategy.

Every replica in the DARX framework is given a unique identifier, the Replicant-
Info, provided by the naming server and built from the original name of the cor-
responding agent in the application context. The leader of a replication group
distinguishes itself from a standard replica in that it has an additional thread
that represents the ReplicationManager, and is attached to its TaskShell.
This ReplicationManager is responsible for deciding what is the criticality of
the associated agent, specifying the replication strategy, and maintaining the
consistency of the replicas.

The consistency can be maintained following two main strategies:

1. the active one, in which all replicas process all input messages concurrently

2. and the passive one, in which only one of the replicas (the leader) processes
all input messages and periodically transmits its current state (the serialized
DarxTask) to the other replicas so they can update the state (DarxTask)
contained in their own TaskShell.

Figure 5 illustrates the functionalities of the DARX middleware. The middle-
ware gathers information on agents by analyzing their code using its application
analysis service, in order to provide support without modifying the original pro-
gram. Then, it evaluates the criticality of agents to decide which agents should
be replicated, how many replicas must be created and which replication strategy
(active or passive) is best adapted.

To explain how agent interactions are supported in DARX, we can see an
example of agents interacting directly (without the DARX middleware) on Fig.
6, and the same agents interacting through replication group proxies (added by
the DARX middleware) on Fig. 7.

When an agent A wants to send a message to an agent C, the original code
(written by the agent programmer) will be something like:

A.send(msg, C);

In DARX, the naming server keeps track of replication groups and replicas.
Every replication group is referenced by a local proxy. This proxy is implemented
by the RemoteTask interface. It acts as an interface between the replicas in a
replication group and the rest of the multi-agent system.

Application
analysis
service

Replication
mechanism

Evaluate the Critical agents
criticality of agents

MAS

¥
replicated agents

Protocol

Active Passive

Figure 5. The DARX middleware

Name Directory

Agent Location
A

B
C
D

Criticality Table

Agent Criticality
A 1
B 2
C 3
D 1

Figure 6. The original DimA multi-agent system

All of the external and internal communications of a group are redirected to
its proxy, which contains all the addresses of all replicas inside the associated
replication group. This proxy will be obtained by a lookup request on the naming
server using the application-relevant agent identifier.

So as we can see in Fig. 7, sending a message between two agents in Darx,
using the previous line of code, will implicitly include obtaining the proxy of the
receiving agent, then sending the message to this proxy:

ProxyC = NS.lookup(C); // Find a reference to agent C’s proxy

A.send(msg, ProxyC); // Use the proxy to address agent C

Request / Response Message Management Inside a Replication Group.
Messages exchanged by agents have different semantics that enables to achieve
different interaction protocols. Classically, a request message is sent by a client
agent to a server agent in order to ask for a service execution. After some calcu-
lation, the server agent sends back to the client agent a response message con-

g N\ Name Directory
Naming Server Agent Location | Status
J A M1 L
- B [
\ B1 M3 L
. C M1
T c M2 L
(o) M3
D M1 L

Dynamic Criticality Table

Agent Criticality
A 1 1 |

%

B 2
C 3
D 1

Leader of a group

(j Replica

mom—Axawo | A

----> Update state
1 lookup(Agent C)
2 return proxyC
Machine 1 Machine 2 Machine 3 3 send(msg, proxyC)
Darx Server Darx Server Darx Server 4 send(msg, leader(C))

Figure 7. The DiMAX multi-agent system with replicated agents

taining a result. When agents are replicated with DARX, request and response
messages are managed as follows inside the replication groups of the agents. A
reasonable hypothesis is that the observable (external) behavior of all the active
replicas belonging to a replication group is identical (if not it becomes difficult
to guarantee that the states of the replicas can be synchronized and coherent).
This means that starting from a same state and receiving the same message, all
the replicas should send the same answer message.

Handling Request Messages.

Receiving request messages. For performance optimization reasons (proximity of
two network nodes), any replica of a server agent is able to receive request mes-
sages. A request message is delivered to all the active replicas of the replication
group, and especially to its leader (which is necessarily an active replica). Every
active replica executes the corresponding service and sends a response message.
The possibly new state of the leader is serialized by the DARX middleware and
sent to every passive replica to update their states.

Sending request messages. As all the active replicas in a replication group are
supposed to have the same observable behavior, they are likely to send the same
request message to the same agent at the same time. In order to keep replication
transparent for other agents (that are not necessarily replicated), only the request
message from the leader is actually sent. Other request messages are discarded
by the DARX middleware or possibly collected to be compared by some checking
mechanisms.

Handling Response Messages.

Sending response messages. Only one response message must be sent back to a
client agent in order to enforce replication transparence, although all the active
replicas of a replication group will execute the same service at the same time
and thus send many response messages. Here again, only the response message
from the leader is actually sent. The other response messages are discarded by
the DARX middleware or possibly collected to be compared by some coherence
detection mechanism.

Receiving response messages. As for request messages, response messages are
forwarded to the leader and then delivered to all the active replicas of the repli-
cation group. This way, all the active replicas handle the same answer and are
expected to reach the same state. Here again, the new state reached by the leader
is serialized and sent to update the states of the passive replicas.

Paradoxically, more replicas will provide more reliable agents but will also
bear more exceptional situations to be managed, because of the multiplication of
service executions and of message exchanges. Thus, the replication middleware
can itself use an exception handling system (possibly the same as the agent level)
for its own seek to manage this, as presented in the following, but this is a second
problematic.

3.2 Introduction to the new problems

The goal of a replication system is to give the control to another replica of an
agent when the active replica stops working. We will call this situation a system
failure.

System failures are different from exceptions. An exception is not a failure
because it is a kind of answer from an agent. It indicates that an agent is unable
to continue its task the standard way but that he is still alive and potentially
able to do other things.

Section 2 has presented how an agent can signal an exception and how han-
dlers can be defined at different places to handle exceptional situations and put
the system back into a coherent execution state.

The present study aims at presenting what issues, related to the detection,
propagation and handling of exceptions, are raised by the fact that agents run
on top of a replication system such as DARX.

The DARX system proposes different working contexts (different kinds of
replicas that have different execution policies). We will deal first with the sim-
plest ones. The questions we have to deal with to specify an exception handling
system similar to the one presented in Sect. 2 and adapted to the context of the
replication system are:

— What should happen when an exception is raised by an agent that has one
or more replicas ?

— Where can programmers define handlers? Handlers can be defined both by
the application programmer or by implementers of the replication system.

— What decisions can be taken within a handler 7 Handlers defined by imple-
menters of the replication system should certainly either put the execution
back into a coherent state or propagate to the application level an under-
standable result, either normal or exceptional. In other words, the replication
system should then return a normal result or signal an application level ex-
ception.

— How to distinguish an exception which represents a failure and should entail
the election of a new leader from an exception which is a correct answer ? For
example, signaling the “division-by-zero” exception is the normal reponse of
the “divide” function if its second argument is zero. In this second case, it is
useless to activate another replica and to elect a new leader because it will
finally give the same answer. On this point, there is certainly a need to work
on a typology of exceptions for each application.

3.3 Typology of exceptions

Application-level exceptions. We can in first analysis distinguish two kinds
of application-level exceptions. We propose this classification to bring the prob-
lem to the fore, it seems difficult to predict before program execution to which
category an exception will belong.

1. Replica-specific exceptions. This kind of exceptions is raised by a replica but
not necessarily by the others. Examples include exceptions thrown when:

— some resources specific to a given replica are unavailable, for example
because the ressource is shared and the replica has lost the network
connection.

— a replica tries to communicate with an agent which is unreachable.

2. Exceptions raised by all the replicas. If a given replica raises such an excep-
tion, there is evidence that all the others will also raise it. It is for example
the case of exceptions raised when:

— some resources shared by all replicas are unavailable,

— a parameter of the request sent to this agent (and all its replicas) is not
valid (e.g., leads to a division by zero),

— the agent (and all its replicas) communicate with an unreachable agent.

System-Level Exceptions. These exceptions are raised by the replication sys-
tem. We will focus on these exceptions later on in the project. As the replication
system is transparent for the programmer, it is reasonnable to think that most of
them should be handled internally. We will make on this point a link towards the
ideas developed in [35] Our system will allow to deal correctly with all kind of
exceptions that cross the systems level boundaries. Agent will on the one hand
be able to define handlers to trap those (ascending) exceptions raised by the
replication system that impact the agent level. For those orders that the agent

level want to transmit to the replication level, they can perhaps be delivered
by direct message sending to the agents that implement the replication system.
Should these orders be transmitted via the signaling of a (descending) exception,
our system will, for any exception not handled within an agent, give the control
to a handler associated to the agent replication manager that will be able to
take the control and react appropriately.

3.4 Signaling and Handling Application-Level Exceptions

This section gives a first specification of how SaGE should be modified so that
exception signaling and handling remain transparent for DARX programmers.
We will consider the case of passive replication strategy and the case of active
replication strategy with the hypothesis that all active replicas of an agent share
the same environment. Other cases will be considered later on.
Let us consider at this point two different cases : the replication strategy is
either passive or active.

Passive Replication Strategy In this case, a replicated agent has one active
replica (the leader) and several passive ones. An exception can only be signaled
by the leader of the replication group. In this situation the first elligible SaGE
handlers are in this order : the ones potentially defined by the programmer at
the service (method) and at the agent level. Such an handler can either

— (case a) : modify the agent state and return a value

— (case b) : modify the agent state and ask for a retry of the execution of
the code to which the handler is associated (either a message sending or a
service) ,

— (case c) : resignal the same exception or signal a new one.

Cases a and b are transparent for DARX since the exception will have been
handle internally by the agent.

Case ¢ means that an exception will be signaled in response to a request to
the agent. It is necessary to give the control to the replication manager. For this
purpose, we will automatically associate a system handler to each replication
manager that will be intertwined between the agent and the caller one. This
handler will be systematically invoked and will have to deal with the following
choice.

— If this exception is considered as a system-failure, this should have the same
consequences for the replication system than a standard failure of the leader.
The replication system should then probably re-evaluate the survivability of
the agent to decide what should be done with the leader (reset its state, stop
its execution, etc.).

— If the exception is considered as an answer and not a failure, the signaling
process has to be pursued following the signaling strategy defined in section
2.3, i.e. a handler will be searched at the caller lever. As we are in a termina-
tion model, the execution context of the faulty service should be destroyed

and, from the point of view of the replication system, all replicas should
be updated subsequently. For example if the execution of the faulty service
has modified the agent state before signaling the exception, either the last
correct state should be restored (roll-back), or the state of passive replicas
should be updated.

Knowing whether the exception is failure or a result is certainly agent and
application dependent and we have to imagine a way for the programmer to
specify this for each exception that can be signaled by the agent.

Active replication Strategy. The active replication strategy is mode complex
since there can be several replicas active at the same time. We then propose to
associate, in addition to the previously described handler, a concertation function
to the replication manager.

If one replica signals an exception that has not been handled by the user-
defined handlers at the service or agent level, the concertation function has to
be invoked. It has to determine whether the exception is meaningful or not. If it
is, this should entail the invocation of the handler associated to the replication
manager described in the previous (see section 3.4) section. If it is not, it means
that it is advisable to wait to see :

— whether all replicas will signal the same exception (case b),
— or whether another replica will compute a standard result (case c).

Case b will be a confirmation that the agent is unable to perform the current
request. The replication manager handler should be invoked an in section 3.4.
Case ¢ will have to be handled by the replication system in the same way as it
handles the case of having different answers delivered by different replicas. This
case clearly requires a deeper analysis that will constitute the starting point of
the continuation of this work.

4 Conclusion and Future Work

In this report, we have first proposed a specification of an exception handling
system dedicated to agents. We have especially focused on request / response in-
teractions between agents. Our system aims at combining simplicity, usability
at the language level by standard programmers, integration and adaptation of
known key-solutions for sequential and concurrent exception handling and full
integration of active agents. Our solution conforms to all the key requirements
identified in Sect. 1: encapsulation and reactivity enforcement, ability to write
context-dependent handlers, ability to coordinate and control group of active
agents collaborating to a common task, ability to configure the exception prop-
agation policy by defining exception resolution functions, ability to immediately
handle exceptions that are critical or to only log under-critical ones until their
conjunction enables a diagnosis to be established. We propose dynamic scope
handlers associated to requests, services and agents. Resolution functions can

be defined at the service level, which is the place where collaborative tasks can
be coordinated. They come together with a signaling primitive, a handler search
algorithm and a handler invocation mechanism that take into account the execu-
tion history and, when possible, work asynchronously to improve agent reactivity.
So this model is especially suited for applications that need few synchronization
and a high level of concurrency and reactivity.

Then, we have provided specification elements to the integration of this ex-
ception handling system into a replicated agent platform. In future work, these
specification elements still have to be refined and extended. For example, the
interactions between the replication mechanism and the exception handling sys-
tem have to be further analyzed to manage system-level exceptions. Further on,
these specifications must also lead to a prototype implementation of the proposed
exception handling system.

This could lead to enhance DiMAX capabilities using the exception handling
system as a “last chance” mechanism to signal failures when the DARX replication
system has failed. This could be used in two distinct situations:

— to signal that the last remaining replica of an agent died (failed) in order to
allow to trigger less performant modes the programmer migth have coded at
the agent level,

— to signal the death (failure) of an agent that was not considered to be critical.
This would allow to provide a recover strategy if the estimation of criticality
was wrong.

This would imply that the DARX component dedicated to failure detection also
detect those specific situations and raise an exception.

This could also lead to enhance SaGE capabilities using the meta-information
on agents computed by the DiMaX platform. For example, an agent’s computed
criticality could be used to tune concertation strategies. We could also propose
a vulnerability measure that would use information on:

— reliabilty of an agent (and its replica), using an exception history,
— criticality of an agent,
— number of existing replicas.

References

1. Romanovsky, A.B., Kienzle, J.: Action-oriented exception handling in cooperative
and competitive concurrent object-oriented systems. In: Advances in Exception
Handling Techniques. (2000) 147-164

2. Theriault, D.: A primer for the Act-1 language. Technical Report Al Memo 672,
MIT Artificial Intelligence Laboratory (1982)

3. Halstead, R., Loaiza, J.: Exception handling in multilisp. In: 1985 Int’l. Conf. on
Parallel Processing. (1985) 822-830

4. Campbell, R., Randell, B.: Error recovery in asynchronous systems. IEEE Trans-
actions on Software Engineering (SE) SE-12 number 8(8) (1986) 811-826

5. Gértner, F.C.: Fundamentals of fault tolerant distributed computing in asyn-
chronous environments. ACMCS 31(1) (1999) 1-26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Keen, A.W., Olsson, R.A.: Exception handling during asynchronous method invo-
cation. In Monien, B., Feldmann, R., eds.: Proceedings of Euro-Par 2002 Parallel
Processing. Lecture Notes in Computer Science. Springer-Verlag (2002) 656-660
Van Roy, P.: On the separation of concerns in distributed programming: Applica-
tion to distribution structure and fault tolerance in Mozart. In: Fourth Interna-
tional Workshop on Parallel and Distributed Computing for Symbolic and Irregu-
lar Applications (PDSIA 99), Tohoku University, Sendai, Japan, World Scientific
(1999)

Campéas, A., Dony, C., Urtado, C., Vauttier, S.: Distributed exception handling
: ideas, lessons and issues with recent exception handling systems. In: Proceed-
ings of RISE’04 : First International Workshop on Rapid Integration of Software
Engineering techniques, Luxembourg (2004) 82-92

Carlsson, R., Gustavsson, B., Nyblom, P.: Erlang: Exception handling revisited.
In: Proceedings of the Third ACM SIGPLAN Erlang Workshop. (2004)

Tliasov, A., Romanovsky, A.: Exception handling in coordination-based mobile
environments. In: Proceedings of 29th IEEE International Computer Software and
Applications Conference (COMPSAC 2005), 25-28 July, Edinburgh, Scotland, UK.
(2005) 341-350

Azmeh, Z., Dony, C., Tibermacine, C., Urtado, C., Vauttier, S.: Exception handling
in a replicated agent environment. Technical report, ANR-FACOMA-06-SETIN-
005-01 - T12 Report - LIRMM Montpellier (2008)

Klein, M., Dellarocas, C.: Exception handling in agent systems. In Etzioni, O.,
Miiller, J.P., Bradshaw, J.M., eds.: Proceedings of the Third Annual Conference
on Autonomous Agents (AGENTS-99), New York, ACM Press (1999) 62-68
Klein, M., Dellarocas, C.: Towards a systematic repository of knowledge about
managing multi-agent system exceptions, ases working paper ases-wp-2000-01
(2000)

Tripathi, A., Miller, R.: Exception handling in agent oriented systems. In: Advances
in Exception Handling Techniques. LNCS (Lecture Notes in Computer Science)
2022. Springer-Verlag (2001) 128-146

Miller, R., Tripathi, A.: The guardian model and primitives for exception handling
in distributed systems. IEEE Trans. Software Eng. 30(12) (2004) 1008-1022
Randell, B., Romanovsky, A., Rubira-Calsavara, C., Stroud, R., Wu, Z., Xu, J.:
From recovery blocks to concurrent atomic actions. In: Predictably Dependable
Computing Systems. ESPRIT Basic Research Series (1995) 87-101

Dony, C.: An object-oriented exception handling system for an object-oriented
language. In: Proceedings of ECOOP’88. (1988) 146-161

Dony, C.: Exception handling and object-oriented programming : towards a syn-
thesis. ACM SIGPLAN Notices 25(10) (1990) 322-330 OOPSLA ECOOP ’90
Proceedings, N. Meyrowitz (editor).

Issarny, V.. An exception handling model for parallel programming and its ver-
ification. In: Proceedings of the ACM SIGSOFT’91 Conference on Software for
Critical Systems, New Orleans, Louisianna, USA (1991) 92-100

Issarny, V.: An exception handling mechanism for parallel object-oriented program-
ming: Towards the design of reusable, and robust distributed software. Journal of
Object-Oriented Programming 6(6) (1993) 29-39

FIPA: Foundation For Intelligent Physical Agents : Request Interaction Protocol
Specification. (2002)

Souchon, F.; Dony, C., Urtado, C., Vauttier, S.: Improving exception handling
in multi-agent systems. In de Lucena, C.J.P., Garcia, A.F., Romanovsky, A.B.,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Castro, J., Alencar, P.S.C., eds.: Software engineering for multi-agent systems II,
Research issues and practical applications. Volume 2940 of Lecture Notes in Com-
puter Science. Springer (2004) 167-188

Souchon, F., Urtado, C., Vauttier, S., Dony, C.: Exception handling in component-
based systems : a first study. In Romanovsky, A., Dony, C., Knudsen, J., Tripathi,
A, eds.: Technical Report TR 03-028. Proceedings of the Exception Handling in
Object-Oriented Systems workshop at ECOOP 2003. Department of computer
science, University of Minnesota, Minneapolis, Darmstadt, Germany (2003) 84-91
Miller, R., Tripathi, A.R.: Issues with exception handling in object-oriented sys-
tems. In: Proceedings of ECOOP’97. (1997) 85-103

Dellarocas, C.: Toward exception handling infrastructures for component-based
software. In: Proceedings of the International Workshop on Component-based Soft-
ware Engineering, 20th International Conference on Software Engineering (ICSE),
Kyoto, Japan, April 25-26, 1998. (1998)

Levin, R.: Program structures for exceptinal condition handling. Phd dissertation,
Dept. Comput. Sci., Carnegie-Mellon University Pittsburg (1977)

Knudsen, J.L.: Fault tolerance and exception handling in beta. In: Advances in
Exception Handling Techniques. LNCS (Lecture Notes in Computer Science) 2022,
Springer-Verlag (2001)

Burns, A., Randell, B., Romanovsky, A.,; Stroud, R., Wellings, A., Xu, J.: Temporal
constraints and exception handling in object-oriented distributed systems. Design
for Validation (DeVa) - Third Year Report, Esprit LTR Project 20072 - DeVa
(1998)

Tartanoglu, F., Issarny, V., Levy, N., Romanovsky, A.: Dependability in the web
service architecture (2002)

Lacourte, S.: Exceptions in Guide, an object-oriented language for distributed
applications. In Springer-Verlag, ed.: Proceedings of ECOOP 91. Number 5-90 in
LNCS, Grenoble (France) (1990) 268-287

K.Pitman: Error/condition handling. Technical report, Contribution to WG16. Re-
vision 18.Propositions for ISO-LISP. AFNOR, ISO/IEC JTC1/SC 22/WG 16N15
(April 1988)

Goodenough, J.B.: Exception handling: Issues and a proposed notation. Commun.
ACM 18(12) (1975) 683-696

Meyer, B.: Disciplined exceptions. Technical report tr-ei-22/ex, Interactive Soft-
ware Engineering, Goleta, CA (1988)

Issarny, V.: Concurrent exception handling. In: Advances in Exception Handling
Techniques. LNCS (Lecture Notes in Computer Science) 2022. Springer-Verlag
(2001) 111-127

Marin, O., Guessoum, Z., Briot, J.P., Perrot, J.F.: Specification of a two-layer
exception handling system. Technical report, INO CARE III "Towards Fault-
Tolerant Cooperative Air Traffic Management" - Project Research Report - LIP6
(2007)

