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Coloring for Shared Object-Oriented Libraries

Coloring is an implementation technique for multiple inheritance which is as efficient as single inheritance but only works in a global compilation or global linking framework. In this short paper we propose a variation on coloring that makes it compatible with shared libraries. Our proposal is usable for method invocation, attribute access, and subtype check, and respects five functional and efficiency requirements: constant time, quadratic space, short code, compatible with multiple inheritance, and incremental. We validate our proposal with theoretical evaluations, simulations and real executions which all show that the overhead for shared libraries remains small.

Introduction

Coloring is an implementation technique with tables that avoids the overhead of multiple inheritance but requires knowledge of the whole class hierarchy [START_REF] Lippman | Inside the C++ Object Model[END_REF][START_REF] Ducournau | Implementing statically typed object-oriented programming languages[END_REF]. It can be applied to efficiently implement three main object-oriented mechanisms: method invocation, attribute access, and subtype check [START_REF] Ducournau | Implementing statically typed object-oriented programming languages[END_REF][START_REF] Dixon | A fast method dispatcher for compiled languages with multiple inheritance[END_REF][START_REF] Pugh | Two-directional record layout for multiple inheritance[END_REF][START_REF] Cohen | Type-extension type tests can be performed in constant time[END_REF][START_REF] Vitek | Efficient type inclusion tests[END_REF][START_REF] Ducournau | Coloring, a versatile technique for implementing object-oriented languages[END_REF]. Coloring fulfills four functional and efficiency requirements: constant time, quadratic space in the size of the program, short code, and compatible with multiple inheritance. However, coloring is not an incremental technique since: (i) a global computation requiring knowledge of the whole hierarchy is needed before generating any code; (ii) generated code is specific to a program and cannot be shared with other programs.

In this paper we propose a variation on coloring that makes it compatible with dynamically linked shared libraries where classes can be compiled separately then shared by different programs (shared on disk and in memory). Our variation of coloring has an overhead, but we show by theoretical and experimental evaluations that this overhead is reduced by modern processor pipelines and efficient caching mechanisms.

In the following, Section 1 summarizes the coloring technique; Section 2 presents our proposal; Section 3 experimentally compares the two techniques; and Section 4 discusses related works on variations of coloring.

A Global Implementation Technique: Coloring

The underlying idea of coloring is to implement the three main object-oriented mechanisms by retrieving information stored in a table attached to objects (the
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The key point of this technique is to ensure that the positions in class tables are invariant by inheritance. The knowledge of the whole class hierarchy of a program is needed by coloring algorithms to compute position values that respect this invariance requirement. Therefore, coloring is an intrinsically global technique since all positions must be known before running the program and they must be computed at compile or link time. Therefore, coloring is not compatible with dynamic loading, nor even with shared libraries.

Figure 1 shows the implementation of the three mechanisms. The language used in an abstract assembly language borrowed from [START_REF] Driesen | Minimizing row displacement dispatch tables[END_REF][START_REF] Driesen | Message dispatch on pipelined processors[END_REF][START_REF] Driesen | Efficient Polymorphic Calls[END_REF]. Names prefixed with #, like #tableOffset, stand for constant immediate values; other names stand for registers. The cycle count of each implementation is given as a function of L and B. L is the latency for memory loads; a typical value is 3 cycles. B is the latency for indirect branching; a typical value is 10 cycles. We do not consider cache misses in this theoretical evaluation (a typical cache miss costs 100 cycles or even more) but they will appears in our experimental evaluation in Section 3.

Method invocation is straightforward: each introduction of a method m is associated with a position value methPos m . Each class that has the method m (or a redefinition m ′ ) has the address of m (or the address of m ′ ) in its table at methPos m .

Attribute access is a bit tricky. Coloring could be used to compute the positions of attributes in the instance itself, thus attribute access could be something like: load [self + #attrPosa] → value. The drawback of this approach is that since coloring may generate holes in tables, there is a risk that the size of the instances will inflate. That could be problematic with a thousand instances or more. [START_REF] Ducournau | Implementing statically typed object-oriented programming languages[END_REF] has experimented coloring on real programs and showed that in the worst case the instance size of some classes can inflate up to 800%. A solution to avoid this inflation problem is to use an indirection and store the real position of attributes in the class table. This technique is called accessor simulation in [START_REF] Ducournau | Implementing statically typed object-oriented programming languages[END_REF] and field dispatching in [START_REF] Zibin | Two-dimensional bi-directional object layout[END_REF]. Since all attributes introduced in a same class can be grouped together in the instance, only the position of the group needs to be stored in the class and the position of an attribute in the group is used to access this exact attribute. For each class, the location of each group of attributes (for the class and for inherited classes) in the instance is determined (it is the instance layout). Note that two proper instances of the same class have the same layout and two proper instances of directly related classes can have two different layouts. To summarize attribute access: each class c that introduces attributes is associated with a position value #baseAttrPos c ; for an attribute a introduced in a class c, #attrOffseta is the position of a in the group of attributes introduced in c; in each class table, the location of the group of attributes introduced in a superclass c is stored at #baseAttrPos c .

Subtype check uses the technique presented in [START_REF] Vitek | Efficient type inclusion tests[END_REF]. It's an adaptation of the Cohen's technique [START_REF] Cohen | Type-extension type tests can be performed in constant time[END_REF]. Each class c is associated with an unique identifier classId c and a position value classPos c . Each class that is a subclass of c (or that is c) has in its table at classPos c the value classId c . This technique is free of false positive iff two easy requirements are respected:

there are no conflicting values among class identifiers and anything else we can find in the class table; -class tables are large enough (or classPos small enough) to ensure that no classPos value can go beyond the limit of any class table.

Our Proposal

Our proposal is to not hard-code immediate values in the generated code but to get them, instead, using a supplementary indirection such that:

the generated code is unrelated to any global knowledge: the generated code can be used, loaded or shared by any program; -values and tables are specifically computed for each program: initial computation can be done at link time or at load time.

With an indirection, the three object-oriented mechanisms can be implemented as:

targetPos = localTable[targetPosPos] target = self->ctable[targetPos]
Method Invocation Send to self a message corresponding to the method m introduced in the class c. Figure 2 shows the implementation of the three object-oriented mechanisms using our proposal. The theoretical evaluation of time efficiency is based on an abstract processor specification (mostly the same as processor P95 in [START_REF] Driesen | Efficient Polymorphic Calls[END_REF]): (i) the maximum number of running instruction per cycle is 2; (ii) 2 load instructions cannot be executed in strict parallel but need one cycle delay. To explicit the parallel execution of instructions, a possible schedule diagram is drawn on the figure. Note that the implementations in Figure 1 are not parallelizable.

Figure 3 summarizes the theoretical space and time cost of the original coloring technique (presented in Section 1) and our proposal (presented in the present section). The space cost of our proposal is due to: (i) longer code size for the implementation of object-oriented mechanisms, and (ii) local tables. The code size of our proposal is 2 or 3 assembly instructions longer than the original approach. Even if it is a small value, it means an increase between 50% and 75%. Note that this increase only affects the code segment of the process. The size of the local tables is linear since the maximal size is 3c + m where c is the number of classes and m the number of methods introduced. The total size of tables (including local tables and class tables) is still quadratic, thus, it fulfills our second functional and efficiency requirement.

Even if implementations are longer, the time cost of each mechanism is still constant, thus, it fulfills our first functional and efficiency requirement. Thanks to parallelism, the time cost of the supplementary indirection is strongly reduced for the three mechanisms as the time cost difference is only two cycles.

Experimental Evaluation

Experimentation Framework

We used the PRM framework [START_REF] Privat | De l'expressivité à l'efficacité, une approche modulaire des langages à objets -Le langage PRM et le compilateur prmc[END_REF][START_REF] Privat | PRM-the language[END_REF] to evaluate the time difference between the implementation using the original coloring and the one using our proposal. PRM is an object-oriented language that has features that will stress our proposal :

fully object-oriented: each value is an object, each subroutine call is a potential polymorphic method invocation, each state access is an attribute access; -multiple inheritance of classes: each method or attribute is subject to multiple inheritance; unsafe covariant typing policy: many subtype checks must be inserted by the compiler to ensure the dynamic correctness of the programs.

The test program is the PRM compiler itself, written in PRM, that has 41 739 LOC, 382 classes, 2 590 methods and 1 905 attributes. The test machine is an Intel Core2 Duo T7500 2.20GHz. Only one core was used during experiments. We compiled the PRM compiler with two flavors: one with the original coloring, one with our proposal. For each flavor, each module of the compiler is compiled separately: C code is generated then transformed to binary with gcc (version 4.2.3 with -O2). In one flavor, C contains static immediate values; in the other flavor, C contains access to local tables (declared as extern). Remark: separate compilation units in PRM are not classes but modules, thus there is a single local table per module instead of a local table per class. A last C file is generated and transformed to binary. In one flavor, it contains the definitions of the class tables, in the other flavor, it also contains the definitions of the local tables. Binary files are then linked accordingly to produce two final executables.

Figure 4 shows the static size of the final executable for both flavors. The small difference is due to the additional class table definition and the extended implementation size of the three object-oriented mechanisms.

Cache Simulation

We investigated the cache usage of the PRM compiler when it is compiled using the original coloring and our proposal. We used Cachegrind, a tool from the Valgrind tool suite [START_REF] Nethercote | Valgrind: a framework for heavyweight dynamic binary instrumentation[END_REF], that simulates the processor to track cache misses.

Figure 5 shows that even if each method invocation, each attribute access, and each subtype check requires a supplementary indirection, the processor caches handle this cost efficiently. Remark: the simulation is deterministic and does not track cache misses related to other threads or kernel activities. 

Real Run

The last experiment is a run of the compiler in a real environment. We measured the user time given by the time command. 20 consecutive runs were done, the two worst were removed. Figure 6 summarizes the results we obtained. The average overhead is under +4%. That is a very good result. For comparison, on the same benchmark, the difference between attribute coloring and accessor simulation is near +20%.

Related Work

In [START_REF] Privat | Link-time static analysis for efficient separate compilation of object-oriented languages[END_REF], we adapted the coloring technique to a separate compilation framework.

The idea was to substitute symbols with computed values in the binary file of separately compiled modules. We got the exact same efficiency than coloring and we also included other techniques like direct static call and binary tree dispatch. However, our proposal was only compatible with global linking and unusable with shared libraries. In [START_REF] Ducournau | Coloring, a versatile technique for implementing object-oriented languages[END_REF][START_REF] Ducournau | Perfect hashing as an almost perfect subtype test[END_REF], Ducournau proposes perfect hashing for subtype checks. This is a generalization of the coloring technique that is compatible with dynamic loading. Perfect hashing offers a trade-off between space and time efficiency (compact class table and slow implementation or large table full of holes and fast implementation).

Conclusion

We presented in this article a variation of the coloring implementation technique for the three main object-oriented mechanisms: method invocation, attribute access, and subtype check. Our proposal adds the compatibly with shared libraries while retaining time and space efficient and compatibility with multiple inheritance of the original coloring technique.

We evaluated the overhead of our proposal by comparing it with the original coloring: (i) theoretically on an abstract processor specification, (ii) experimentally with a simulation of cache misses, and (iii) experimentally with real executions of a large program. Results show that the overhead of our proposal is lower than we initially expected, thus it is a usable technique for shared library linked at link time or at load time.

Our proposal may also be usable within a virtual machine with strong requirements on dynamic loading. However, two issues remain to investigate to better accommodate dynamic loading: (i) the efficient incremental recomputation of local tables and class tables, and (ii) the management of existing instances. For (ii), attributes do not need anything specific thanks to the accessor simulation but the class table pointer may need to be updated. We see here two options: either use another indirection to access the class table (causing an overhead, even when dynamic loading is not used), or walk trough all instances and update their class table reference (it should be easy to implement if the execution engine already has a precise garbage collector).

  baseAddress 4 load [baseAddress + #attrOffseta] → value For write access, change the last line with: 4 store value → [baseAddress + #attrOffseta]

  Fig. 2. Main Object-Oriented Mechanisms Implemented with our ProposalOur expectation is to rely on modern processor capabilities with pipelines and efficient caching mechanisms so that the supplementary cost is mainly avoided.There is a local table localTablec for each class c and it is used to implement the object-oriented mechanisms introduced by class c. The structure of a local table (its length and the role of each specific position in the table) is determined when separately compiling the class. However, the content of local tables is specific to each program and is computed at link time or at load lime. During the separate compilation of any subclass or client of a class c, the compilation of object-oriented mechanisms introduced by class c requires the structure of the local table of c to be statically known. The structure of a local table localTablec is the following: (i) two positions (#classPosPosc and #classIdPosc) in the local table are reserved to store the classPosc and classIdc values; (ii) if c introduces attributes, a position (#baseAttrPosPosc) in the local table is reserved to store the baseAttrPosc value; (iii) for each method m introduced in c (redefinitions are ignored), a position (#methPosPosm) in the local table is reserved to store the methPosm value. At global time (link time or load time), a coloring is computed, global values (methPos, baseAttrPos, classPos and classId) are stored in these tables, and class tables are built.
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