
HAL Id: lirmm-00293676
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293676

Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coloring for Shared Object-Oriented Libraries
Jean Privat, Floréal Morandat

To cite this version:
Jean Privat, Floréal Morandat. Coloring for Shared Object-Oriented Libraries. ICOOOLPS: Im-
plementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems, Jul
2008, Nancy, France. �lirmm-00293676�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293676
https://hal.archives-ouvertes.fr


Coloring for Shared Object-Oriented Libraries

Jean Privat1 and Floréal Morandat2

1 Département d’informatique, UQAM, Montreal, Canada — privat.jean@uqam.ca
2 LIRMM, CNRS, Université de Montpellier II, France — morandat@lirmm.fr

Abstract. Coloring is an implementation technique for multiple inheri-
tance which is as efficient as single inheritance but only works in a global
compilation or global linking framework. In this short paper we propose a
variation on coloring that makes it compatible with shared libraries. Our
proposal is usable for method invocation, attribute access, and subtype

check, and respects five functional and efficiency requirements: constant
time, quadratic space, short code, compatible with multiple inheritance,
and incremental. We validate our proposal with theoretical evaluations,
simulations and real executions which all show that the overhead for
shared libraries remains small.

Introduction

Coloring is an implementation technique with tables that avoids the overhead of
multiple inheritance but requires knowledge of the whole class hierarchy [1, 2]. It
can be applied to efficiently implement three main object-oriented mechanisms:
method invocation, attribute access, and subtype check [2–7]. Coloring fulfills
four functional and efficiency requirements: constant time, quadratic space in
the size of the program, short code, and compatible with multiple inheritance.
However, coloring is not an incremental technique since: (i) a global computation
requiring knowledge of the whole hierarchy is needed before generating any code;
(ii) generated code is specific to a program and cannot be shared with other
programs.

In this paper we propose a variation on coloring that makes it compatible
with dynamically linked shared libraries where classes can be compiled sepa-
rately then shared by different programs (shared on disk and in memory). Our
variation of coloring has an overhead, but we show by theoretical and experi-
mental evaluations that this overhead is reduced by modern processor pipelines
and efficient caching mechanisms.

In the following, Section 1 summarizes the coloring technique; Section 2
presents our proposal; Section 3 experimentally compares the two techniques;
and Section 4 discusses related works on variations of coloring.

1 A Global Implementation Technique: Coloring

The underlying idea of coloring is to implement the three main object-oriented
mechanisms by retrieving information stored in a table attached to objects (the



Method invocation

Send to self a message corresponding to the introducing method m.

1 load [self + #ctableOffset] → ctable B + 2L

2 load [ctable + #methodPosm] → method

3 call method

Attribute access

self accesses the attribute a introduced in the class c.

1 load [self + #ctableOffset] → ctable 3L + 1
2 load [ctable + #baseAttrPosc] → baseOffset

3 add self + baseOffset → baseAddress

4 load [baseAddress + #attrOffseta] → value

For write access, change the last line with:
4 store value → [baseAddress + #attrOffseta]

Subtype check

Is self an instance of the class c?

1 load [self + #ctableOffset] → ctable 2L + 2
2 load [ctable + #classPosc] → class

3 comp class, #classIdc

4 bne #checkFailed

Fig. 1. Main Object-Oriented Mechanisms Implemented With the Original Coloring

class table): target = self->ctable[targetPosition]. The key point of this tech-
nique is to ensure that the positions in class tables are invariant by inheritance.
The knowledge of the whole class hierarchy of a program is needed by coloring
algorithms to compute position values that respect this invariance requirement.
Therefore, coloring is an intrinsically global technique since all positions must
be known before running the program and they must be computed at compile or
link time. Therefore, coloring is not compatible with dynamic loading, nor even
with shared libraries.

Figure 1 shows the implementation of the three mechanisms. The language
used in an abstract assembly language borrowed from [9–11]. Names prefixed
with #, like #tableOffset, stand for constant immediate values; other names
stand for registers. The cycle count of each implementation is given as a function
of L and B. L is the latency for memory loads; a typical value is 3 cycles. B is the
latency for indirect branching; a typical value is 10 cycles. We do not consider
cache misses in this theoretical evaluation (a typical cache miss costs 100 cycles
or even more) but they will appears in our experimental evaluation in Section 3.

Method invocation is straightforward: each introduction of a method m is
associated with a position value methPosm. Each class that has the method m

(or a redefinition m
′) has the address of m (or the address of m

′) in its table at
methPosm.



Attribute access is a bit tricky. Coloring could be used to compute the posi-
tions of attributes in the instance itself, thus attribute access could be something
like: load [self + #attrPosa] → value. The drawback of this approach is that
since coloring may generate holes in tables, there is a risk that the size of the
instances will inflate. That could be problematic with a thousand instances or
more. [2] has experimented coloring on real programs and showed that in the
worst case the instance size of some classes can inflate up to 800%. A solution to
avoid this inflation problem is to use an indirection and store the real position of
attributes in the class table. This technique is called accessor simulation in [2]
and field dispatching in [12]. Since all attributes introduced in a same class can
be grouped together in the instance, only the position of the group needs to be
stored in the class and the position of an attribute in the group is used to access
this exact attribute. For each class, the location of each group of attributes (for
the class and for inherited classes) in the instance is determined (it is the in-
stance layout). Note that two proper instances of the same class have the same
layout and two proper instances of directly related classes can have two different
layouts. To summarize attribute access: each class c that introduces attributes is
associated with a position value #baseAttrPosc; for an attribute a introduced in
a class c, #attrOffseta is the position of a in the group of attributes introduced
in c; in each class table, the location of the group of attributes introduced in a
superclass c is stored at #baseAttrPosc.

Subtype check uses the technique presented in [6]. It’s an adaptation of
the Cohen’s technique [5]. Each class c is associated with an unique identifier
classIdc and a position value classPosc. Each class that is a subclass of c (or
that is c) has in its table at classPosc the value classIdc. This technique is free
of false positive iff two easy requirements are respected:

– there are no conflicting values among class identifiers and anything else we
can find in the class table;

– class tables are large enough (or classPos small enough) to ensure that no
classPos value can go beyond the limit of any class table.

2 Our Proposal

Our proposal is to not hard-code immediate values in the generated code but to
get them, instead, using a supplementary indirection such that:

– the generated code is unrelated to any global knowledge: the generated code
can be used, loaded or shared by any program;

– values and tables are specifically computed for each program: initial compu-
tation can be done at link time or at load time.

With an indirection, the three object-oriented mechanisms can be implemented
as:

targetPos = localTable[targetPosPos]

target = self->ctable[targetPos]



Method Invocation

Send to self a message corresponding to the method m introduced in the class c.

1 load [self + #ctableOffset] → ctable

2 load [localTablec + #methPosPosm] → methPos

3 add ctable + methPos → methAddress

4 load [methAddress] → method

5 call method

1

3
4
5

2
B + 2L + 2

Attribute Access

self accesses the attribute a introduced in the class c.

1 load [self + #ctableOffset] → ctable

2 load [localTablec + #baseAttrPosPosc] → basePos

3 add ctable + basePos → baseOffsetAddress

4 load [baseOffsetAddress] → baseOffset

5 add self + baseOffset → baseAddress

6 load [baseAddress + #attrOffseta] → value

1

3
4
5
6

2
3L + 3

For write access, change the last line with:
6 store value → [baseAddress + #attrOffseta]

Subtype Check

Is self an instance of the class c?

1 load [self + #ctableOffset] → ctable

2 load [localTablec + #classPosPosc] → classPos

3 load [localTablec + #classIdPosc] → classId

4 add ctable + classPos → classAddress

5 load [classAddress] → class

6 comp class, classId

7 bne #checkFailed

1

3

6
7

2
4

5

2L + 4

Fig. 2. Main Object-Oriented Mechanisms Implemented with our Proposal

Our expectation is to rely on modern processor capabilities with pipelines and
efficient caching mechanisms so that the supplementary cost is mainly avoided.

There is a local table localTablec for each class c and it is used to implement
the object-oriented mechanisms introduced by class c. The structure of a local
table (its length and the role of each specific position in the table) is determined
when separately compiling the class. However, the content of local tables is
specific to each program and is computed at link time or at load lime. During
the separate compilation of any subclass or client of a class c, the compilation of
object-oriented mechanisms introduced by class c requires the structure of the
local table of c to be statically known.

The structure of a local table localTablec is the following: (i) two posi-
tions (#classPosPosc and #classIdPosc) in the local table are reserved to store
the classPosc and classIdc values; (ii) if c introduces attributes, a position
(#baseAttrPosPosc) in the local table is reserved to store the baseAttrPosc value;
(iii) for each method m introduced in c (redefinitions are ignored), a position
(#methPosPosm) in the local table is reserved to store the methPosm value.



Method invocation Attribute access Subtype check
space time space time space time

Original coloring 3 B + 2L 4 3L + 1 4 2L + 2
Our proposal 5 B + 2L + 2 6 3L + 3 7 2L + 4
Difference +2 +2 +2 +2 +3 +2

Fig. 3. Theoretical Space and Time Cost.

At global time (link time or load time), a coloring is computed, global values
(methPos, baseAttrPos, classPos and classId) are stored in these tables, and
class tables are built.

Figure 2 shows the implementation of the three object-oriented mechanisms
using our proposal. The theoretical evaluation of time efficiency is based on an
abstract processor specification (mostly the same as processor P95 in [11]): (i) the
maximum number of running instruction per cycle is 2; (ii) 2 load instructions
cannot be executed in strict parallel but need one cycle delay. To explicit the
parallel execution of instructions, a possible schedule diagram is drawn on the
figure. Note that the implementations in Figure 1 are not parallelizable.

Figure 3 summarizes the theoretical space and time cost of the original color-
ing technique (presented in Section 1) and our proposal (presented in the present
section). The space cost of our proposal is due to: (i) longer code size for the
implementation of object-oriented mechanisms, and (ii) local tables. The code
size of our proposal is 2 or 3 assembly instructions longer than the original ap-
proach. Even if it is a small value, it means an increase between 50% and 75%.
Note that this increase only affects the code segment of the process. The size of
the local tables is linear since the maximal size is 3c + m where c is the number
of classes and m the number of methods introduced. The total size of tables (in-
cluding local tables and class tables) is still quadratic, thus, it fulfills our second
functional and efficiency requirement.

Even if implementations are longer, the time cost of each mechanism is still
constant, thus, it fulfills our first functional and efficiency requirement. Thanks
to parallelism, the time cost of the supplementary indirection is strongly reduced
for the three mechanisms as the time cost difference is only two cycles.

3 Experimental Evaluation

3.1 Experimentation Framework

We used the PRM framework [13, 14] to evaluate the time difference between the
implementation using the original coloring and the one using our proposal. PRM
is an object-oriented language that has features that will stress our proposal :

– fully object-oriented: each value is an object, each subroutine call is a poten-
tial polymorphic method invocation, each state access is an attribute access;

– multiple inheritance of classes: each method or attribute is subject to mul-
tiple inheritance;



Stripped binary size (ko)

Original coloring 1 840
Our proposal 1 852
Difference +0.65%

Fig. 4. Space Results.

Instruction Data
Refs L1 miss L2 miss Refs L1 miss L2 miss

Original coloring 1 320 766 708 1 193 308 18 999 787 697 131 2 611 717 798 213
Our proposal 1 386 050 419 1 120 329 19 560 879 254 251 2 880 118 815 082
Difference +4.94% +6.11% +2.95% +11.62% +10.27% +2.11%

Fig. 5. Cache Simulation Results.

– unsafe covariant typing policy: many subtype checks must be inserted by the
compiler to ensure the dynamic correctness of the programs.

The test program is the PRM compiler itself, written in PRM, that has 41 739
LOC, 382 classes, 2 590 methods and 1 905 attributes. The test machine is an
Intel Core2 Duo T7500 2.20GHz. Only one core was used during experiments.

We compiled the PRM compiler with two flavors: one with the original col-
oring, one with our proposal. For each flavor, each module of the compiler is
compiled separately: C code is generated then transformed to binary with gcc
(version 4.2.3 with -O2). In one flavor, C contains static immediate values; in
the other flavor, C contains access to local tables (declared as extern). Remark:
separate compilation units in PRM are not classes but modules, thus there is a
single local table per module instead of a local table per class. A last C file is
generated and transformed to binary. In one flavor, it contains the definitions of
the class tables, in the other flavor, it also contains the definitions of the local
tables. Binary files are then linked accordingly to produce two final executables.

Figure 4 shows the static size of the final executable for both flavors. The
small difference is due to the additional class table definition and the extended
implementation size of the three object-oriented mechanisms.

3.2 Cache Simulation

We investigated the cache usage of the PRM compiler when it is compiled using
the original coloring and our proposal. We used Cachegrind, a tool from the
Valgrind tool suite [15], that simulates the processor to track cache misses.

Figure 5 shows that even if each method invocation, each attribute access, and
each subtype check requires a supplementary indirection, the processor caches
handle this cost efficiently. Remark: the simulation is deterministic and does not
track cache misses related to other threads or kernel activities.



minimal average maximal

Original coloring 5.88 6.05 6.38
Our proposal 6.10 6.26 6.46
Difference +3.74% +3.47% +1.25%

Fig. 6. Time Results.

3.3 Real Run

The last experiment is a run of the compiler in a real environment. We measured
the user time given by the time command. 20 consecutive runs were done, the two
worst were removed. Figure 6 summarizes the results we obtained. The average
overhead is under +4%. That is a very good result. For comparison, on the same
benchmark, the difference between attribute coloring and accessor simulation is
near +20%.

4 Related Work

In [16], we adapted the coloring technique to a separate compilation framework.
The idea was to substitute symbols with computed values in the binary file of
separately compiled modules. We got the exact same efficiency than coloring and
we also included other techniques like direct static call and binary tree dispatch.
However, our proposal was only compatible with global linking and unusable
with shared libraries.

In [7, 17], Ducournau proposes perfect hashing for subtype checks. This is a
generalization of the coloring technique that is compatible with dynamic load-
ing. Perfect hashing offers a trade-off between space and time efficiency (compact
class table and slow implementation or large table full of holes and fast imple-
mentation).

5 Conclusion

We presented in this article a variation of the coloring implementation technique
for the three main object-oriented mechanisms: method invocation, attribute ac-
cess, and subtype check. Our proposal adds the compatibly with shared libraries
while retaining time and space efficient and compatibility with multiple inheri-
tance of the original coloring technique.

We evaluated the overhead of our proposal by comparing it with the original
coloring: (i) theoretically on an abstract processor specification, (ii) experimen-
tally with a simulation of cache misses, and (iii) experimentally with real exe-
cutions of a large program. Results show that the overhead of our proposal is
lower than we initially expected, thus it is a usable technique for shared library
linked at link time or at load time.

Our proposal may also be usable within a virtual machine with strong require-
ments on dynamic loading. However, two issues remain to investigate to better



accommodate dynamic loading: (i) the efficient incremental recomputation of
local tables and class tables, and (ii) the management of existing instances. For
(ii), attributes do not need anything specific thanks to the accessor simulation
but the class table pointer may need to be updated. We see here two options:
either use another indirection to access the class table (causing an overhead,
even when dynamic loading is not used), or walk trough all instances and up-
date their class table reference (it should be easy to implement if the execution
engine already has a precise garbage collector).

References

1. Lippman, S.B.: Inside the C++ Object Model. Addison-Wesley, New York (NY),
USA (1996)

2. Ducournau, R.: Implementing statically typed object-oriented programming lan-
guages. Technical Report 02-174, LIRMM, Montpellier (2002)

3. Dixon, R., McKee, T., Schweitzer, P., Vaughan, M.: A fast method dispatcher for
compiled languages with multiple inheritance. In: Proc. OOPSLA’89. (1989)

4. Pugh, W., Weddell, G.: Two-directional record layout for multiple inheritance. In:
Proc. PLDI’90. (1990) 85–91

5. Cohen, N.H.: Type-extension type tests can be performed in constant time. Pro-
gramming languages and systems 13(4) (1991) 626–629

6. Vitek, J., Horspool, R.N., Krall, A.: Efficient type inclusion tests. In: Proc. OOP-
SLA’97. (1997) 142–157

7. Ducournau, R.: Coloring, a versatile technique for implementing object-oriented
languages. Technical Report 06-001, LIRMM, Montpellier (2006)

8. Takhedmit, P.: Coloration de classes et de propriétés : étude algorithmique et
heuristique. Mémoire de DEA, Université Montpellier II (2003)

9. Driesen, K., Hölzle, U.: Minimizing row displacement dispatch tables. In: Proc.
OOPSLA’95. (1995) 141–155

10. Driesen, K., Hölzle, U., Vitek, J.: Message dispatch on pipelined processors. In:
Proc. ECOOP’95. (1995) 253–282

11. Driesen, K.: Efficient Polymorphic Calls. Kluwer Academic Publisher (2001)
12. Zibin, Y., Gil, J.: Two-dimensional bi-directional object layout. In: Proc.

ECOOP’2003. (2003) 329–350
13. Privat, J.: De l’expressivité à l’efficacité, une approche modulaire des langages à

objets — Le langage PRM et le compilateur prmc. Thèse d’informatique, Université
Montpellier II (2006)

14. Privat, J.: PRM—the language. 0.2. Technical Report 06-029, LIRMM, Montpellier
(2006)

15. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6) (2007) 89–100

16. Privat, J., Ducournau, R.: Link-time static analysis for efficient separate compi-
lation of object-oriented languages. In Ernst, M., Jensen, T., eds.: Workshop on
Program Analysis for Software Tools and Engineering PASTE’05. (2005) 29–36

17. Ducournau, R.: Perfect hashing as an almost perfect subtype test. To appears in
ACM Transactions on Programming Languages and Systems (2008)

18. Chambers, C., Ungar, D.: Customization: Optimizing compiler technology for
SELF, a dynamically-typed object-oriented language. In: Proc. OOPSLA’89.
(1989) 146–160


