N
N

N

HAL

open science

Exception Handling and Asynchronous Active Objects:
State of the Art Elements
Christophe Dony, Christelle Urtado, Sylvain Vauttier

» To cite this version:

Christophe Dony, Christelle Urtado, Sylvain Vauttier. Exception Handling and Asynchronous Active
Objects: State of the Art Elements. 2007, pp.8. lirmm-00293683

HAL Id: lirmm-00293683
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293683
Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293683
https://hal.archives-ouvertes.fr

Exception Handling and Asynchronous Active
Objects: State of the Art Elements

Christophe Dony!, Christelle Urtado?, Sylvain Vauttier?

! LIRMM - CNRS and Montpellier IT University - 161 rue Ada
34 392 Montpellier - France
dony@lirmm.fr
2 LGI2P - Ecole des Mines d’Alés - Parc scientifique G. Besse - 30 035 Nimes - France

{Christelle.Urtado, Sylvain.Vauttier}@site-eerie.ema.fr

1 Introduction

The ANR Facoma project puts a strong emphasis on exception handling as one
of the tools for ensuring reliability of cooperative multi-agent applications and
more generally with applications built on top of active objects. The related task
in the project is to install an appropriate exception handling system in the DIMA
agent language and to adapt it so that it can be used properly together with the
DARX replication system.

Active objects are “objects having their own computing resources i.e. their
own private activity’ [1], or, said differently, objects “decoupling method execu-
tion from method invocation” [2]. Asynchronous Active Objects (AAOs) come
in many forms (actors, agents or components), with various interaction schemes
(request / response or publish / subscribe [3]) and various forms of asynchronous
communication (one-way or two-ways). They are more and more used as, for ex-
ample, in multi-agents systems [4], in some distributed components architectures
such as J2EE’s with Message Driven Beans, in programming languages dedicated
to grid applications (e.g. [5]) or to wireless devices on top of mobile networks as
in [6]. AAOs, particularly in these new contexts, raise numerous issues regarding
exception handling that have only been partially studied.

The program structures for handling exceptional events [7,8,9,10] have been
designed to implement software entities able to return well defined and foreseen
answers, whatever may happen while they are active, even though an excep-
tional situation occurs. The end of the 1970s saw the development of excep-
tion handling systems dedicated to procedural programming. All specifications
have all been influenced by Goodenough’s seminal paper [7]. Well known imple-
mentations include MESA[11], CLU[9] or ADA[12]. Exception handling systems
have later been specified for or integrated into object-oriented languages at the
end of the 1980s (Zetalisp+Flavors, CommonLisp(+CLOS) [13,14], Eiffel[15],
Smalltalk[16], C++[17], or more recently in Java.

While the masterpieces of a generally accepted solution for exception han-
dling in sequential programs have been defined in the above quoted systems,
this is not yet the case for concurrent systems [18], even if some agreements and



many proposals [19] exist. When systems with asynchronous communications
are concerned, research works are still much more scattered. Initial actor lan-
guages included basic proposals to cope with exceptions [20] in which handlers
were some dedicated actors, ancestors of today’s exception supervisors, that had
the same lacks, regarding handler contextualization (see Sect. ?7), as Smalltalk
or Ada initial lexical-scope handlers. Asynchrony has more recently motivated
many research works in various contexts [21,22,23,24,25,26,27,28]but they only
partially address AAO needs. Actually, agent systems are the AAO context in
which exception handling proposals are the most achieved. However the super-
visor model described in [29,30] does not properly handle the contextualization
issue. Guardian [31,32] is a general and powerful solution which nonetheless
proves to be complex to master and use. As explained in [31], “Often excep-
tion handling in a program is the most complez [...] part of the system [...] and
has to be either simplified or taken out of the hand of the average programmer”
and a solution for this is to “separate global level exception handling from the
application agents”.

Concurrent programming systemns fall into three main categories when excep-
tion handling is considered. These categories correspond to the kind of concur-
rency that is supported [18]. This directly determines how AAOs can interact,
and, as part of their interactions, how exceptions can be signaled between them
and handled. We consider existing research on exception handling from the point
of view of these three categories and compare the existing capabilities with the
one of our SAGE system[33,34].

2 Isolated Concurrency and exception handling

Isolated concurrency is provided by standard programming languages such as
Java. Its goal is to allow several AAOs (threads) to execute concurrently in a
shared context (the address space of a virtual machine) as if each of them was
the only existing AAQ. To achieve this, the system enforces that the activity of
an AAOQ does not interfere with another one. For example, locks are managed on
shared resources in order to transparently serialize concurrent accesses to them.
In the same way, no standard means is provided to send information from a
thread to another. When an exception is raised in an AAOQ, it is signaled along its
own execution stack (in its separated execution thread). When the exception is
not caught and reaches the top level of the execution stack, the AAQ is destroyed
by the system (the thread is discarded by the thread manager). The other AAOs
are not warned of the failure in order to maintain their isolation.

3 Cooperative Concurrency and Exception Handling

Isolated concurrency is only suitable when strictly parallel computations are
to be managed,for example when handling requests from different clients. But
when a set of entities are intended to participate together to the achievement
of a global activity, means to handle their cooperation are then required. More



specifically, in such forms of cooperative concurrency, there is a crucial need to
manage how the individual failure of an AAO impacts the global activity and,
as a consequence, should impact the activity of other entities.

3.1 Monitors.

A first technique is to provide specific entities which role is to monitor other
entities and to implement how errors are to be handled when the global context
of the monitored entities is considered. Java proposes that a thread can belong
to a ThreadGroup. When an exception is raised and uncaught in a thread T, it
is then signaled to the thread group to which T belongs. A unique handler, that
catches all the signaled exceptions, can be associated with the thread group.
This allows basic actions to be carried out, such as to kill threads that are still
running in the thread group, in order to terminate the whole activity of the
group. Some SMAs provide such a mechanism in the form of supervisor agents.
Supervisors are agents that monitors other agents in the system and to which
exceptions are signaled.They are used, for example, to react to the death of an
agent (killed by an uncaught exception) and warn other agents that it cannot be
reached any more. In Erlang [27], supervisor processes can be tied to other ones
to be informed of their termination. In Oz [25], asynchronous exception related to
distribution are handled thanks to dedicated monitors. Monitors enable a good
separation of concerns, because they keep behaviors dealing with errors well
separated from behaviors dealing with normal activities. However, they raise
encapsulation and contextualization issues. When used for AAQOs, monitors can
only perform external, platform-level, generic actions such as to suspend, restart
or destroy an AAQ. Monitors are finally somehow restricted to the handling of
generic exceptions because they have no access (unless breaking encapsulation)
to objects’ internal state and, generally, to any contextual information about the
cause of the exception. This drastically limits the applicability of monitors when
specific errors, regarding the specific coordinated activity of a set of entities, are
to be handled.

3.2 CA Actions.

A common solution, in systems that tackle this contextualization issue, is that
collective activities of coordinated concurrent entities must become explicit, in
order to structure the global execution contexts and provide a support to handle
exceptions. A CA Action [18] allows the representation of a collective activity
to which different entities, called participants, contribute concurrently. Different
variants of this concept, along with different EHSs, have been proposed. In [35],
a CA Action is defined as a sort of contract that ties together all the participant
entities. As a part of the contract, these participants must provide support for the
handling of a common set of exceptions. When an exception is raised by one of
the participants, it is signaled to the others. This way, all the participants to a CA
Action suspend their individual activity (and thus suspend the execution of the
whole global activity). The system then enforces a synchronization point between



all the participants. When multiple, concurrent exceptions are signaled, this
policy ensures that a same set of exceptions is finally signaled to each participant.
Each participant resolves this exception set thanks to an exception resolution tree
provided by the CA Action (and thus common to all the participants): this entails
that each participant finally handles the same resolved exception. However, the
handlers that are eventually triggered are specific to each participant and are
cohesive parts of their behavior. This model addresses the contextualization
issue stressed above. Exceptions pertaining to a global activity are handled by
having its participants contribute collectively to their treatment, as a result of
the coordinated execution of their own handlers. One concern with such a model
is the cost of the coordination between the participants. Indeed, it implies the
exchange of numerous messages in order to inform the other participants of
exceptions and of execution suspensions. Moreover, it entails a strong coupling
between the participants as it requires a common set of exception types and
a common exception resolution tree to be used. This model is therefore not
perfectly suited for highly distributed and open systems.

3.3 Guardians.

Among other things, various improvements have been introduced to the above
model in [31,36,32]. A CA Action is monitored by a special participant, called a
“guardian”. Participants signal to the guardian exceptions that are global to the
CA Action. The guardian then suspends the execution of all the participants,
while collecting concurrent exceptions. The set of exceptions collected by the
guardian is then resolved thanks to a first set of rules that determines what
unique global exception is to be handled. Next, a second set of rules is used
to transform the global exception into the specific exceptions that will finally
be signaled to each participant. This way, only one participant, the guardian,
needs to track the exceptions and the status of other participants. Moreover,
the cooperation of the participants, when handling global exceptions, is defined
by the set of rules of the guardian. Rules are tailored to adapt to the specific
behavior of each participant, so that no predefined requirement is to be imposed
to the participants. Providing a complex and powerful solution, Guardian is
especially relevant to deal with exceptions related to shared environments where
all participants can effectively cooperate to restore a consistent state. This kind
of exceptions encompasses system-level exceptions that warn of the faulty state
of some shared resource (disk, memory, network, ...). SaGE provides a simpler
solution when handling exceptions related to collaborating pairs of objects such
as clients and servers.

4 Collaborative Concurrency and Exception Handling

Models discussed in the previous section indeed share the idea that when an
exception occurs in the context of a collective activity, handlers are sought and



executed in all its participants. Besides, in situations in which couples of enti-
ties collaborate together, for example when a server informs its client that it
has failed to achieve some requested service, signaled exceptions are to be han-
dled in the context of the caller. Exceptions are therefore much more efficiently
handled as responses sent by the server than as broadcasted information. We
have primarily oriented the Sage solution in that way and have defined the fol-
lowing key requirements : encapsulation and reactivity enforcement, ability to
write context-dependent handlers, ability to coordinate and control group of ac-
tive objects collaborating to a common task, ability to configure the exception
propagation policy by defining exception resolution functions, ability to imme-
diately handle exceptions that are critical or to only log under-critical ones until
their conjunction enables a diagnosis to be established. Sage proposes dynamic
scope handlers associated to requests, services and objects. Resolution functions
can be defined at the service level, which is the place where collaborative tasks
can be coordinated. They come together with a signaling primitive, a handler
search algorithm and a handler invocation mechanism that take into account
the execution history and, when possible, work asynchronously to improve ob-
ject reactivity.

Many other systems for asynchronous programming use “future” objects
[21,7,25]. Futures are response holders that are immediately returned to client
entities when they asynchronously request a service to a server AAO. When a
client needs to use the value of a response, it tries to access the value of the
corresponding future. If no value is yet bound, the client AAO can perform a
blocking wait. When an exception is bound to a future instead of a standard
value, it is signaled to a client when the future is read. The client then usu-
ally handles it with some classical built-in ¢ry-catch like constructs. The main
advantages of such a solution are its simplicity and its ability to be seamlessly
integrated to existing programming languages. Its drawback is that it does not
cope with complex situations. For example, when requests are sent concurrently
to different servers, it is difficult to foresee the best order in which futures should
be read in order not to wait for an unbound response while others are yet avail-
able and could be treated. This is one of the reasons why we think that reactive
AAO models are more interesting for exception handling. With futures, excep-
tions cannot be treated as soon as possible and can sometimes be simply lost
when some futures are not read. In a reactive system, like the one in which we
have specified SaGE, exceptions are signaled asynchronously by sending messages
and can therefore be treated as soon as they occur. The implementation of SaGE
in a future-based context has not been done yet but the resulting system would
be more limited than today’s one.

Erlang [27] has a sophisticated EHS to deal with exceptions within concurrent
processes and also proposes an asynchronous message sending based solution to
signal process termination exceptions from one process to another. In Erlang,
messages that contain exceptions cannot be distinguished from others and, as a
consequence, the handling of asynchronous exceptions can only be ad hoc. On the
contrary, SaGE [37,33,38] carry exceptions with messages that, when received,



trigger a full-fledged EHS. Finally, to cope with concurrent exceptions, [39] also
suggests the introduction of future groups in order to gather the exception of
a set of futures and apply a resolution function to them. But this solution re-
quires the writing of a lot of code to explicitly deal with future groups. With
SaGE, the support for exception resolution is directly integrated in the EHS. Pro-
vided that corresponding resolution functions are defined, concurrent exception
management does not require any extra programming.

References

10.

11.

12.

13.

14.

15.

. Briot, J.P., Guerraoui, R.: A classification of various approaches for object-based

parallel and distributed programming. In Padget, J.A., ed.: Collaboration between
Human and Artificial Societies. Number 1624 in Lecture Notes in Artificial Intel-
ligence. Springer-Verlag (1999) 3-29 Invited conference.

. Lavender, R.G., Schmidt, D.C.: Active object: An object behavioral pattern for

concurrent programming. In Coplien, Vlissides, Kerth, eds.: Pattern Languages of
Program Design. Addison-Wesley Reading (1996)

FIPA: Foundation For Intelligent Physical Agents : Request Interaction Protocol
Specification. (2002)

. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-

gence. Addison-Wesley Pub Co; 1st edition (February 25, 1999) (2005)

Clement Jonquet, S.A.C.: The strobe model: Dynamic service generation on the
grid. Applied Artificial Intelligence Journal Special issue on Learning Grid Services
19(9-10) (2005) 967-1013

Dedecker, J., Cutsem, T.V., Mostinckx, S., D'Hondt, T., Meuter, W.D.: Ambient-
oriented programming in ambienttalk. In: Proceedings ECOOP’06 (European Con-
ference on Object-Oriented Programming), Springer-Verlag (2006) To appear.
Goodenough, J.B.: Exception handling: Issues and a proposed notation. Commun.
ACM 18(12) (1975) 683-696

Levin, R.: Program structures for exceptinal condition handling. Phd dissertation,
Dept. Comput. Sci., Carnegie-Mellon University Pittsburg (1977)

Liskov, B., Snyder, A.: Exception handling in CLU. IEEE Transactions on Software
Engineering 5(6) (1979) 546-558

Yemini, S., Berry, D.M.: A modular verifiable exception-handling mechanism.
ACM Transactions on Programming Languages and Systems 7(2) (1985) 214-243
Mitchell, J., Maybury, W., Sweet, R.: Mesa language manual, version 5.0. Csl-79-3,
Xerox Palo Alto Research Centre (1979)

al, I..: Rationale for the design of the ada programming language. ACM SIGPLAN
Notices 14(6A) (1979) 1-139

K.Pitman: Error/condition handling. Technical report, Contribution to WG16. Re-
vision 18.Propositions for ISO-LISP. AFNOR, ISO/IEC JTC1/SC 22/WG 16N15
(April 1988)

Pitman, K.M.: Condition handling in the lisp language family. In: Advances in
Exception Handling Techniques. LNCS (Lecture Notes in Computer Science) 2022.
Springer-Verlag (2001) 39-59

Meyer, B.: Disciplined exceptions. Technical report tr-ei-22/ex, Interactive Soft-
ware Engineering, Goleta, CA (1988)



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Dony, C.: Exception handling and object-oriented programming : towards a syn-
thesis. ACM SIGPLAN Notices 25(10) (1990) 322-330 OOPSLA ECOOP ’90
Proceedings, N. Meyrowitz (editor).

Koenig, A., Stroustrup, B.: Exception handling for C++. In USENIX, ed.: C++
Conference Proceedings, April 9-11, 1990. San Francisco, CA, Berkeley, CA, USA,
USENIX (1990) 149-176

Romanovsky, A.B., Kienzle, J.: Action-oriented exception handling in cooperative
and competitive concurrent object-oriented systems. In: Advances in Exception
Handling Techniques. (2000) 147-164

Dony, C., Knudsen, J.L., Romanovsky, A.B., Tripathi, A.; eds.: Advances Topics
in Exception Handling Techniques. Volume 4119 of Lecture Notes in Computer
Science. Springer (2006)

Theriault, D.: A primer for the Act-1 language. Technical Report AT Memo 672,
MIT Artificial Intelligence Laboratory (1982)

Halstead, R., Loaiza, J.: Exception handling in multilisp. In: 1985 Int’l. Conf. on
Parallel Processing. (1985) 822-830

Campbell, R., Randell, B.: Error recovery in asynchronous systems. IEEE Trans-
actions on Software Engineering (SE) SE-12 number 8(8) (1986) 811-826
Gértner, F.C.: Fundamentals of fault tolerant distributed computing in asyn-
chronous environments. ACMCS 31(1) (1999) 1-26

Keen, A.W., Olsson, R.A.: Exception handling during asynchronous method invo-
cation. In Monien, B., Feldmann, R., eds.: Proceedings of Euro-Par 2002 Parallel
Processing. Lecture Notes in Computer Science. Springer-Verlag (2002) 656-660
Van Roy, P.: On the separation of concerns in distributed programming: Applica-
tion to distribution structure and fault tolerance in Mozart. In: Fourth Interna-
tional Workshop on Parallel and Distributed Computing for Symbolic and Irregu-
lar Applications (PDSIA 99), Tohoku University, Sendai, Japan, World Scientific
(1999)

Campéas, A., Dony, C., Urtado, C., Vauttier, S.: Distributed exception handling
: ideas, lessons and issues with recent exception handling systems. In: Proceed-
ings of RISE’04 : First International Workshop on Rapid Integration of Software
Engineering techniques, Luxembourg (2004) 82-92

Carlsson, R., Gustavsson, B., Nyblom, P.: Erlang: Exception handling revisited.
In: Proceedings of the Third ACM SIGPLAN Erlang Workshop. (2004)

Tliasov, A., Romanovsky, A.: Exception handling in coordination-based mobile
environments. In: Proceedings of 29th IEEE International Computer Software and
Applications Conference (COMPSAC 2005), 25-28 July, Edinburgh, Scotland, UK.
(2005) 341-350

Klein, M., Dellarocas, C.: Exception handling in agent systems. In Etzioni, O.,
Miiller, J.P., Bradshaw, J.M., eds.: Proceedings of the Third Annual Conference
on Autonomous Agents (AGENTS-99), New York, ACM Press (1999) 62-68
Klein, M., Dellarocas, C.: Towards a systematic repository of knowledge about
managing multi-agent system exceptions, ases working paper ases-wp-2000-01
(2000)

Tripathi, A.) Miller, R.: Exception handling in agent oriented systems. In: Advances
in Exception Handling Techniques. LNCS (Lecture Notes in Computer Science)
2022. Springer-Verlag (2001) 128-146

Miller, R., Tripathi, A.: The guardian model and primitives for exception handling
in distributed systems. IEEE Trans. Software Eng. 30(12) (2004) 1008-1022
Souchon, F., Dony, C., Urtado, C., Vauttier, S.: Improving exception handling in
multi-agent systems. Lecture Notes in Computer Science (2003)



34.

35.

36.

37.

38.

39.

Dony, C., Urtado, C., Vauttier, S.: Exception handling and asynchronous active
objects : Issues and proposal. [19] chapter 5 81 — 101

Randell, B., Romanovsky, A., Stroud, R.J., Xu, J., Zorzo, A.F.: Coordinated
Atomic Actions: from Concept to Implementation. Technical Report 595, Depart-
ment of Computing Science, University of Newcastle upon Tyne (1997)

Miller, R., Tripathi, A.: Primitives and mechanisms of the guardian model for ex-
ception handling in distributed systems. In: Exception Handling in Object Oriented
Systems: towards Emerging Application Areas and New Programming Paradigms
Workshop (at ECOOP’03 international conference) proceedings. (2003)

Souchon, F., Dony, C., Urtado, C., Vauttier, S.: A proposition for exception han-
dling in multi-agent systems. In: SELMAS’03 International Worskshop proceed-
ings. (2003)

Souchon, F., Urtado, C., Vauttier, S., Dony, C.: Exception handling in component-
based systems: a first study. In: Exception Handling in Object Oriented Systems:
towards Emerging Application Areas and New Programming Paradigms Workshop
(at ECOOP’03 international conference) proceedings. (2003) 84-91

Rintala, M.: Handling multiple concurrent exceptions in C++ using futures,
kokoelmassa romanovsky. In: Developing Systems that Handle Exceptions, Pro-
ceedings of ECOOP 2005 Workshop on Exception Handling in Object Oriented
Systems, ACM Press (2005)




