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Fuzzy Edge Detection for Omnidirectional Images

Florence JACQUEY, Frédéric COMBY and Olivier STRAUSS

LIRMM
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier,

161, rue Ada, 34392 Montpellier Cedex 5 France

Abstract

The use of omnidirectional vision has increased during these past years. It provides a very
large field of view. Nevertheless, omnidirectional images contain significant radial distor-
tions and conventional image processing is not adapted to these specific images. This paper
presents an edge detector adapted to the image geometry. Fuzzy sets will be used to take
into account all imprecisions introduced by the sampling process. The Prewitt filter applied
to omnidirectional image will be studied to illustrate this paper.
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1 Introduction

Classical cameras have a very limited field of view (from 30 up to 60 degrees).
However, many applications such as robotics, video surveillance, conference, vir-
tual reality representations, etc. need a large field of view. There are many ways
to enhance this field of view and obtain an omnidirectional sensor. Historically the
first solution was to use a fisheye lens (Figure 1 (a)). The classical optics of the
camera is replaced by a very short focal length lens [15]. The field of view is larger
than 180 degree but these lens are quite complex to model and expensive. Mutiple-
camera devices (Figure 1 (b)) can also be used. In [25], six or more cameras are
arranged so that they sample different parts of the visual sphere. This geometric
configuration presents some advantages compared to classical small field of view
cameras. The rotating camera system (Figure 1 (c)) consists in rotating a classical
camera around a line perpendicular to the optical axis [16]. This system provides
high resolution panoramic images, but because of the calibration difficulties, the
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reconstruction of a panoramic image from many perspective image is not easy. The
scene must be static and real-time applications are quite impossible. The catadiop-
tric system (Figure 1 (d)) is a solution based on a reflecting surface as convex mirror
[1]. The imaging system combines a catadioptric system and a camera. In this case
the camera perceives its environment through its reflection on a revolution mirror.
The camera is omnidirectional and presents a full 360 degree field of view. How-
ever, resulting images present a complex geometry which make tough the image
processing. It is also possible to combine those previous methods [17]. This pa-
per will focus on omnidirectional sensors using mirrors also known as catadioptric
sensors.

(a) (b) (c)

(d)

Fig. 1. (a) Fisheye lens (b) Multi-camera devices (c) Rotating camera (d) Catadioptric cam-
era

Baker and Nayar [4] have shown that there are two kinds of catadioptric systems
depending on whether they satisfy the single view point (SVP) constraint or not.
SVP sensors are those equipped with parabolic, hyperbolic, elliptic and planar mir-
rors. However, as planar mirrors actually do not increase the field of view, they are
quite useless for omnidirectional vision. Single viewpoint sensors are very useful
because they allow the generation of geometrically correct perspective images from
one omnidirectional image. The SVP constraint expresses the fact that each pixel
in the image measures the irradiance of the light passing through the viewpoint in
one specific direction. If the catadioptric system geometry is known, this direction
can be computed for each pixel. Thus, the gray level value measured by each pixel
can be projected onto a plane at any distance from the viewpoint to form a planar
perspective image. These perspective images are easier for human being as they
only present small distortions.

Moreover processing omnidirectional images is slightly different from processing
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perspective images. With classical perspective images, most of the filtering tech-
niques use kernels. These kernels are called summative as the integral over their
definition domain equals 1. The aim of the kernel is to define a weighted neighbor-
hood of each sampled location. This neighborhood provides an interplay between
continuous and discrete. It also aims at using a hypothesized ergodicity to reduce
the effect of random noise by providing regularization in the interpolation process.
This use of neighborhood suppose that the observed scene is located on a camera
fronto-parallel plane. Therefore, whatever the kernel position on the image may be,
its effect on the image will remain the same. This means the operator is invariant
with respect to translations. Omnidirectional cameras cannot satisfy this condition.
Let us consider a regular grid pattern composed of white lines on a black plane.
Figure 2(a) illustrates this pattern captured by a classical camera (2(b)). The lines
thickness remains the same all over the image. An edge detector able to find the
two edges of a line at the top of the image will also be able to find it at its bottom.
Let us now consider an omnidirectional camera observing the same pattern. Figure
2(c) shows the omnidirectional camera disposition with respect to the grid pattern.
Figure 2(d) represents the grid pattern captured by an omnidirectional camera. It
is easy to notice that the lines thickness diminishes as one gets closer to the im-
age center. Therefore, a filter detecting two boundaries at the image periphery will
surely not be able to do so at the image center. The aim of this paper is to adapt
classical filters using a kernel for omnidirectional images. This implies that the ker-
nel size is dependent of its position on the image. Thus its effect remains the same
all over the image. This article will focus on a specific edge detector: the Prewitt
filter.

(a) (b) (c) (d)

Fig. 2. (a) position of the grid with a classical camera, (b) A regular grid on a plane pro-
jected on a perspective image, (c) position of the grid with respect to the camera’s, (d)
omnidirectional image of the grid.

Although omnidirectional cameras allow to increase the field of view, some prob-
lems arise. Anamorphosis in omnidirectional images introduces complexity in im-
age processing and interpretation: for example, optical flow computation. Optical
flow is computed from images spatio-temporal derivatives in order to estimate the
apparent motion in a digital image sequence. Using appropriate motion models, the
pixels apparent motion can be related to the camera motion. Concerning omnidi-
rectional images, a simple camera translation implies a complex apparent motion
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[3]. Indeed, a camera translation does not generate an apparent translation of all the
pixels in the image (Figure 3).

(a) (b)

Fig. 3. Pixels motion for a classical camera translation (a) and for an omnidirectional cam-
era (b).

Specific treatments to process omnidirectional images have been proposed in the
literature. They try to improve the performances of classical treatments. For ex-
ample, in the article [18], an edge detection composed by two detectors with a 90◦

rotation is proposed. Nevertheless, this filter is not really adapted to omnidirectional
images because the effects of the filter remain the same all over the image without
taking into account the image distortion. In [20], Demonceaux presents an approach
using wavelet to compute the image gradient. Even if this filter gives better results
than classical filters, in visual terms, it is also not adapted to the image geometry.
So, there is a real need in, directly, taking into account the image geometry in the
definition of image processing algorithms.

2 Geometrical Considerations

2.1 Catadioptric sensor model

As shown in introduction, panoramic images present some distortions. The anamor-
phosis depends on the shape of the mirror. However, Geyer et Daniilidis have in-
troduced a unifying theory for all central catadioptric sensors in [5]. They proved
that the anamorphosis provided by a central panoramic projection is isomorphic
to a projective mapping onto a virtual sphere as illustrated on Figure 4. The first
step is a central projection to the sphere and the second step, a central projection
from a point B (on the sphere’s axis) to the retina. The position of B depends on
the kind of mirror used in the catadioptric sensor. A parabolic mirror is represented
by a point B lying on the north pole of the sphere. For an elliptic or hyperbolic
mirror, B lies between the north pole and the sphere’s center. A huge advantage
of this modelization is that it involves only two parameters (ϕ and ξ) to map a 3D
visible point M(X, Y, Z) with its projection m(x, y) on the panoramic image. This
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projection is described by equations (1) and (2), where ϕ represent the distance
between the omnidirectional image and the sphere center, ξ the distance OB and
R2 = X2 + Y 2 + Z2. Therefore, using this model allows an easy transposition of
our algorithm to any kind of SVP catadioptric omnidirectional sensor.

x =
(ϕ+ ξ)X

ξR− Z
(1)

y =
(ϕ+ ξ)Y

ξR− Z
(2)

Fig. 4. The unifying model for describing all central catadioptric projections

2.2 New workspace for kernels ?

Applying filters based on convolution kernels with image implies that the kernel
effects are invariant by translation. This is true for classical images with classical
operators. But as soon as distortions due to projection are involved, this statement
does not stand. Then, the aim is to find a space where the kernel can be defined so
that its effect on the panoramic image is invariant to translations. Some solutions
have been found in the literature.

Concerning echographic images, which are not really omnidirectional images, but
still present distortions due to the image acquisition process, Herlin and Ayache
try to work directly on the ultrasound images in [12]. They acquired ultrasound
scan lines in polar coordinates which creates an important anisotropy in spatial
resolution. They geometrically transforms the data from a polar representation to
take account for the varying resolution of the data. The proposed method consists
in computing a scan-conversion with a low-pass filtering of the cartesian image
applied directly to the available polar data.
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In [6], Daniilidis, Makadia and Bullow propose to project the omnidirectional im-
age onto a virtual sphere and define a gradient operator on it. However, the gradient
operator definition is quite complex and needs to be expressed in spherical coor-
dinates. Moreover, the regular sampling on the panoramic image is changed into a
non-regular sampling onto the sphere. The non-regular imprecision brought by this
projection is hard to consider.

Bigot, Kachi, Durand et Mouaddib [27] have proposed to develop operators directly
on the virtual sphere. A new smoothing method for spherical images is described.
The authors have introduced a suitable Wiener filter and have used the tikhonov
method for this these images. This method is compared with the most used classical
spherical kernels on real and synthetical spherical images. The signal to noise ratio
prove the effectiveness of these filters for denoising operation. The treatments can
be carried out in real time and the filters are invariant by rotation. The results are
thus independent of the position on the sphere.

Tosic, Bogdanova, Frossard and Vandergheynst [29] have presented a new local
motion estimation algorithm for omnidirectional images. This algorithm is used
to compute the correlation between two spherical images of a scene, taken from
arbitrary viewpoints, with the objective to reduce the encoding rate of these images.
Their algorithm provides a quite efficient image prediction: the prediction error is
almost exclusively composed of high frequency noise. In this article, the authors
underline the importance to avoid potential discrepancies induced while unfolding
omnidirectional images to implement a classical motion estimation on images.

The image geometry plays a central role in the formation of omnidirectional im-
ages and must be carefully taken into account while performing such simple tasks
as smoothing or edge detection. To cope with geometrical constraints, Bogdanova,
Bresson, Thiran et Vandergheynst [28] have derived new energy functionals and
partial differential equations for segmenting images obtained from catadioptric
cameras. They have shown that it is possible to find a robust implementation us-
ing classical finite difference schemes.

In [30], Demonceaux and Vasseur have used the markov random fields on cata-
dioptric images. Because the neghborhood topology is modified by the mirror, they
propose to define a new neighborhood for markov random fields by using the equiv-
alence theorem developed for central catadioptric sensors. The importance of this
adaptation is proved for segmentation, image restoration and motion detection.

Another projective space is suggested in [10]: a virtual cylinder surrounding the
mirror. Like the sphere, it allows an omnidirectional representation of the observed
scene. This view is still distorted but is consistent with the way we are used to see
images. Moreover, the cylinder can be approximated as the collection of central
strips of projective images rotating around the mirror axis (Figure 5). The main
advantage of the cylindrical collector is that when unfolded it can be sampled with a
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regular Cartesian grid. When the kernel size remains small, the unfolded cylindrical
image part to be convolved with the kernel is quasi equivalent to the one extracted
from a perspective image.

Fig. 5. Quasi equivalence between the projection of a pixel onto the cylinder and onto a
perspective image

Another approach consists in reconstructing all perspective images from the om-
nidirectional image and in processing it. But there are a huge amount of possible
reconstructed perspective images which considerably increases the process com-
plexity. Moreover, the resulting images are interpolated and arbitrarily depend of
the chosen sampling.

The reconstruction of the omnidirectional image on another support like the cylin-
der or the sphere, involves also interpolations and smoothing that modify the image
information. These errors will be propagated through all the image processing thus
increasing their effects. Our approach tries to preserve the original informations
until the last processing to minimize the impact of these imprecisions in the pro-
cessing step.

In this paper, the projective space selected was the cylinder. The main reason is the
small difference between treatments on the cylinder and those on computed per-
spective images. The approximation brought by the cylinder, with respect to the
perspective plane, is almost negligible. For example, with a 3 × 3 kernel, the lo-
calization error on the projected kernel is about 5.10−5 pixels in the worst case.
Moreover, the hypothesis in classical perspective images treatment is that the dis-
tance between the perspective camera and the scene is constant. Thus, treatments
respect the invariance by translation. It expresses the fact that visual informations
will be identically processed whatever their spatial localization may be. We tried
to reproduce the same reasoning with catadioptrical cameras. A single view point
catadioptric camera produces a view equivalent to the one acquired by a rotating
camera. Each position of the rotating camera will suppose that the 3D scene is in
a specific plane. The collection of all these planes can be approximated by a cylin-
der. This is why we have chosen the cylinder as projective space. The image is not
mapped on the cylinder; it is only a projective plane, where classical operators can
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be easily approximated. With such a process the sensor geometry is integrated in
the image processing.

3 Image Processing

3.1 Generalities

As presented in the introduction, the present work document will focus on the Pre-
witt kernels. First of all the Prewitt filter is a simple bounded convolution mask. As
kernels need to be projected onto the cylindrical support, our approach has been
limited to bounded kernels. Prewitt filter was just one among the others. In fact, our
approach can be applied to all bounded convolution masks.

The Prewitt edge detector is based on a basic criterion: images should contain sharp
intensity transition and low noise. When using Prewitt edge detection, the image is
convolved with a set of convolution kernels. Each convolution kernel is sensitive
to edges in a different orientation (horizontal, vertical and oblique) and provides
an estimation of the component of the brightness gradient at every pixel. For each
pixel, the local edge gradient magnitude is estimated with the maximum response
of all kernels at this pixel location.

In our article, we have just presented an example of the Prewitt filter in the vertical
direction, illustrated on Figure 6. The whole set of kernels is produced by taking
this kernel and rotating its coefficients circularly.

Fig. 6. 3× 3 Prewitt mask of a vertical edge detector

The gray level Fi,j of the filtered pixel, in a given direction, at (i, j) coordinates, is
given by formula (3)

Fi,j =
1∑

u=−1

1∑
v=−1

Cu,vIi+u,j+v (3)

where Cu,v is the coefficient value of the Prewitt mask at (u, v) coordinates (C0,0

stands for the central element of the mask) and Ii+u,j+v is the gray level of the pixel
located in (i+u, j+v) on the image. This processing uses a neighborhood of pixels
to compute the filtered pixel gray level. For perspective images, the kernel shape is
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adapted to the image sampling: a Cartesian kernel convolved with a Cartesian par-
tition of the same resolution. However for omnidirectional images, the resolution
depends of the position on the image. Moreover the topology of neighborhood is
modified by the projection on the mirror. Any classical kernel operator is therefore
not adapted to omnidirectional images.

3.2 Filter Adaptation

The first intuitive solution to adapt the Prewitt edge detector is to project the om-
nidirectional image on the cylinder, then to process the unfolded image and fi-
nally, to back-project it on the omnidirectional plane. However, projections and
back-projections involve interpolations thus introducing errors in the processing.
As pointed out in [6], it is crucial that data are kept in their original space. Thus, if
data are unchanged the operator needs to be modified. Instead of projecting pixels
values on another support, the kernel will be geometrically defined and projected
on the omnidirectional image.

The proposed algorithm is structured as follows:

Algorithm 1 Kernel definition and computation
for each pixel in omnidirectional image do

Project the pixel center (P ) on the cylinder (Q).
Definition of a Prewitt kernel around Q.
Back-projection of the kernel on the omnidirectional image.
Computation of the filtered pixel gray level.

end for

Figure 7 (a) illustrates the projection of a pixel center on the cylinder. It also shows
the definition of a Prewitt kernel around this projection. Then, thanks to the exten-
sion principle [7], the kernel is back-projected on the panoramic image (Figure 7
(b)) and the gray level value of the filtered pixel is computed with respect to the pro-
jected kernel. This comes down to change the kernel size depending on its position
on the image.

One problem arises: how to choose the kernel on the cylinder? The solution pre-
sented here is to define a kernel centered on the projection of the considered pixel.
Its size is arbitrarily determined depending both on its capability to highlight the
sought after edges and on the amount of filtering. There is no real rule to set the
sampling on the cylinder. However, to remain suitable with the sensor, the cylin-
der sampling step is chosen proportionally to the omnidirectional image external
perimeter (expressed in pixels). Indeed, this perimeter corresponds to the best res-
olution on the image.

Now another issue is raised: how to compute the gray level associated to the pro-
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(a)

(b)

Fig. 7. (a) Center pixel projection onto the cylinder and regular mask reconstruction. (b)
Mask projection onto the omnidirectional image
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jected kernel? As it is shown on Figure 8 (a) each part of the kernel covers many
pixels of the panoramic image. The value of Ii+u,j+v cannot be computed as in the
equation (3). The gray level value associated to each kernel element must be evalu-
ated to estimate the filtered pixel value. Two solutions are proposed in sections 3.3
and 3.4 to compute the gray levels of the projected kernel elements.

3.3 Proportional Approach

The aim is to transfer the information of the intersected pixels toward a projected
element of the kernel. A first solution, inspired from belief transfer, is briefly pre-
sented here: the pignistic transfer [14]. Each pixel and mask element is considered
as a 2D interval defined by its support and with a uniform membership function.
The gray level value of a kernel element is a weighted sum of all intersected pixels
gray levels. The weight is proportional to the area of intersection between the pixel
and the projected kernel (dark gray shaded area in Figure 8 (b)). This weight is
normalized by the area of the projected kernel.

In equation (3) Ii+u,j+v has to be replaced by (4)

Ii+u,j+v ⇔
∑

Ω(k,l)

|Mu,v ∩ Pk,l|
|Mu,v|

Ik,l (4)

where Mu,v is the 2-D interval associated to the projection of (u, v) kernel cell on
the omnidirectional image, Pk,l is the 2-D interval associated to the pixel pk,l, Ωk,l

is the set of 2-D intervals Pk,l intersected by Mu,v (light gray shaded area on Figure
8 (a)) and Ik,l is the gray level of the pk,l pixel.

(a) (b) (c)

Fig. 8. (a) The projected mask covers many pixels of the omnidirectional image. (b) The
gray level of a projected pixel is proportional to the intersected pixels surface (c) To make
easier the intersection area compilation, the mask is approximated by a quadrilateral

In order to simplify the intersections area computation and to improve the compu-
tation time, an approximation of the projected kernel is used (Figure 8 (c)). The
surface is approximated by a trapeze. With this approximation, the kernel elements
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are independent and do not overlap each other. The projected elements constitute a
covered partition of the omnidirectional image.

3.4 Fuzzy Approach

3.4.1 Fuzzy concepts applied to signal processing

The data imprecision is generally modeled by crisp intervals. Fuzzy intervals gener-
alize the notion of crisp intervals. They could be defined by the support and core of
their membership function (Figure 9(a)). Fuzzy quantities whose core is reduced to
a single value are called fuzzy numbers (Figure 9(b)). In [9] the authors have shown
that the triangular fuzzy numbers generalize all mono-modal and symmetric fuzzy
numbers (Figure 9(c)). Then, this representation will be used for the remaining of
this document to model imprecision.

(a) (b) (c)

Fig. 9. Membership functions of fuzzy quantities: (a) fuzzy interval, (b) fuzzy number, (c)
triangular fuzzy number

The possibility theory introduced by Zadeh [8] allows to compare two imprecise
data. This kind of data will bold written for the remainder of the document. Dubois
and Prade advocate in [7] to use a possibility measure Π(A,B) to estimate the
interaction of two imprecise data A and B. Π(A,B) is defined by formula (5)
where Ω is the real axis, µA (resp. µB) is the membership function of the fuzzy
number A (resp. B).

Π(A,B) = supΩ(min(µA(x), µB(x))) (5)

When computerized signal processing is needed, the continuous signal to process is
discretized. This results from the acquisition process. Then, the continuous signal
is supposed to be known on discret intervals defined by the sampling step. The data
have imprecise locations on these intervals. To represent these imprecisions, we
have chosen to replace the classical binary intervals by triangular fuzzy numbers.
These numbers overlap each other and allow to represent in a better way the local-
isation imprecision. Their support equals two times of the sampling step and their
mode coincide with the given interval center. A triangular fuzzy number represent
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the confidence in the interval value. All these triangular fuzzy number constitute a
fuzzy partition of the space (Hi)i∈{1,...,N} depicted on Figure (10). Using a kernel
for signal processing and triangular fuzzy numbers can ensure a kind of interpo-
lation between discrete and continuous. The aim of this modeling is to transfer
the discrete knowledge of the signal to any weighted neighborhood W out of the
partition. The value associated to any fuzzy number W can then be estimated.

Fig. 10. Interactions between a fuzzy number W and the fuzzy numbers Hk of the axis of
real partition

This transfer is ensured by using a Choquet integral [11] which allows to give a
superior and inferior estimation of W value. These boundaries are given by equa-
tions:

Cvupper =
N∑

n=1

I(n)[v(An)− v(An+1)] (6)

Cvlower = −
N∑

n=1

−I(n)[v(An)− v(An+1)] (7)

where Ii is the value of the ith cell Hi, (.) indicates a permutation such that in (6)
I(1) ≤ I(2) ≤ ... ≤ I(N) and in (7) −I(1) ≤ −I(2) ≤ ... ≤ −I(N). The An =
(Hn, ...,HN) are binary coalitions of cells whose values are superior or equal to
In. The biggest confidence that can be given to the coalition An is v(An) defined in
(8).

v(An) = Supi=n..NΠ(Hi,W) (8)

To characterize this interval its middle: Cv = (Cvupper + Cvlower)/2 is frequently
used, but this choice remains arbitrary.

3.4.2 Application to image processing

The image acquisition process introduces an imprecision on the pixel gray level lo-
calization. This imprecision is due to the spatial sampling. It can be modeled with
fuzzy sets. Each pixel of the image is considered as a bi-dimensional imprecise
quantity. Indeed, for the pixel Pi,j located at (i, j) on the image, its gray level lo-
calization is unknown within the 2D interval [i − ∆i, i + ∆i] × [j − ∆j, j + ∆j],
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where ∆i (resp. ∆j) is half the width of the horizontal (resp. vertical) sampling.
The 1-D triangular fuzzy numbers are changed in 2-D pyramidal fuzzy numbers
(Figure 11(a)) considering the t-norm min (cartesian product of two 1-D triangular
fuzzy numbers). All the pixels constitute a strong fuzzy partition of the image.

Fig. 11. Fuzzy pixel

As presented in 3.1, each omnidirectional pixel center (core of the 2-D fuzzy pixel)
is projected onto the cylinder. A Prewitt kernel is defined around this projection
and back-projected on the image. The Prewitt kernel presented on Figure 6 is also
a sampled quantity. Therefore, there is an imprecision on the kernel values local-
izations. Each kernel element can be considered as a fuzzy 2-D number. Figure 12
illustrates the Prewitt kernel on the cylinder. To simplify the graphics, only its fuzzy
central element is represented.

Fig. 12. The mask on the cylinder with the central fuzzy element.

The fuzzy numbers associated to the Prewitt kernel are back-projected on the om-
nidirectional image with respect to the mirror and camera parameters (Figure 13).
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Fig. 13. The projected mask on the omnidirectional image with the central fuzzy element.

As in section 3.3 the projection of each fuzzy kernel element covers many omni-
directional image fuzzy pixels. This projection constitutes a pixel neighborhood.
How to determine this neighborhood gray level? The solution presented in this ar-
ticle is to use the Choquet integral to give an upper and lower boundary of this gray
level. Equations (6) and (7) are extended in 2D to be used in image processing.
Equations remain the same but Ii stands for the gray level of the fuzzy pixel Pi, (.)
indicates a permutation such that I1 ≤ I2 ≤ IN . The An = Pn, ...,PN are binary
2D coalitions of pixels whose gray levels are superior or equal to In. The biggest
confidence that can be given to the coalition An is v(An) defined in (9).

v(An) = Supi=n..NΠ(Pi,Mu,v) (9)

where Mu,v is the projection of a fuzzy Prewitt kernel element, (Pi)i=1..N is the set
of fuzzy pixels intersecting Mu,v. The values of Π(Pi,Mu,v) are the intersection
heights of Pi and Mu,v as illustrated in figure 14. The computation of Π(Pi,Mu,v)
is made through a dichotomy approach.

Fig. 14. Computation of Π(Pi,Mu,v) as intersection height of Pi et Mu,v. The dotted
lines represent the approximation of the mask element.

Once the gray level of each kernel element is computed, the computation of the
filtered pixel gray level still remains to be done. For kernel element the Choquet
integral give a superior and inferior value. Two solutions are suggested.

• The first one consists in directly applying equation (3) with the kernel ele-
ments gray level values. The obtained images correspond to the superior and
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the inferior estimations of the filtered image. Because of the very low differ-
ence between these images, the resulting image is the mean between the two
obtained images.
• The second one consists in considering that the fuzzy kernel elements overlap

each other. Indeed the kernel is also a discretized quantity, then the localization
of kernel values is also imprecise. Therefore the Choquet integral on each
fuzzy kernel element allows to give an upper and lower boundary of its gray
level. Thus, the resulting filtered pixel gray level will also be characterized
by an interval. The kernel gray level computation is relatively simple because
the possibility representing the interaction of two contiguous kernel cells is
always equal to 0.5 (Figure 15).

Π(Mu,v;Mu′,v′) = 0.5 (10)

with 
u′ = u± k

v′ = v ± k′

k, k′ ∈ {−1, 0, 1}.

Fig. 15. Interactions between three overlapping fuzzy elements of the kernel.

4 Experiments

This section presents some results obtained with artificial and real images. For syn-
thetic images, all parameters are controlled and for real images the sensor has been
calibrated. In both cases an hyperbolic mirror was used. Five approaches are com-
pared in this paper. The first one convolves a combination of the classical Prewitt
kernels in all directions (horizontal, vertical and two oblique) with the omnidi-
rectional image. The second one unfolds the image onto a cylinder and applies
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the classical Prewitt kernel. Then, the filtered image is back-projected on the om-
nidirectional plane for comparison. The third one uses the proportional approach
presented in this paper. The last approaches, present two possible extensions using
fuzzy reasoning. These two variations depend if the Prewitt kernel is considered as
an imprecise quantity or not. Indeed, the first one assumes a Prewitt kernel made
of precise values and the second one considers each element of the kernel as an
imprecise quantity. It uses a Choquet integral to deal with the overlapping of the
these elements and to compute their values. Our filter is also compared with a well
known optimal edge detector: the Deriche filter [26]. The Deriche filter is an infi-
nite impulse response filter. Its adaptation to omnidirectional images is not easy. It
is quite impossible to project it with our algorithm. Nevertheless, it is interesting
to compare this optimal filter with our approach to know the performances an the
limits of our edge detector.

In the subsection 4.1, artificial omnidirectional images are used to indicate the per-
formances of the edge detector. We quantitatively evaluate the noise sensibility of
our filter and the good localization of the detected edges. Real omnidirectional
images are presented in subsection 4.2 to illustrate the different edge detectors re-
sponses in real conditions of use.

4.1 Quantitative evaluation of edge detector on synthetic images

The comparison between the different edge detector operators is difficult. The re-
sults can differ with the interactions between two edges, the luminance or the noise
sensibility. Some performance evaluation methods have been proposed in the liter-
ature. In this article, two measures are used: the first given by Fram and Deutsch
in [22,23], is based on the results analysis and the second, introduced by Canny in
[24] based on the filter response analysis.

In this section, artificial images are used because of the total control of various
parameters (camera, mirror, etc.). Indeed, calibration parameters such as phi and
xi (or those of the camera) have a very crucial role in the projecting scheme. Of
course, even if these two values are badly estimated, the edge detector will still
work as an edge detector. However, detected edges will not be coherent with the
real 3D scene. Thus, it is very important to use an efficient calibration algorithm to
avoid mistakes in edge detection.

The benchmark used to test our algorithm is composed of four generated images
containing intensities steps. Each image has a different intensity step value : 3,6, 12
and 20 gray levels (Figure16). The intensity of the darkest zone is 147 and remains
invariant.

Two transitions are studied: a vertical transition and an oblique transition to 60◦

from the vertical. As images contain various kind of noise coming from acquisition
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Fig. 16. (a) Noised artificial image with a 20 gray levels step. The considered region is
delimited by a white rectangle. (b) Zoom on the edge region. The Fram and Deutsch pa-
rameters are detailed on this figure.

process or the 3D scene itself, any edge detection algorithm has to be robust against
it. To model this behavior, test have been carried out by adding a gaussian noise of
null average and standard deviation equal to two gray levels to the image.

To obtained significant edges, a thresholding step is necessary. This step remove
the undesirable edges due to noise and preserve significant edges in the image.
The results depend on the threshold value. The best threshold values provide the
best ratio between desirable and undesirable edges. Nevertheless, these values are
not easy to compute. We have to compromise between the over-detection and the
under-detection. In this article we have chosen to extract the most complete edge,
even if we detect some noise.

First of all, the edge detector performances can be evaluated using two parameters
P1 and P2 defined by Fram and Deutsch. The first parameter value P1 characterizes
the freeness from noise of the edge detector output. The second parameter value P2

measures the distribution of the output over the length of the edge. Both parameters
responses are 1 for ideal performance and 0 for random output.

P1 =
ne

sig

ne
sig + (ne

noise + n0) nin

fntot

(11)

where ne
sig =

ne−ne
noise

1−
ne

noise
nin

and ne
noise = n0 nin

nout

P2 =

nr

w2
− {1−

[
1− ne

noise

nin

]we
1}[

1− ne
noise

nin

]we
1

(12)

Let Ze be the considered edge zone, ntot the total number of points flagged as edge

18



points by the edge detector, nin the part of ntot inside the edge region Ze and nout

the part outside the edge region (ntot = nin + nout). n0 and ne are respectively the
numbers of points flagged as edge points outside and inside the edge region after
thresholding. we

1 is the columns number of the edge region (2 columns). nr is the
row number of the edge region and w2 is the total rows number of the considered
zone. Finally, parameter f is used to normalize the edge detector output such as
the points proportion between edge region and non-edge region is conserved: f =

we
1

we
stan

, where we
stan is the columns number (30 columns in our case).

Approaches Vertical transition Oblique transition

P1 P2 P1 P2

Deriche 0.9638 0.9199 0.9114 0.9231

Prewitt 0.8765 0.9091 0.7992 0.8991

Anamorphoses 1.0000 0.9231 0.7636 0.9181

Proportional 1.0000 0.9231 0.7919 0.9194

Fuzzy without interaction 0.9904 0.7821 0.9194 0.9155

Fuzzy with interactions 1.0000 0.9674 0.9213 0.9168
Table 1
P1 and P2 parameters values for oblique and vertical 20 gray level intensity step.

Table 1 gives some values for P1 and P2 obtained with an amplitude step of 20 gray
levels.
With a vertical transition, fuzzy, proportional and anamorphosis approaches give
the best results with respect to P1 and P2 parameters. Some noise points are de-
tected as edges by the classical Prewitt filter, which penalizes the performances of
the edge detection. The Deriche filter detects a double edge on the omnidirectional
image, which reduces its P1 score.
With an oblique transition, the performances are slightly different. The Deriche
filter and the fuzzy approaches provides the best results and the edge is correctly
detected. The classical Prewitt filter still highlights a lot of noise points as edge
points and has the worst results for the P2 parameter. These tests seem to indi-
cate that taking into account the interactions between the kernel elements slightly
improves the performances of the edge detector.

To test the robustness of the edge detection with respect to noise level, the artifi-
cial image depicted in Figure 16 has been corrupted by noise. Indeed, a Gaussian
noise with an increasing variance σ (Figure 17) has been added to the image. The
operators performances are quantified by the parameter P1 which measures the sen-
sitivity of the detector in presence of noise.

Only three algorithms are presented for this test: Deriche, classical Prewitt and
Fuzzy. Figure 17 shows that the classical Prewitt filter is the most sensible to noise
and can not correctly detect the edge when σ > 10. The Deriche approach detect an
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Fig. 17. Comparative P1 values on Gaussian noised image

optimal edges with σ < 15. The results decrease until σ < 20. After, edge and noise
are confused. With our method, the results are better than with the Prewitt approach
but remains less efficient than Deriche one. This could be explained by the fact that
the Deriche operator is developed using optimal criteria. However, such detected
edges are not consistent with the real 3-D scene because the Deriche operator does
not consider the anamorphosis brought by the mirror.

To evaluate edge detector performances, Canny has defined three quantitative cri-
teria:

• Good detection: They should be a low probability of failing to mark real edge
points and low probability of falsely marking non-edge points. Since both
probabilities are monotonically decreasing functions of the output signal-to
noise ratio, this criterion corresponds to minimizing signal-to-noise ratio.
• Good localization: The points marked as edge points by the operator should

be as close as possible to the center of the true edge.
• Only one response to a single edge: This is implicitly captured in the first

criterion since when there are two responses to the same edge, one of them
must be considered false.

These criteria stand for a reference in image processing field. To evaluate the pre-
sented methods performances, Canny’s criteria will be used in the follow-up.

A method to quantify the operator performances, illustrated on figure 18, is to
search the correlation between the detected and the theoretical edge. This method
evaluate the rightness of the parameters and the good localization of the detected
pixels. The results highly depend on the selected pixels after the thresholding proce-
dure. Then, for each method, the best threshold has been chosen (the one providing
the less noise points). Thus, the performances are less dependent of the threshold-
ing procedure. The line minimizing the variance (deviation square sum) between
the abscissa xi of the pixels in Ze and the theoretical line is computed.

y = ax + b represent the theoretical edge with a = tan60 = 1.7321 and b =
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u0 − (v0 ∗ a) = −119.6152. If N is the detected pixels number, the parameters c
and d from the regression line x = cy + d are given by:

c =
n

∑
i(xiyi)−

∑
i xi

∑
i yi

N
∑

(y2)−∑
(y)2

(13)

d =

∑
i xi −m

∑
i yi

N
(14)

Fig. 18. Linear regression line. The gray area shows the pixels belonging to Ze. The light
gray pixels are detected by the operator and the dark gray pixels are not. The theoretical
edge, represented by a dotted line, is computed with all pixels in Ze. The linear regression
line, represented by a dark line, with the pixels detected by the edge detector.

The error percentage on the theoretical edge is given by |a−c
a
|. Figure 19 presents

the error percentage on the theoretical edge obtained with different filters.

Fig. 19. Percentage of error on the slope for an amplitude step of 20, 12, 6 and 3 gray levels
with five approaches

With a low amplitude step (inferior to 5 gray level), no algorithm correctly detects
the edge. Indeed the edge is totally lost within the noise. Moreover, all approaches
using a projection of the kernel introduce a kind of smoothing. This smoothing has
catastrophic effects when signal to noise ratio is low. When the amplitude step is
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bigger than 10 gray level, the error percentage decreases. The different approaches
provide good results. With an increasing gray level value, the fuzzy approach gives
the best results. The anamorphosis method gives the worst because of noise intro-
duced by the retro-projection.

In our approach, all the projected masks can be pre-computed. In this case our
computation time is equivalent to computation time obtained with a classical image
processing.

4.2 Real Images Experiments

Figure 20 presents one image used for real image testing. This image includes a
grid made of black parallel lines. Half of the lines are thin, the other half are thick.
Due to distortions brought by the projection onto the mirror, the black lines seems
to get thinner as one gets closer to the image center.

Fig. 20. Original image

We have illustrated a detail of the edges detected with different methods.
The classical Prewitt (Figure 21) edge detector is not adapted to omnidirectional
images. The kernel provides a double edge for the thin lines. But concerning the
thick lines, it highlights two boundaries at the image periphery that merge at the
image center. Thus, the edge detector effects are not the same depending on its po-
sition on the image.
The Deriche edge detector (Figure 26) presents very good results. The double edges
are correctly detected everywhere on the omnidirectional image. Nevertheless, the
size of each line edge is the same from the periphery to the image center. The De-
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(a) (b)

Fig. 21. (a) Classical Prewitt filter on the omnidirectional image and (b) Zoom.

(a) (b)

Fig. 22. (a) Classical Prewitt filter applied on the desanamorphosed image and (b) Zoom.

(a) (b)

Fig. 23. (a) Prewitt filtering using the proportional approach presented in section 3.3 and
(b) Zoom.

riche operator is not adapted the the reality of the 3-D scene captured by the camera.
The projective approach (Figure 22) presents better results. The thin lines are high-

23



(a) (b)

Fig. 24. (a) Prewitt filtering using the fuzzy approach presented in section 3.4 without
considering the interactions between the fuzzy kernel elements of the mask and (b) Zoom.

(a) (b)

Fig. 25. (a) Prewitt filtering using the fuzzy approach presented in section 3.4 and (b) Zoom

(a) (b)

Fig. 26. (a) Deriche filter applied on the omnidirectional image and (b) Zoom

lighted as in the classical approach. However, the thick lines two boundaries are
detected from the periphery to the center of the image. Due to projection and
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back-projection interpolation effects, the edges are a little noisy. The proportional
approach presented in section 3.3, provides slightly better results than with the
projective one (Figure 23). Results are less noisy, especially near the image cen-
ter, because only kernels are projected. Indeed, no interpolation effects are visible.
However, it is noticeable that the edge width varies depending on its location on the
image. This is due to the imprecision of the Prewitt kernel cells. Indeed, the pro-
jection of a kernel cell to the outer image boundary covers a lot of pixels, whereas
it covers only few pixel near the image center.
The fuzzy approach (Figure 25) presents the best results. The edges are correctly
identified on the omnidirectional image. The two edges of the thick lines are well
highlighted and remain separated from the periphery to the image center. As with
proportional approach, the thickness of the edge depends on its position on the
image because of the kernel imprecision.

Even if the optimal gradient operators (such as Canny-Deriche) provide a good
edge detection on omnidirectional image, their behavior remains the same all over
the image as if it was a perspective one. They discard the resolution variations.
Conversely, our approach keeps the same behavior on the cylindrical projective
space. This space, locally close to a perspective image, allows to detect edges in a
coherent manner with respect to the real scene. Indeed, the edge thickness depends
on the radial position on the omnidirectional image.

5 Conclusions

This article addresses the problem of image processing for omnidirectional images.
Classical operators using kernels such as Prewitt edge detector are designed for
scenes belonging to a camera fronto-parallel plane. The kernels are usually regu-
larly sampled using a step equivalent to the acquisition device sampling step. Thus,
their effects on the image are considered invariant to translation. Omnidirectional
images present strong radial resolution variations. Therefore, classical operators
are not adapted as their effect will depend on their position on the omnidirectional
image. A solution using the sensor geometry to define the operators has been pre-
sented. The filtering operator is defined on a regular space: the surrounding cylin-
der, and back-projected on the omnidirectional image. This method avoids project-
ing the image onto another space, thus introducing errors or approximations on
data. Moreover, fuzzy quantities have been used to deal with localization impreci-
sions brought by the image sampling effects. Tests carried out have shown that this
method allows a coherent edge detection on omnidirectional image. The capacity
to distinguish two close edges is conserved whatever their positions on the image
may be. Some improvements are already planned. For example, the approximation
of the projected kernel needs to be improved. In this case, a compromise has to
be reached between the precision and computation complexity. Another interest-
ing question concerns the quantitative criteria which evaluate the performance of

25



the edge detector. They are not adapted to the omnidirectional image geometry. An
adaptation of Fram and Deutsch (or other ones) quantitative criteria for omnidi-
rectionnal image is another real challenge and research is being carried out. The
proposed approach can be extended to all discrete summative kernel such as Sobel,
Laplacian, gaussian filter, smoothing filter, median filter, etc.
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