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Query-answering CG Knowledge Bases*

Michel Leclere and Nicolas Moreau

LIRMM, Univ. Montpellier 2, CNRS
161, rue Ada
34392 Montpellier, France
{leclere,moreau}@lirmm.fr

Abstract. Conceptual graphs are a good choice for constructing and
exploiting a knowledge base. In several of our projects (semantic portal
for e-tourism, exploitation of digital object corpus, etc.), we have to
query such bases. So it is natural to consider queries and bases as simple
graphs and to compute the set of all projections from a query to a base.
However, there is a problem of the return of this set of projections to
the user. More generally, the main issue is about the definition of the
notion of answers in an query-answering system made of knowledge bases
formalized by graphs (Conceptual Graphs, RDF (Resource Description
Framework) , Topic Maps, etc.). In this paper, we study several notions
of answers and some of their characterizations. We distinguish between
notions of answers by subgraphs of the base and answers by creation
of result graphs. For the last type of answers, we define completeness,
non-redundancy and minimality criteria of the answer sets and propose
several notions of answers w.r.t these criteria.

1 Introduction

Many knowledge applications involve the elaboration and use of knowledge bases.
Some examples are document management, digital object corpus management,
enterprise knowledge repositories, construction of semantic portals, teaching aid
management, the semantic web, etc. Two general contexts for using such bases
can be noted, whereby use of these bases presupposes a query @ specifying the
knowledge to be searched:

— Annotation context: resources are annotated by “descriptions” characteriz-
ing it; in this case, the exploitation is based on a search of resources whose
annotations contain specific knowledge (e.g. [1-3]). This type of exploitation
only requires a definition of a deduction notion allowing selection of descrip-
tions D (and thus the resources R linked to these descriptions) which are
deductions of the searched knowledge (). The set of answers to a query @)
on an annotation base B'is {R | (R,D) € B A D = Q};

— Knowledge base context: some unstructured data that comply with a formal
vocabulary defined by an ontology are stored in a base of assertions [4];
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a querying system allows extraction of knowledge from the base (moreover,
this type of exploitation could be used in the annotation context, considering
descriptions of a subset of resources). This type of exploitation also needs
a deduction notion to characterize the existence of an answer, but it also
requires a definition of what should be returned to a query @ on such a
knowledge base.

In this paper, we propose a preliminary answer to this question in the frame-
work of knowledge bases formalized by conceptual graphs [5]. The long-term goal
of this work is to define a query language for conceptual graphs and to implant
it as a knowledge server over the CoGITaNT framework [6]. This first approach
is a study of different notions of answers constructed from projections of a query
graph @ to a graph base B.

In a knowledge base querying system with a formal semantic, answers are
built upon “pre-answers” that are logical consequences of the base proving the
existence of answers. A query is often composed of two parts: an head which
specifies how answers are constructed from the “pre-answers”, and a body which
details how to select these “pre-answers”. In the case of a base only made of
conjunctive assertions, these “pre-answers” are the “smallest parts” of the base
which has the body of the query as a logical consequence.

In this work, we only consider such simple bases (i.e. without rules) formal-
ized by conceptual graphs [7], although our results could be directly applied to
other labeled graph formalisms, particularly to RDF/S knowledge bases of the
semantic web [8] (cf. [9] for an equivalence of the two formalisms).

Unlike relational databases, these formalisms allow the introduction of an
order relation over relations permitting the representation of a simple ontology
and, more importantly, the use of variables in the base. In the querying mecha-
nism, this leads to the problem of “pre-answer” equivalence and thus the problem
of the definition of the answer notion.

We consider queries whose body is a conceptual graph and focus on the
definition of several “pre-answer” notions. The main goal of this preliminary work
is to study redundancy problems of these “pre-answers” which arise regardless of
following operations applied to these “pre-answers” (e.g. specifyingthe concepts
to keep by a lambda, or constructing a new graph with these answers).

As far as we know, this topic has not yet been studied. Several proposals
have been made on querying relational databases with conceptual graphs [10-
12]. Many studies have been conducted in an annotation context (e.g. [13,2]). An
adaptation of relational algebra to the context of conceptual graph knowledge
bases has been studied by S. Coulondre [14]. The relational bias limits answers
to tuples of individuals over which several relational algebra operators are used
(moreover, this author did not seem to consider variable-free knowledge bases).
The most similar works were carried out by C. Gutierrez et al. [15], who studied
querying of knowledge bases of the semantic web formalized by RDF/S, but the
set of “pre-answers” is not fully detailed, particularly the problem of answer
redundancies.



The following section briefly introduces the main notions of the conceptual
graph formalism upon which our work is based. Section 3 defines the querying
model. Section 4 proposes several notions of answers and answer criteria based
on the answers redundancy problem. Finally, the conclusion proposes some ideas
for other types of answers.

2 SG formalism

The CG formalism we use in this paper has been developed at LIRMM over the
last 15 years [7]. The main difference with respect to the initial general model
of Sowa [5] is that only representation primitives allowing graph-based reason-
ing are accepted. Several extensions that preserve this link with graph theory
have been introduced (rules, constraints, conjunctive types, nested graphs, etc.),
however, for the sake of clarity and presentation, we only present the simplest
model in this paper.

Simple graphs (SGs) are built upon a support, which is a structure S =
(Tc, Tr, I, o) where T is the set of concept types, Tr is the set of relations
with any arity (arity is the number of arguments of the relation). T¢ and Tg
are partially ordered sets. The partial order represents a specialization relation
(¢ <tisread as “t’ is a specialization of t”). I is a set of individual markers.
The mapping o assigns a signature to each relation specifying its arity and the
maximal type for each of its arguments.

SGs are labeled bipartite graphs denoted by G = (Cq, Rg, Eq,lc) where
Cs and Rg are the concept and relation node sets respectively, F¢ is the set
of edges and Il is the mapping labeling nodes and edges. Concept nodes are
labeled by a couple t : m where ¢ is a concept type and m is a marker. If the
node represents an unspecified entity, its marker is the generic marker, denoted
%, and the node is called a generic node, otherwise its marker is an element of
I, and the node is called an individual node. Relation nodes are labeled by a
relation 7 and, if n is the arity of r, it is incidental to n totally ordered edges.

A graph G = (Cg, Rg, Eg, l¢) is consistent w.r.t. asupport S = (T, Tr, I, 0)
if =

— the labels of the concept nodes (resp. relation nodes) belong to (T x (TU{x*}))
(vesp. TR);

— the relation nodes satisfy their signatures defined by o.

— for each individual marker ¢ of G, types of concept nodes with this marker
have a greatest lower bound. This condition can differ if one considers a
conformity relation in the support, if one imposes a lattice structure to the
ordered set of concept types, if banned types are considered (a disjointness
type axiom), etc.

A specialization/generalization relation corresponding to a deduction notion
is defined over SGs and can be easily characterized by a graph homomorphism
called projection. When there is a projection 7 from G to H, H is considered to
be more specialized than G, denoted H < G. More specifically, a projection 7



from G to H is a mapping from Cg to Cy and from Rg to Ry, which preserves
edges (if there is an edge numbered i between r and ¢ in G then there is an edge
numbered i between 7 (r) and 7(c) in H) and may specialize labels (by observing
type orders and allow substitution of a generic marker by an individual one).

Conceptual graphs are provided with a first-order-logic semantics, defined by
a mapping denoted P.

The fundamental result of projection soundness and completeness establishes
the equivalence between projection and deduction on formulas assigned to SGs:
given two SGs G and H on a support S, there is a projection from G to H if and
only if #(G) can be deduced from ¢(H) and ¢(5). Completeness is obtained up
to a condition on H: H has to be in a normal form, so any individual marker
must appear at most once in it (i.e. a specific entity cannot be represented by two
nodes). An SG consistent w.r.t. a support can be easily normalized by joining
concept nodes with a same individual marker. The normal form of a consistent
graph G is denoted norm(G).

Two notions of equivalence can be defined over SGs: a syntactic equivalence,
and a semantic one. The syntactic equivalence is characterized by the existence
of an isomorphism between two graphs (which is a bijective mapping from nodes
of one of the graphs to nodes of the other preserving edges and without label
specialization). The semantic equivalence is characterized by the existence of a
projection from the first graph to the normal form of the second, and from the
second to the normal form of the first and corresponds to a logic equivalence
between formula associated with graphs: &(S) = &(G) < P(H) iff there is a
projection from G to norm(H) and a projection from H to norm(G) (denoted
G=H).

This equivalence relation defines classes of equivalent SGs. SGs in figure 1
are from the same equivalence class. In each class, some graphs contain useless
knowledge repetitions (redundancies) and there is a sole smallest graph with no
redundancy, called the irredundant graph of the class (cf. [16]). A graph that is
not in normal form contains redundancies (if two concept nodes have the same
individual marker).

A subSG H = (Cy, Ry, En,lg) of an SG G = (Cg, Rg, Eg,lg) is an SG,
where :

— Cyg CCq and Ry C Rg
— Ejy is a restriction of Eg to elements of Cy X Ry
— [y is a restriction of lg to elements of H.

A strict sub-SG of G is a sub-SG with a strictly inferior number of nodes.

Characterization : An SG is said to be redundant if it is not in normal form
or if it is equivalent to one of its strict sub-SGs. Otherwise, it is said to be
irredundant .

! Note that our irredundant definition is stricter than that given in [7].



Property : [16] An equivalence class contains one and only one irredundant SG,
which is the graph (single up to isomorphism) with the smallest set of nodes.

An algorithm to compute the irredundant form of an SG, whose complexity
is polynomially related to the complexity of the projection algorithm, has been
described in [17].

Tc T Tr2
| /\ |

Cube  big red geo_rel

higher touch

AN / , —,
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(a) The support (b) An SG graph G

=
a2 o0)
e

(c) Normal form of G (d) Irredundant form of G

Fig. 1. Three equivalent SGs built on a support.

3 Studied querying model

The chosen context is a knowledge base composed of assertions of entity exis-
tences and relations over these entities, called facts, and stored in a single graph
(not necessarily connected) consistent w.r.t. a given support. A support can be
seen as a basic ontology. This framework does not put forward hypotheses on
how facts have been collected and does not prohibit the existence of metadata
(date, etc.) on facts composing the base (e.g. a selection mechanism of facts to
be queried based on metadata). The only important hypothesis put forward is
that all of the facts of the base to be queried are consistent relative to each other
(with respect to individual markers) and consistent w.r.t. the support. Figure
1(a) presents the support used in the following examples of the paper.

The SG base is assumed to be normalized. The base can be redundant because
the irredundancy of the base does not solve the problem of answer redundancies,
and computation of the irredundant form is expensive as the base can be large.
Computation of the normal form is linear in the size of the base. Moreover, it
is easy to write an incremental algorithm (called for each addition of knowledge
in the base and whose complexity depends only on the size of the addition) for



the normalization, whereas it seems difficult to find such an efficient algorithm
for computation of the irredundant form.

From propositions of querying languages proposed for such knowledge base
(e.g. SPARQL [18]), their definitions are clearly based on several mechanisms:

1. Adaptation of the base to the query, which consists of computing a base D’
from a base D by application of a set of updating operations P (e.g. rule
applications).

2. Selection of relevant parts of the base that respond to the query. This se-
lection is made of “patterns” which specify selection criteria of base parts
useful for contruction of the answer. These patterns have the same formal-
ism as the base or indirectly of the same formalism because of the addition
of variables. Thus these patterns are used like filters to select relevant base
parts.

3. Verification of properties allowing to impose complementary selection criteria
differing from a simple assertion of relations between entities : path existence,
constraints (not present in the representation language) on the entity linked
to a variable.

4. Construction of an answer from these parts, which is a specification of the
type of answer to return (tuples of values associated with query variables, a
graph built from all parts, the number of answers, etc.).

The second point is the core of the querying mechanism. Constructing a
query boils down to making assertions with unknown values (variables) which
is information to be retrieved. When the formalism allows the introduction of
variables in the base, it is important to know what to do when these variables
are linked with query variables.

In our formalism, the selection criterion is a given SG @, called the query
SG. There is no constraint on the query (in terms of relevance, normalization or
irredundancy). However, it seems natural to verify the consistency of the query
w.r.t. the support of the base to avoid queries with no links to the base. One can
consider to compute the irredundant form of the query as the size of the query
is generally small. One can consider an unconnected query as several queries.

Therefore as one considers formalisms provided with a formal semantic, one
can define “relevant parts” as “the smallest subgraphs” of the base whose query
graph is a logical consequence; such subgraphs are called pre-answers in [15].
In conceptual graph formalism, the existence of an answer is directly linked
with the existence of a projection and a pre-answer is just the query image of a
projection.

Definition 1 (Proofs of answers). Let B be an SG base and Q an SG query,
a proof of answer is a projection w from @ to B. The set of proofs of answers
from @Q to B is denoted I1(Q, B): II(Q, B) = {m; | m; : Q — B is a projection}.

Definition 2 (Images of proofs). An image of a proof (or pre-answer), de-
noted 7(Q), is a sub-SG of B, image of the proof of answer 7 from Q to B.
The images of proofs sequence from a query Q to a base B, denoted IP(Q, B),
is IP(Q,B) = (m1(Q), ..., 7o (Q)), where n is the size of II(Q, B).



All examples of the paper are from base and query of figure 2. Base is the
SG of the figure 1(d). There are six projections of the query to the base, and
thus six images of proofs. We have named some vertices (c1, r2, etc.) of graphs
to refer directly to one vertex or to distinguish different subgraphs (see figure
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(a) Query (b) Base

Fig. 2. Base and query (with named vertices).

Therefore answers are based on images of proofs, one may have to return the
same subgraph of B several times. In the example of figure 2, projections

T, = {(Caa Cl)v (7"[;, 7"2), (va C3)a (Tc, T3); (Ccv 64)} and Ty = {(Caa Cl)v (rbv 713)a (va 04)7
(re,72), (Ce,c3)} define the same subgraph (Rs on figure 3). One can choose two
ways to solve this problem:

— Considering it as the same answer (several proofs for the answer)

— Differentiating answers by representing the projection in answer graphs (e.g.
by adding id of query vertices to their images vertices in answers).
We consider only the first case, as we want to express answers in the same

language (structure and vocabulary) as the base and query.

4 Different notions of answers

In this section we study several kinds of answers. The first type of notion is to
keep base subgraphs, similary to images of proofs.

4.1 Answering by base subgraphs
The most basic answer that can be returned is the set of images of proofs.

Definition 3 (Answer by image subgraphs). The set of images of proofs of
a query Q in a base B, noted Ryp(Q, B), is Rip(Q, B) ={n(Q) | 7 € II(Q, B)}.

This answer notion can be used to select exploration start points of the base
(by focusing a subgraph of B), to explore the base or to be a first step of base-
updating queries. Figure 3 shows all of the five subgraphs answering the query.
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Fig. 3. The five subgraphs composing R;p(Q, B) .

4.2 Answering by base-independent graphs

In many cases, the query language should allow knowledge extraction rather than
“pinpointing” knowledge in the base. Answers are “copies” of base subgraphs.
Thus, answers result from the construction of isomorphic graphs of images of
proofs.

Since answer graphs are constructed up to an isomorphism, two isomorphic
graphs should be considered equal. The set of answers is no longer a set of sub-
graphs of B, but rather a set of graphs isomorphic to images of proofs subgraphs
of B. In such a set of answer graphs there are no two isomorphic graphs.

Definition 4 (Graph set (iso-set)). A graph (iso-)set {Gy,...,Gn} is a set
of graphs in which, for all i,j with i # j, G; is not isomorphic to G;.

Hereafter, the term “set of graphs” is short for the preceding iso-set notion
(a set has no more two isomorphic graphs)?.

An iso-answer is an answer notion corresponding to computation of all iso-
morphic graphs to images of proofs. On the example, R;so(Q, B) is equal to
graphs in figure 4.

Fig. 4. Graphs composing Rrso(Q, B) .

2 The images of proofs sets can contain isomorphic subgraphs (if they are not the
same subgraph of the base).



Definition 5 (Iso-answer). An iso-answer from @ to B is an isomorphic
graph corresponding to an image of a proof from @ to B. The set of iso-answers

is Riso(Q, B) = {G | where G; € Rrp(Q, B) with G; isomorphic to G}

With this answer notion, the link with the base is lost (particularly when
the answer has no individual marker) since it is unknown which nodes of the
base corresponds to a generic node of an answer, or even how many images of
proofs correspond to the same answer graph 3. Only the proof of the existence of
a particular knowledge in the base is preserved with this notion. Thus, one can
question the relevance of only considering isomorphism (i.e. a syntactic equiva-
lence) as an equivalence criterion. In our example, graphs R;, and R, in figure 4
both state that “there is a cube on top of a cube”.

It seems advisable to detect equivalent answers (in terms of semantics) and
to only keep one graph of each equivalent class. We define a criterion of such a
set of answers :

Definition 6 (Without equivalence criterion). A set of answers R(Q, B) C
Rrso(Q, B) is “without equivalence” iff VG; € R(Q, B), 3G; € R(Q, B) with

Two types of equivalences arise. The first is from the implicit relation of
equality of two nodes having the same individual marker. This type of equiv-
alence is avoided by the base normalization; therefore all images of proofs are
in normal form (even if the query is not normalized). The second comes from
the intrinsic redundancies of the language, and cannot be handled previously,
because even if the base and query are irredundant, proof subgraphs are not nec-
essarily irredundant (in the example, image of a proof Rs is redundant despite
that base and query are irredundant).

In each equivalence class, there is a single graph (up to isomorphism) that
is the smallest graph of his class: it is the irredundant form. It seems natural to
choose this graph to represent one equivalence class of images of proofs. In the
example, Rrrr(Q, B) is equal to graphs R, and R, in figure 4.

Definition 7 (Irredundant answers). The set of irredundant forms of images
of proofs from Q to B is Rirr(Q,B) = {Irr(G) | G € Rrso(Q, B)}.

This notion of irredundant answers may seem strange because one may think
that an answer could not be isomorphic to an image of a proof. The following
property holds that the irredundant form of each image of a proof is itself an an-
swer (up to isomorphism) and that the set R;rr(Q, B) does not have equivalent
answers.

Proposition 1. Rrgrr(Q, B) C Rrso(Q, B) is “without equivalence”.

3 The open world assumption of knowledge bases does not indicate whether two dif-
ferent but isomorphic images of proofs represent the same “situation” of the world,
or two similar “situations”.



Proof. For all G € Rrrr(Q, B), there is G’ € R;p(Q, B) such that G is isomor-
phic to Irr(G’). So there is a projection 7’ from @ to B such that 7/(Q) = G'.
There is also, by definition of the irredundant form, a projection 7, from G’ to
B such that 7,.(G") = Irr(G’). Thus there is a projection 7 = 7, o’ from Q to
B such that 7(Q) = Irr(G") and so isomorphic copy of Irr(G’) is an answer of
Rrso0(Q, B). The unicity property of the irredundant form (up to isomorphism)
in each equivalence class and our notion of graphs defined up to an isomorphism
lead to the conclusion that R;rr(Q, B) is without equivalence.

The notion of answers without equivalence is not sufficient because, as one
does not want to keep two equivalent answers, only answers that add new knowl-
edge compared to other answers should be conserved. In the example, answer R,
states that “there is a cube that touches cube A and that is on top of a cube”
and answer Ry states that “there is a cube on top of a cube”, so knowledge of
Ry is expressed by R,. So we introduce a new incomparability criterion in the
next section.

4.3 Sets of incomparable answers

Two answers are comparable if knowledge stated by the first is deducible from
the other. Once there are comparable answers in a set of answers, there is re-
dundancy between them. The idea is to eliminate this redundancy by keeping
only incomparable answers.

Definition 8 (Incomparability criterion). A set of answers
R(Q,B) C Rrso(Q,B) is “without redundancy” when all of its answers are
incomparable: VG;,G; € R(Q, B) with G; # G;, G; £ G,.

Given a set of answers Rrso(Q, B) there is not a single subset “without
redundancy” (e.g. {R4} or {Rp}). A natural constraint is to make such a subset
to not remove too many answers, i.e it has to be maximal by inclusion.

Definition 9 (Maximality criterion). A set of incomparable answers R(Q, B)
Riso(Q, B) is “mazimal” when no other answer can be added without adding
redundancy: VG € Ryso(Q,B) \ R(Q, B), 3G' € R(Q, B) such that G' < G or
G<G.

This notion still does not ensure unicity of such a subset. One can want to con-
strain a bit more the notion of maximality by forcing the subset of answers R to
be complete, as one wishes that all of the answers of R;so(Q, B) can be deduced
from answers of the subset. We thus extend the logical interpretation operator @
from SGs to sets of SGs by taking the conjunction of logical formula associated
with each graph of the set : so if R = {r,..7}, ®(R) = D(r1) A ... A D(ry).

4 One could distinguish cases of a simple knowledge inclusion from cases of general de-
duction by using ontology knowledge, depending on the level of ontology knowledge
appropriation by the user.

c



Definition 10 (Completeness criterion). A set of answers
R(Q7B) C RISO(QvB) is complete Zﬁl QS(S)’Q(R(Q’B)) ': QS(RISO(QvB))

We call the normalized disjoint union (NormalizedDisjointUnion) of a set
of graphs FE, the normal form of the graph resulting from the join of nodes and
edges (and labeling functions) of graphs of E.

Proposition 2. A set of answers R(Q,B) C Rrso(Q,B) is complete iff the
normalized disjoint union of R(Q, B) is more specialized than all of the answers
of Riso(Q, B), i.e. VG € Rrs0(Q, B), NormalizedDisjointUnion(R(Q, B)) <
G.

The proof is trivial, note that ®(NormalizedDisjointUnion(R(Q,B)) =
P(R(Q, B)).

Corollary 1. A set of complete incomparable answers is mazimal.

The completeness criterion still does not ensure unicity of a subset of answers
(because of equivalent answers). A natural choice is to take the smallest set of
answers. This leads to the definition of a minimality criterion based on a notion
of answer size and equivalence of answers sets.

Definition 11 (Answer size). The size of a set of answers R(Q, B) is the sum
of the number of nodes of all answers: Xycr(q,pycard(g).

Definition 12 (Answers sets equivalence). Two sets of answers R(Q, B)
and R'(Q,B) of a query @Q on base B and consistent w.r.t. a support S are
equivalent iff #(S) = P(R(Q,B)) < ¢(R'(Q, B)).

Definition 13 (Minimality criterion). A set of answers R(Q, B) C Rrso(Q, B)
is minimal iff there is not an equivalent set of answers with a strictly smaller
size.

Proposition 3. R(Q, B) is minimal iff R(Q, B) C Rirr(Q, B).
Corollary 2. Fach minimal set is unique (up to isomorphism,).

The previous proposal and its corollary can be easily deduced from irredun-
dant graph properties.

Completeness and minimality constraints define a notion of answer that
seems more appropriate when one searches to retrieve knowledge stored in a
knowledge base.

Definition 14 (Most specific answers). The set of the most specific irre-
dundant answers is Ryrn(Q, B) = {G € Rirr(Q, B) | #G" # G € Rirr(Q, B)
with G' < G}.

On the example, Ry (Q, B) is equal to graph R, in figure 4.



Theorem 1. Ry rn(Q, B) is the only complete minimal and incomparable sub-
set of answers of Rrso(Q, B).

Proof. e Incomparability: Ry;n (@, B) is by definition composed of the most
specific elements of Rrrr(Q,B), and as two elements of Ripr(Q, B) are not
equivalent, all of the answers of Ryrry(Q, B) are incomparable. e Complete-
ness: Rrrr(Q, B) is complete because each answer of Ryso(Q, B) is equivalent
to a graph of Rrrgr(Q,B). By the definition of Ry rn(Q, B), one deletes in
Rirr(Q, B) only G; which is more general than another graph of Rrrr(Q, B).
Thus, Ry in(Q, B) is complete. o Minimality and unicity: Rayrn(Q, B) is a
subset of Rrrr(@, B), thus it is minimal and unique w.r.t. corollary 2. a

One can define an answer notion like that on the most specific element, but
this time with the most general ones. This notion is like a “summary” of the set
of answers: not all of the answers are returned, but a minimal subset generalizing
all of the answers.

Definition 15 (Summary). A set of answers R(Q,B) C Rrso(Q,B) is a
summary iff it is minimal and it generalizes all of the answers of Riso(Q, B),
that is VG € Rrso(Q, B), 3G’ € R(Q, B) such that G' > G.

Definition 16 (Maximal answer). The set of all of the most general irredun-
dant answers is Ryax(Q,B) = {G € Rigr(Q,B) | 3G’ # G € Rirr(Q, B)
with G' > G}.

Property 1. Ryax(Q,B) is the sole minimal and maximal subset of incompa-
rable answers of Rrso(Q, B).

The proof is similar to the proof of property 1. In the example, Ryrax(Q, B)
is equal to graph R, in figure 4.

4.4 Case of bases composed of (only) individual concepts

A special case is when a knowledge base does not contain any variables (cor-
responding to relational databases). In such bases, there is only a kind of re-
dundancy from redundant relations between concepts (relations whose type is
comparable and with the same ordered set of neighbors). Computation of the
irredundant form is thus linear and incremental.

Proposition 4. In an irredundant base whose concepts are all individual, all of
the images of proofs of any query on this base are mon-isomorphic and irredun-
dant.

Proof. A base in normal form and which only contains concepts that are indi-
viduals does not contain concept nodes with the same label (nor comparable
concept nodes in terms of specialization/generalization). Moreover, as the base
is irredundant, it does not contain redundant relations between concepts (all the
more with the same label). So there is not any isomorphism (or projection) from



a subgraph of the base to another (except identity relation). Images of proofs
are base subgraphs so they are non-isomorphic. They are irredundant because
none of the base subgraph can be projected in one of its strict subgraphs (since
there is no projection from a base subgraph in another, except identity). a

Corollary 3. If B is irredundant, for any query Q there is a bijection from the
set of images of proofs Rrp(Q, B) to their copies Rrso(Q, B), and Rrso(Q, B) =
RIRR(Q7 B) .

5 Conclusion

In this paper we define two main notions of answers to a query in the knowledge
base querying framework: the first is composed of base subgraphs that can allow
browsing in the knowledge base or that can be used as a first step to update
queries; the second consists of graphs independent of the base. We define several
good criteria for this last notion: the non-equivalence of answers, the incompa-
rability of answers, the completeness of a set of answers, and the minimality (in
terms of size) of a set of answers. The most interesting notion of answer w.r.t.
these criteria is the set of the most specific irredundant answers. However, in
one of our projects, we need the notion of answers of the set of most general
irredundant answers, as these answers are used as the body of new queries in
another knowledge base.

An another answer notion, not developed in this paper is the construction of
a graph resulting from the disjoint sum of all answers. the definition of such a
notion gives a closed querying system (query, knowledge base and answer are in
the same formalism) and allows us to reuse the result of a query as a knowledge
base (nested queries).

Finally, in this paper, we overcome redundancies between answers by delet-
ing answers. Another possibility is to overcome redundancies (when it is not a
redundancy of the knowledge base itself) by completing answers by the addition
of knowledge from the base allowing to differentiate redundant answers. We are
currently working on a definition of such an answer contextualization mecha-
nism. This kind of mechanism seems relevant for such knowledge bases because,
contrary to relational databases in which a hypothesis is put forward that the
creator of the request knows the schema of the database, they are by definition
weekly structured and the only reasonable hypothesis put forward is that the
creator can verify that his query is correct w.r.t. the ontology. A contextualiza-
tion mechanism thus allows to respond to queries of the type: “What knowledge
can I have on animals owned by Mary?” with a set of such answers : { “Mary
owns a pedigree animal”, “Mary owns a cat offered by her father”, “The preferred
animal that Mary owns is a cat”} rather than the only answer “Mary owns a
cat”.



References

11.

12.

13.

14.

15.

16.

17.

18.

. Hollink, L., Schreiber, A., Wielemaker, J., Wielinga, B.: Semantic annotation of

image collections. Knowledge Capture (2003) 41-48

Moreau, N., Leclere, M., Chein, M., Gutierrez, A.: Formal and graphical anno-
tations for digital objects. In: SADPI ’07: Proceedings of the 2007 international
workshop on Semantically aware document processing and indexing, New York,
NY, USA, ACM (2007) 69-78

Dieng-Kuntz, R., Corby, O.: Conceptual Graphs for Semantic Web Applications.
Conceptual Structures: Common Semantics for Sharing Knowledge: 13th Interna-
tional Conference on Conceptual Structures, ICCS 2005, Kassel, Germany, July
17-22, 2005: Proceedings (2005)

Fensel, D., Decker, S., Erdmann, M., Studer, R.: Ontobroker: Or How to En-
able Intelligent Access to the WWW. Proceedings of the 11th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada (1998)
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

Genest, D., Salvat, E.: A platform allowing typed nested graphes: How cogito
became cogitant. In: Proceedings of the Sixth International Conference on Con-
ceptual Structures (ICCS’98). Volume 1453 of LNCS., Springer (1998) 154-161
Chein, M., Mugnier, M.L.: Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle 6(4) (1992) 365-406

Hayes, P.: RDF Semantics. Technical report, W3C (2004)

Baget, J.F.: Rdf entailment as a graph homomorphism. (2005) 82-96

. Sowa, J.F.: Conceptual graphs for a data base interface. IBM Journal of Research

and Development 20(4) (1976) 336-357

Boksenbaum, C., Carbonneill, B., Haemmerlé, O., Libourel, T.: Conceptual graphs
for relational databases. In: Proceedings of the first International Conference on
Conceptual Structures (ICCS’93). Number 699 in LNAI, Springer (1993) 142-161
Haemmerlé, O., Carbonneill, B.: Interfacing a relational databases using conceptual
graphs. In: Proceedings of the Seventh International Conference and Workshop on
Database and Expert Systems Applications (DEXA’96), IEEE-CS Press (1996)
499-505

Genest, D., Chein, M.: A content-search information retrieval process based on
conceptual graphs. Knowl. Inf. Syst. 8(3) (2005) 292-309

Coulondre, S.: Cg-sql: A front-end language for conceptual graph knowledge bases.
Knowledge-Based Systems 12(5-6) (1999) 205-325

Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web
databases. In: PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, New York, NY,
USA, ACM Press (2004) 95-106

Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching. In:
Proceedings of the 7th Annual Workshop on Conceptual Structures: Theory and
Implementation, London, UK, Springer-Verlag (1993) 239-251

Mugnier, M.: On generalization/specialization for conceptual graphs. Journal of
Experimental & Theoretical Artificial Intelligence 7(3) (1995) 325-344
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical
report, W3C (2007)



