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Abstract— This paper presents the design and the optimiza-
tion of a parallel machine-tool composed of (i) an actuated
parallel 3-dof mechanism (a linear Delta) and (ii) a measuring
6-dof mechanism (a Gough platform)). The interest to use a
measuring device independent of the actuation device is shown
and the modeling of both devices used for the optimization is
explained. Then, the optimization is presented; it is performed
to obtain the best resolution for the measuring system evaluated
at the tool level.

I. INTRODUCTION

Machine-tool (MT) builders are always looking for better
performances in terms of accuracy, speed and stiffness.
Naturally, machine-tool designers took their inspirationfrom
recent advances in robot kinematic architectures, in partic-
ular Parallel Kinematics Machines (PKMs) [1] [2] [3] [4].
PKMs have nowadays shown their efficiency in some robotic
domains and commercial robots are widely available today
[5].
Among the transfers from well known robotic PKMs to the
machine tool industry, one can cite:

• The hexapods, where six variable length struts link a
moving traveling plate to a base. The first built PKM
belonging to this family was proposed by Gough [6],
and the first machine tool inspired by this kinematics
was the Variax [7]. Until today, a lot of prototypes are
built:

– The Hexapode 300 of the company CMW,
– The Ingersoll H0H600 machine-tool,
– The Mikromat 6X Hexapod,
– The Toyoda HexaM [8]. . .

• The Delta kinematics invented by prof Clavel [9] is
lower mobility PKM (displacements of the traveling
plate are restricted to three translations). It is a light
weight structure having intrinsically high dynamic per-
formances. Robots based on this kinematics are widely
available (see, for example ABB flexpicker). Machine-
tools prototypes were also designed: UraneSX [10] that
can reach up to 4g in its workspace or Krause Quickstep
[11].

Whatever the kinematics is, calibration is required to get the
best of the performances of a given mechanical architecture.
To guarantee optimal performances of the machine during
its life-cycle, a machine needs to be re-calibrated. This is

a non-productive phase of machine life-cycle that affects its
availability for machining.
Moreover, some errors due to elasticity of machine elements,
hysteresis or backlashes are very difficult to model and to
identify [12] [13].
Indeed, the basic problem in machining is to impose accurate
tool positioning regarding the part to be machined. The
calibration tries to identify model parameters that reduce
the positioning error of the tool. Once these parameters are
identified, the model runs ”open loop”, ie machine behavior
is expected to be the one that has been modeled and identified
whatever the stress in machine components is.
For Cartesian classical machine tools, the identification can
be done axis per axis. Parameter identification can be very
accurate as the problem is decoupled. Identifying PKM
parameters according to this principle is not possible as all
axes are coupled in the model. A full calibration of the model
must be done, but it always ends in a compromise between
the number of parameters and the numerical stability.
The best way to deal with accuracy is to be always able
to know the tool position accurately, ie with a quality as
close as possible to a metrological one, assuming that the
structure of the machine has not a metrological quality
as it is subject to deformations under high stress in its
components. One way to proceed is to use non-contact full
pose measurement system, like vision system for example
[14] [15]. But there is still ongoing research on this topic
and, even if algorithms are available, they are not able today
to guarantee the requested resolution on the whole workspace
of the machine. Moreover, the refreshment rate is not high
enough for the control loop, but it is still a promising way
of research for the future.
Another possibility is to build a mechanical structure, with
metrological considerations that is able to give information
to compute the real tool pose.
This solution is the purpose of this paper and will be
discussed in the following sections.
To prove the feasibility and the efficiency of this concept,
a PKM MT architecture (Delta) must be firstly selected and
then a measuring architecture (Gough platform) is defined.
Justification, description and modeling are given in section
II. As it is well known that behavior of PKMs depends
strongly on their design parameters, an optimization for



both mechanisms is done in section III. The results of this
optimization and the corresponding design are shown in
section IV while conclusion and future works are introduced
in section V.

II. MACHINE DESCRIPTION

A. Selection of the architectures

1) Actuation architecture: Basic machining operations
require three translational degrees of freedom (dof). We
must select an architecture that provides these dof while
constraining the three rotational dof to a constant value.
Several hybrid mechanisms or PKMs are able to provide
these dof [16]. Among them, one can cite:

• the Tsai mechanism [17],
• the Star mechanism [18],
• Speed-R-Man mechanism [19]. . .

The architecture that guarantees intrinsically the highest
dynamic performances is the Delta. For MTs, linear
actuation is preferred to make is as mechanically stiff
as possible. So the traveling plate will be actuated by a
linear delta, as in the UraneSX MT. The Delta architecture
theoretically imposes a constant orientation of the traveling
plate and allows controlling three translations. But due to
manufacturing and assembly errors, elastic deformations of
machine elements it is not possible to guarantee that no
parasitic rotation of the platform occurs. These rotations
impairs machine accuracy because of the varying lever arm
(depends on tool length and position of tool cutting edge)
between the tool extremity and the moving platform. The
consequence is that the measuring device to be integrated to
the machine must be able to measure the X, Y, Z position,
but also the parasitic rotation to provide the ability for the
control to compensate for all errors.

2) Measurement architecture: As mentioned before, a full
pose measurement system is required. Non contact system
based on vision are, today, not accurate enough and cannot
guarantee a fast refresh rate compatible with control loops.
Concerning the existing non contact measuring system based
on laser (like laser tracker), they are too expensive and cannot
measure the orientation of the measured object. We propose
here to rely on a mechanical measuring system. A strong
constraint on this measuring system is that it will be attached
on one side to the fixed base of the machine and on the other
side on the moving traveling plate. The problem is that the
traveling plate is expected to move in machine workspace
with a high acceleration capability. The measuring system
must not reduce this acceleration capability. The consequence
is that it must be light weight. But, this mechanical measur-
ing device must not transmit any efforts to insure a good
accuracy. The kinematics of the system must take account
of it. Moreover collision considerations with the actuation
architecture must be taken into consideration for avoiding
any restriction of machine workspace.
Several architectures are available to measured orientation
and positions: serial ones or parallel ones. Serial mechanical

Fig. 1. Measuring device location

architectures are rejected because of their dynamics which
are not good enough to follow the Delta displacement. On the
other hand, a PKM measuring system can have the following
advantages:

• Lightweight, so compatible with high accelerations
• Measure the orientation and the position of its end-

effector
• Good resolution to detect small displacements. . .

The kinematics of the parallel measuring system must be
chosen. First of all, only distance measurements are consi-
dered because it is easier to measure accurately a distance
than an angle and the problem of lever arms is reduced.
The simplest architecture, which can be used considering
this, is the Gough platform. Moreover, this mechanism is
very compact and can be placed behind the Delta mechanism
away from the working area (see Fig. 1).

B. Modeling of the Delta mechanism

First of all, some hypothesis are made to have the simplest
model as possible. The motor axis are placed at120˚ to each
other. The motors are linear. The only useful parameters of
the delta mechanism are the difference between the radius
of the base and the radius of the traveling plate∆R =
RB − RTP and the length of the armsL.
Figure 2 shows the geometrical parameters of the Delta
mechanism. The coordinates of the traveling plate centerCD

arexDelta, yDelta, zDelta and the joint positions areq1Delta
,

q2Delta
, q3Delta

.
The Delta mechanism is optimized from the condition num-
ber of the jacobian matrixJDelta which links operational
speedẋ to joints velocitiesq̇:

ẋ = JDeltaq̇ (1)

The matrixJDelta is given by:

JDelta = J−1
x Jq (2)



(a) 3D view

(b) Top view

Fig. 2. Delta geometrical parameters

where

Jx =




xDelta − ∆R

2 yDelta + ∆R
√

3
2 zDelta − q1Delta

xDelta yDelta − ∆R zDelta − q2Delta

xDelta + ∆R
2 yDelta + ∆R

√
3

2 zDelta − q3Delta





(3)

Jq =




zDelta − q1Delta

0 0
0 zDelta − q2Delta

0
0 0 zDelta − q3Delta





(4)

C. Modeling of the Gough platform

Figure 3 presents the parameters of the Gough platform.
Points AHi which represents the centers of the spherical
joints on the base are placed on a circle of radiusrb. Points
BHi which represents the centers of the spherical joints on
the traveling plate are placed on a circle of radiusrTP . Then,
three lines passing by the base centerO and the traveling
plate centerCH and separated by an angleα0 are defined.
Points AHi (resp.BHi) are then located symmetrically to
these lines, two by two, with an angle ofαb (resp.αTP ).
The joint position are notedqiHexa

(i ∈ [1, 6]) and the
coordinates of the traveling plate centerCH are xHexa,
yHexa, zHexa.
For the optimization of the Gough platform, we need the

jacobian matrix which can be calculated as follows:

JHexa =




u1 −u1 ∧ BH1CH

...
...

u6 −u6 ∧ BH6CH





−1

(5)

with
ui =

AHiBHi

qiHexa

(6)

(a) 3D view

(b) Top view

Fig. 3. Geometrical parameters of the Gough platform

III. OPTIMISATION OF THE ROBOTIC DEVICES

A. Presentation

The optimization consists in finding the best dimensions
of the two robotic devices. The criterion of the optimization
is very important and depends on the features we want to
improve on the robots. The following paragraphs explain the
chosen criteria.

B. Optimization of the Delta Mechanism

The condition number of the jacobian matrix described by
(2) is used as the Delta mechanism optimization criterion.
The goal of this optimization is just to insure that the Delta
robot have an homogeneous behavior in the whole workspace
in term of small displacements.
Figure 4 shows the maximum condition number of the
jacobian matrix for a given workspace of0.3 × 0.3 × 0.3
m3 according to the length of the armsL and the difference
between the base radiusRB and the traveling plate radius
RTP . The dashed line represents the minimum of the worst
condition number of the jacobian matrix. For a given length
of the Delta mechanism armsL, ∆R can be calculated by
the equation of this line:

L = 1.15∆R + 0.25 (7)
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Fig. 4. Maximum of the condition number of the Jacobian matrix in a
0.3 × 0.3 × 0.3 m3 workspace

C. Optimization of the Gough platform

1) Introduction: The Gough platform needs to have a
good repeatability, a good resolution and a good accuracy
since it is the measuring system. This three positioning
capabilities are not obtained in the same way.
To have a good repeatability, a particular care must be carried
to the realization of the joints. Indeed, backlashes or friction
in a joint is the main cause of a bad repeatability.
Concerning the robot accuracy, calibration is required to
eliminated the positioning errors due to the difference be-
tween the nominal geometrical parameters and the real ones.
Concerning the Gough platform, the calibration is very
simple because the measuring legs can be calibrated with
an artefact one by one and the position of the spherical joint
centers on the traveling plate and the base can be measured
with a coordinate measuring machine.
Finally, the last capability is the resolution of the robot.
Resolution can be optimized during the design phase because
it depends on the kinematical structure of the mechanism. We
can optimize the dimensions of the robot links to improve
the robot theoretical resolution. It is the subject of this part.

2) Optimization criterion: As was mentioned above the
main purpose of the measuring Gough platform is to give
information regarding the position of the tool only; this
device has then to be optimized regarding its capability to
give a good resolution for the tool positionPosTool. Any
small displacement of the Gough platform traveling plate,
in position and orientation (respectively denotedδPosHexa

and δRotHexa) results in a small displacement for the
considered tool point; this displacement is evaluated as
follows:

δPosTool = δPosHexa + δRotHexa ⊗




Lx

Ly

Lz



 (8)

where:




Lx

Ly

Lz



 is a vector which gives the position of the

considered tool point with respect to the Gough platform
traveling plate center (see Fig. 5).

The optimization process is then to minimize the norm of
δPosTool, knowing the resolution of the measuring legs, in
the ’worst case’; this ’worst case’ has to be searched for all

Fig. 5. Tool point and the bounding box

over the workspace and for a range of usable tools. Indeed
a machine-tool or a robot is supposed to carry various tools
whose length and diameter are not fixed. ThusLx, Ly, Lz

can vary within given ranges.
δPosHexa andδRotHexa can be expressed such as:

δPoshexa =





6∑
i=1

JHexa1i
δqiHexa

6∑
i=1

JHexa2i
δqiHexa

6∑
i=1

JHexa3i
δqiHexa




= JHexaP os

δQ (9)

δRotHexa =





6∑
i=1

Jhexa4i
δqiHexa

6∑
i=1

JHexa5i
δqiHexa

6∑
i=1

JHexa6i
δqiHexa




= JHexaOri

δQ (10)

Equation (8) becomes:

δPosTool = JHexaP os
δQ + JHexaOri

δQ ⊗




Lx

Ly

Lz



 (11)

δPosTool can be considered as the position uncertainty
due to the measurement uncertainty of the Gough platform
legs δQ. The goal of the optimization is to minimize this
uncertainty.
First of all, an upper bound of this uncertainty has to be found
considering the range of measurement uncertainty due to the
resolution of the encoders of the legs of the Gough platform.

To simplify (11), the second term of its right member is
rearranged as follows:

JHexaOri
δQ ∧




Lx

Ly

Lz



 = −




Lx

Ly

Lz



 ∧ JHexaOri
δQ

= −L̂xyzJHexaOri
δQ

(12)

where

L̂xyz =




0 −Lz Ly

Lz 0 −Lx

−Ly Lx 0







Equation (11) can be rewritten:

δPosTool = JHexaP os
δQ − L̂xyzJHexaOri

δQ

= (JHexaP os
− L̂xyzJHexaOri

)δQ
(13)

Finally a 6-dimension small displacement for the Gough
platform is mapped into a 3-dimension displacement for the
considered tool point by the following relation:

δPosTool =Tool JHexaδQ (14)

where:ToolJHexa = JHexaP os
− L̂xyzJHexaOri

Looking for the ’worst case’ requires to find the largest value
of ‖δPosTool‖ when each measuring leg encoder suffers
from an uncertainty ofǫ:

−ǫ < δqi < ǫ (15)

This leads to consider on the one hand a 6-dimension polytop
(in the space of the measuring legs) and on the other hand
a 3-dimension polytope (in the Delta robot Cartesian space).
To analyze the 6-dimension polytop, we resort to the tools
described by Krut [20].
A vertex of the polytop of the hexapod legs small displace-
ments are transformed byToolJHexa in a vertex of the
polytop of the small displacements of the tool. According
Krut, the maximum value of the tool small displacements
is found on a vertex of the polytop. The upper bound of
‖δPosTool‖ is the maximum of the distances between the
origin of the polytop and its vertices.
Moreover, for a givenδQ, the fact that the tool point is
considered in this paper inside a bounding box has to be
taken into account.
Equation (11) can be developed as follows:δPosTool :

δPosTool

=





6∑
i=1

J1iδqiHexa
+

6∑
i=1

J5iδqiHexa
Lz −

6∑
i=1

J6iδqiHexa
Ly

6∑
i=1

J2iδqiHexa
+

6∑
i=1

J6iδqiHexa
Lx −

6∑
i=1

J4iδqiHexa
Lz

6∑
i=1

J3iδqiHexa
+

6∑
i=1

J4iδqiHexa
Ly −

6∑
i=1

J5iδqiHexa
Lx





(16)

This leads to:

‖δPosTool‖
2 = (S1 + S5Lz − S6Ly)

2

+ (S2 + S6Lx − S4Lz)
2 + (S3 + S4Ly − S5Lx)2

(17)

with

Sj =

6∑

i=1

JjiδqiHexa
(18)

The squared norm is then studied as a function ofLx,Ly and
Lz:

f(Lx, Ly, Lz) = ‖δPosTool‖
2 (19)

This function reaches a maximum when its gradient is null
and when its hessian matrix is positive-definite. The system

of equations which described that the gradient is null is:





S6(S2 + S6Lx − S4Lz) − S5(S3 + S4Ly − S5Lx) = 0
−S6(S1 + S5Lz − S6Ly) + S4(S3 + S4Ly − S5Lx) = 0
S5(S1 + S5Lz − S6Ly) − S4(S2 + S6Lx − S4Lz) = 0

(20)
The three equations of this system are not independent.
Finally, the solution of this system is a line defined as
follows:





Lx ∈ R

Ly =
Lx(S2

4
S5+S5S2

6
+S3

5
)−S2

5
S3−S2

4
S3+S4S6S1+S5S6S2

S4(S2

4
+S2

5
+S2

6
)

Lz =
Lx(S2

4
S6+S6S2

5
+S3

6
)+S2

6
S2+S2

4
S2−S6S5S3−S4S1S5

S4(S2

4
+S2

5
+S2

6
)

(21)
Then it is necessary to study the hessian matrix to qualify
the critical points of the function (that is, determining ifthey
are maximum or minimum):

H(f) =




2S52 + 2S62 −2S5S4 −2S6S4
−2S5S4 2S42 + 2S62 −2S6S5
−2S6S4 −2S6S5 2S42 + 2S52





(22)
This matrix is constant whateverLx, Ly and Lz. The
determinant of this matrix is null and its eigenvalues are
σ1 = 0 and σ2 = σ3 = 2S4

6 + 2S2
5 + 2S2

4 . So, the matrix
H(f) is positive semi-definite. Thus there is no maximum
for (Lx, Ly, Lz) ∈ R

3. So if there is a maximum it belongs
to the boundary of tool bounding box.
Additional analysis is then required; firstly, each face of the
bounding box is analyzed; for example, by settingLx to its
maximum value, a plane corresponding to one of the faces
is defined, and the function in (19) becomes a new function
with two variables only. This new function is treated as the
first one, that is, analyzing its gradient and hessian matrix.
It is determined that there is no maximum on those planes.
The maximum are then to be found on edges.
Again, lines corresponding to the edges are defined by setting
two variables of (19) to their minimum or maximum values.
The same derivation is performed again and no maximum can
be found on those lines. The conclusion is that the maximum
is on the vertices.
Finally, to find the upper bound of the norm‖δPosTool‖
for a given point of the Delta workspace, it is necessary to
calculate this norm for all the tool bounding box vertices
(23 possibilities) and all the vertices of the Gough platform
6-dimension polytop (26 possibilities). Then, we take the
maximum value among the29 values calculated. The worst
point throughout the workspace is established thanks to
a numerical optimisation routine and finally, the Matlab
functionfmincon is then used to search the optimal design
that will minimized this upper bound worst case.

3) Optimization constraints: There are two constraints, in
addition to the workspace constraint, to respect during the
optimization process. First of all, collisions between thelegs
of the Gough platform and the Delta arms have to be avoided.
A collision check has been integrated in the optimization
algorithm. Another constraint is the bounds on the measuring
legs and has been taken into account as well.



IV. OPTIMIZATION RESULTS

A. Delta parameters

Equation (7) gives the relation between the length of the
Delta armsL and the difference between the base radius and
the traveling plate radius,∆R. For practical considerations,
the length of the Delta armsL is fixed to 0.8 m. So, the
difference between the base radius and the traveling plate
radius,∆R is equalled to0.48 m.
For the design of the final machine, it is necessary to select
the values of the traveling plate radiusRTP and the length
d which is the distance between the center of the spherical
joints of the Delta robot parallelograms. The traveling plate
must be large enough to support a spindle. It is chosen equal
to 0.06 m. Concerning the lengthd, it is better to take the
bigger possible value to avoid the parasitic movements of
the traveling plate due to the dimension errors of the Delta
arms. Finally, the value of the lengthd is 0.075 m.

B. Gough platform parameters

The Gough platform optimisation has to take into account
the Delta geometry to avoid collisions. The distance between
the center of the two structures is chosen such as it is the
smallest possible to minimize the size and the weight of the
traveling plate. This distance is equal to0.1 m.
A preliminary study showed that the optimization criterion
of the Gough platform is better if the anglesαb andαTP are
small and if the radiusrb andrTP are big. Considering this
and the collisions aspect a first set of parameters are chosen
to initialize the optimization algorithm.
The final values of Delta parameters and Gough platform are
presented in Table I and Figure 6 shows the final design of
the machine-tool prototype which is in manufacturing phase.

TABLE I

DELTA AND GOUGH PLATFORM PARAMETERS

Delta parameters Gough platform parameters

RB 540 mm rb 375 mm

RTP 60 mm rTP 75 mm

L 800 mm αb 6 ˚

d 75 mm αTP 20 ˚

Other parameter

‖CHCD‖ 100 mm

V. CONCLUSIONS

In this paper we have proposed the design and the
optimization of a parallel machine-tool composed of an
actuated parallel 3-dof mechanism (a linear Delta) and (ii)a
measuring 6-dof mechanism (a Gough platform)). We have
explained the interest for a machine-tool to have a measuring
device independent of the actuated mechanism notably to
measure the consequence of its deformations due to the
machining efforts. Finally, we have proposed an optimization
which is performed to obtain the best resolution for the
measuring system evaluated at the tool level. The final design
of the coming prototype is shown in Fig. 6. Different control

strategies will be evaluated on the prototype for example
online calibration, compensation or control of the machine
in the measurement system space.

(a) 3D view

(b) Front view

Fig. 6. Final design of the machine-tool prototype
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