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Improved Layout of Phylogenetic Networks
Philippe Gambette and Daniel H. Huson

Abstract—Split networks are increasingly being used in phylogenetic analysis. Usually, a simple equal-angle algorithm is used to draw

such networks, producing layouts that leave much room for improvement. Addressing the problem of producing better layouts of split

networks, this paper presents an algorithm for maximizing the area covered by the network, describes an extension of the equal-

daylight algorithm to networks, looks into using a spring embedder, and discusses how to construct rooted split networks.

Index Terms—Phylogenetics, phylogenetic networks, graph drawing, algorithms.

Ç

1 INTRODUCTION

PHYLOGENETIC networks are playing an increasingly
important role in evolutionary studies, being employed

either to represent the conflicting signals inherent to
phylogenetic data or to explicitly model reticulate evolu-
tionary events. One popular type of phylogenetic networks
is split networks, introduced in [1] and subsequently
studied in numerous papers. The aim of this paper is to
introduce a number of new algorithms for computing better
layouts of split networks and for drawing a rooted split
network.

Algorithmically, split networks play an important role.

On one hand, they provide a direct generalization of

phylogenetic trees. On the other hand, we have recently

shown that there are close relationships between split

networks and reticulate networks [12], [13]. Based on this,

we have developed algorithms that infer recombination and

hybridization networks, and these are drawn using the

construction and layout of a split network as an inter-

mediate computational step.
In [5], we present the equal-angle algorithm for computing

a split network that represents a given set of circular splits,

which can optionally be followed by the convex hull

algorithm to take care of any noncircular splits [2]. Although

the equal-angle algorithm is guaranteed to produce a planar

network for a set of circular splits, when applied to large

data sets, the resulting networks can be unsatisfactory (see

Fig. 8a) and may require a lot of interactive manipulation by

the user to obtain a useful layout. In particular, parallelo-

grams sometimes have very acute angles and small areas,

which make them difficult to see.
We address this problem in a number of ways. First, we

present a modification of the equal-angle algorithm that, by

dropping the equal-angle constraint, can produce better

layouts, at least for small networks. Second, we present a
new box-opening algorithm that operates by locally modify-
ing the angles of splits. Both approaches aim at maximizing
the total area covered by the parallelograms in the network.
Third, we describe an algorithm that extends the equal-
daylight heuristic from phylogenetic trees to split networks.
Fourth, we describe how to adapt a standard spring
embedder approach to the task of embedding split networks.

The equal-angle algorithm for split networks produces
an unrooted network. However, for the evolutionary
interpretation of phylogenetic trees and networks, it is
important that the position of the root in the tree or network
is apparent. Additionally, in the application mentioned
above in which the layout of a reticulate network is
generated from a corresponding split network, a rooted
split network is required. To address this, the final
contribution of this paper is an algorithm for drawing a
rooted split network, when given an outgroup.

Graph drawing is a well-studied problem [3], [4];
however, existing approaches do not appear to cover the
goals pursued in this paper, which include that labeled
nodes should (whenever possible) appear on the outside of
the graph, edges representing the same split must be
parallel and of the same length, and parallelograms in the
graph should be as “open” as possible.

Although there exist a number of algorithms for drawing
different types of phylogenetic networks, there seem to be
only three programs that address the problem of drawing
split networks, namely, SplitsTree [9], SplitsTree4 [10], and
SpectroNet [8]. The latter program addresses the problem
only indirectly and uses an implementation of the convex
hull algorithm.

In Section 2, we briefly summarize some definitions and
results related to splits and split networks. We describe two
layout optimization techniques, the optimized-angle algo-
rithm in Section 3 and the box-opening algorithm in Section 4.
In Section 5, we discuss a spring embedder approach. We
present the equal-daylight algorithm for split networks in
Section 6. Finally, in Section 7, we discuss how to draw a
rooted split network.

Our implementations of these algorithms are freely
available as an integrated part of SplitsTree4 [10], a
program that provides a wide range of different algorithms
for computing phylogenetic trees and networks from
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biological data sets. Our current implementations are aimed
at data sets of up to 400 taxa, for example, which is the
beyond the size of data set typically used with this type of
software.

2 SPLITS AND SPLIT NETWORKS

We need the following basic definitions and facts concern-
ing trees, splits, and split networks.

Let X denote a set of taxa. A phylogenetic tree for X, or
X-tree, consists of a tree T ¼ ðV ;EÞ in which every node v is
either a leaf of degree 1 or an internal node of degree � 3,
together with a leaf labeling � : X ! V such that every leaf
of T obtains a unique label [16]. Additionally, we may
designate one of the taxa o 2 X to be an outgroup and then
consider the tree to be “rooted” at the midpoint � of the
pendant edge leading to �ðoÞ in the usual sense.

Suppose we are given a set of taxa X. A split (or, more
precisely, X-split) is a bipartitioning of X into two none-
mpty sets A and B, denoted by S ¼ A

B ð¼ B
AÞ.

For a givenX-tree T , the deletion of any single edge ewill
produce a graph with exactly two connected components,
and this defines a split �T ðeÞ ¼ A

B given by the two sets of
taxa labeling the two components [1]. The set of all splits
obtainable in this way is called the split encoding �ðT Þ of T .

Two distinct X-splits S ¼ A
B and S0 ¼ A0

B0 are called
compatible if one is a refinement of the other, that is, if one
of the four following inclusions holds: A � A0, A � B0,
B � A0, or B � B0. If S and S0 are not compatible, then we
call them incompatible and write Sk=S0. A set of X-splits � is
called compatible if all pairs of splits in � are compatible. The
incompatibility graph IGð�Þ ¼ ðV ;EÞ has node set V ¼ � and
edge set E � V

2

� �
, in which any two nodes S and S0 are

connected if and only if they are incompatible.
A basic result in mathematical phylogenetics [16] states

that a set of X-splits � is compatible if and only if there
exists a unique X-tree T with � ¼ �ðT Þ. In this case, we say
that T represents �. Moreover, an arbitrary set of splits �, not
necessarily compatible, can also be represented by a graph.
Such a split network (also called a split graph) SNð�Þ consists
of a connected graph ðV ;EÞ together with a node labeling
� : X ! V and an edge coloring � : �! E, whose essential
property is that deleting all edges colored by a given split
S ¼ A

B 2 � will produce precisely two connected compo-
nents: one labeled by the taxa in A and the other labeled by
the taxa in B (see [5] for details).

LetX be a set of taxa and assume that we are given a cyclic
ordering ðx1; . . . ; xnÞ. We say that an X-split S is circular
(with respect to the given ordering) if there exist numbers p
and q, with 1 < p � q � n, such that S ¼ fxp;...;xqg

Xnfxp;...;xqg .

The following result is simple but useful:

Lemma 1. Let G be a directed graph and let v be some fixed node
in the graph. Consider two different assignments of coordi-
nates ! and !0 to the nodes of G. If !ðvÞ ¼ !0ðvÞ and if all
edges have the same angles and lengths under both assign-
ments of coordinates, then ! ¼ !0.

In other words, if we fix the position of some node v, then
an embedding of a graph is completely defined by specifying
the angles and lengths of all edges. In particular, the layout of

a split network is uniquely defined (up to translation) by
specifying an angle �ðSiÞ and length for each split Si.

In many applications, the edges of a phylogenetic tree
T ¼ ðV ;EÞ are “weighted,” that is, a map ! : E ! IR�0 is

given that assigns a length or weight to each edge, usually

representing some measure of evolutionary change along
the edge. Thus, throughout this paper, we will assume that

every set of splits � is “weighted” by a map ! : �! IR�0

that assigns a length or weight to every split S 2 �. If the
map ! is not explicitly given, then we will assume that

!ðSÞ ¼ 1 for all splits S 2 �.

3 THE OPTIMIZED-ANGLE ALGORITHM

The equal-angle algorithm described in [5] takes as input a
set of X-splits � ¼ fS1; . . . ; Skg and a cyclic ordering

ðx1; x2; . . . ; xnÞ of the taxon set X and produces as output

a split network representing all splits in � that are
circular with respect to the given ordering.

In this network, each such split Si ¼ fxp;...;xqg
Xnfxp;...;xqg (with

1 < p � q � n) is represented by a set Ei ¼ fe1; . . . ; erg of

parallel edges of the same length. If we direct all edges in

the graph away from the node labeled x1, then the angle of

every edge e 2 Ei in Si is given by �i ¼ zpþzq
2 , where zp ¼

p�1
n � 360 degrees is the angle associated with taxon xp.

To visualize this, imagine the set of taxa uniformly
arranged around the unit circle in the order x1; . . . ; xn,
starting with x1 at z1 ¼ 0 degree, in a positive direction, as
shown in Fig. 2. Then, the angle of S equals the average
angle assigned to the taxa xp; . . . ; xq.

In [5], we show that the resulting network is an outer-
labeled plane graph, meaning that it is properly embedded in
the plane, that is, no edges cross, and all labeled nodes
appear around the outside of the graph.

In the equal-angle algorithm, taxa are uniformly spaced
around the unit circle. However, for the algorithm to
produce a graph that is an outer-labeled plane, it is not
required that the spacing of the taxa be uniform. Indeed,
any assignment of angles z : X ! ½0 degree; 360 degreesÞwill
do, as long as the cyclic ordering of the taxa is preserved.
(As in [5], this follows from de Bruijn’s Dualization
Principle).

The main idea is to change the spacing between pairs of

taxa around the unit circle in an attempt to optimize the

layout of the network. The optimization goal that we
propose is to maximize the total area covered by all

parallelograms in the network.

We define a box as a parallelogram in the split network

created by two incompatible splits. We can easily compute

the area of a box from the weight of its two splits and one

angle. For example, in Fig. 1, the two incompatible splits

S1 ¼ fx2;x3;x4;x5g
fx6;x7;x8;x1g and S2 ¼ fx4;x5;x6;x7;x8g

fx1;x2;x3g give rise to box 2, with

area !ðS1Þ!ðS2Þj sin�j, where � is the indicated angle.
We propose to optimize the area using the following

simple random search:

Algorithm 1 (optimized angle). Compute an initial layout

using the equal-angle algorithm. Store the positions of the
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taxa in an array bestP , determine the angles of all splits, and
compute the total area covered and store it in bestA.

Repeat the following steps u times:
For each taxon, consider moving it halfway to either

neighbor. In both cases, determine the angles of all splits
and compute the total area covered.

If the total area covered is improved, save the new
positions, and if it is greater than bestA, store the positions
in bestP and the area in bestA.

If the total area covered is not improved, save the new
positions with probability p.

The complexity of this algorithm is OðuknÞ. In our
experience, p ¼ 0:8 and u ¼ 500 provide good results for
small networks. However, the algorithm does not work well
on larger networks. This is because the condition that the
ordering of the taxa around the unit circle must be
preserved is too strict.

The algorithm adjusts the angles of the taxa without
taking the angles of the edges representing those splits into
account, which are compatible with all other splits (see
Fig. 3). The angles associated with such splits can subse-
quently be optimized using the equal-daylight algorithm,
described in Section 6.

4 THE BOX-OPENING ALGORITHM

The algorithm described above suffers from the constraint
that the layout of the taxa around the unit circle must be

strictly preserved. In this section, we describe an algorithm
that is not hampered by this constraint and produces better
results in practice.

The algorithm considers each split S 2 � in turn. Assume
that S is incompatible with splits S1; . . . ; St 2 �, then each
pair Si, S gives rise to a single box bi in the network. The
goal is to compute an angle �ðSÞ such that the total area of
all bi is maximized. To ensure that the resulting network is
planar, two types of collisions must be avoided.

The first type of collisions, which we will call local
collisions, involves the nodes and edges of the boxes
b1; . . . ; bt. The second type, global collisions, involves nodes
or edges that lie in regions of the network that are not
directly involved in the representation of the split S. In the
following, we discuss how to avoid both types of collisions.

4.1 Preventing Local Collisions

A local collision happens when one of the boxes bi is
squashed flat. To avoid a local collision, note that there are
two critical angles �maxðSÞ and �minðSÞ that constrain the
possible values of �ðSÞ:

�maxðSÞ ¼ �ðSÞ þminbox bifð�i � �ðSÞ � �Þmod 2�g;
�minðSÞ ¼ �ðSÞ �minbox bifð�ðSÞ � �iÞmod 2�g;

where �ðSÞ is the angle currently associated with split S,
and �i is the angle currently associated with split Si ði ¼
1; . . . ; kÞ (see Fig. 4). Any choice of angle between �min and
�max will give rise to a layout without local collisions.

4.2 Preventing Global Collisions

When modifying the angle �ðSÞ of a split S, we can assume
that one part of the split network, the “bottom part,” stays
fixed in the same place, whereas the “top part” of the graph
is translated, as indicated in Fig. 4.

We have already discussed how to prevent local
collisions. In a large or complicated graph, it may happen
that modifying �ðSÞ will cause a global collision between
the bottom part and top part of the graph.

The collisions can occur on the left side or the right side
of the split S, independent of whether we increase or
decrease the angle of the split. Therefore, we perform
similar calculations for all four points that represent the
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Fig. 1. Pairs of incompatible splits give rise to parallelograms in the

network, and the optimization goal is to maximize the total area covered

by the parallelograms.

Fig. 2. A split network constructed using the equal-angle algorithm.
(a) Each split is represented by a cut-set of edges, consisting of either a
single edge if the split is compatible with all other splits or a band of
parallel edges otherwise. (b) The same set of splits is represented by
chords of the unit circle, each separating the two split parts. The angles
used in (a) are orthogonal to the ones used in (b).

Fig. 3. (a) Network obtained by the optimized-angle algorithm from the

example shown in Fig. 2. (b) The corresponding taxon layout, in which

the circular ordering of taxa but not their angular spacing is preserved.



“extreme nodes” of the split. Consider the rightmost edge
representing split S in Fig. 4a. Assume that this edge is
represented by the line ðv; wÞ in Fig. 5. By definition, the set
of edges representing split S splits the graph into two
connected components, the bottom part containing all
nodes VSðvÞ that can be reached from v and the top part
containing all nodes VSðwÞ that can be reached from w,
without using any edge representing S.

To determine p1, we visit all nodes in VSðvÞ to find the
one whose location p1 minimizes the angle ðvp1

�!; vw�!Þ.
Similarly, p2 is obtained as the location of the node in
VSðwÞ for which the angle ðvp2

�!; vw�!Þ is maximal (see Fig. 5a).
As we assume that the bottom part of the network VSðvÞ

will remain stationary, whereas the top part VSðwÞ is
moved, we call p1 the defender and p2 the striker. If we
decrease the angle �ðSÞ by less than � ¼ ðvp1

�!; vp2
�!Þ, then,

usually, there will be no global collisions, and thus, we call
this the safe angle, and for each of the four safe angles found,
we check whether they place further restrictions on the
interval permitted by the critical angles �minðSÞ and
�maxðSÞ.

When the angle �ðSÞ of the split S is changed, then the
strikers and defenders may change: for example, in Fig. 5,
the striker is p2 in Fig. 5a but w0, not p02, in Fig. 5b. Hence,
after optimizing the angle of each split in the graph, a new
round of optimization may be possible.

Unfortunately, even if we respect the safe angle, collisions
still may occur, because the transformation performed on the
top part of the network is a translation, not a rotation. To
address this, for all four “extremal” nodes, we will identify
four “exclusion zones” such that if they are empty, then we
are guaranteed to obtain a plane graph.

The following theorem gives the location of the exclusion
zone associated with the rightmost node in the bottom part
of the network for the split S:

Theorem 1. Let p1 be the defender node, p2 be the striker node,
� be the angle between the defender line and the rightmost
edge of the split, � > 0 be the safe angle, l ¼ !ðSÞ,
�0 ¼ �minð�; �ðSÞ � �minðSÞÞ, and z be the point such
that vz ¼ lðsin��sinð���ÞÞ

sin � and ðvz!; vw�!Þ ¼ �. The exclusion
zone Z is the triangle formed by the straight line L parallel
to the defender line and containing z, the split edge ðv; wÞ,
and the striker line ðv; p2Þ (see Fig. 6). If Z is empty, then
no node will collide with the defender line on the right if we
decrease the split angle �ðSÞ by angle �0.

Proof. We first identify the location of striker nodes z such
that if the split is rotated by the safe angle �, then
z 2 ðv; p1Þ. As shown in Fig. 6, for such nodes z, with l ¼
vw and R ¼ zv, we have R sin � ¼ lðsin�� sinð�� �ÞÞ, so

R ¼ lðsin�� sinð�� �ÞÞ
sin �

:

This is the equation of the zone, depending on � such
that if the striker node is inside it and if we move the
split angle by �, it will collide with the defender line.
Some examples of such zones are illustrated in Fig. 7.

Therefore, knowing the position of the striker node p2,
we can find the point z that lies on the striker line and
satisfies the above equation. As the movement of the top
part of the network is a translation, no node above z can
collide with the defender line unless z does, and thus, the
exclusion zone need not contain any node whose
distance to the defender line ðv; p1Þ is strictly greater
than the distance between ðv; p1Þ and z. By the definition
of the striker node, there is no node below the striker
line. Finally, as the angle �0 avoids local collisions, any
node n below z and over the split edge, that is, such that
ðvp1
�!; vn�!Þ > ðvp1

�!; vw�!Þ and dðn; ðv; p1ÞÞ < dðz; ðv; p1ÞÞ, re-
mains over the split edge after the change of the split
angle and therefore will not collide with the striker line.
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Fig. 4. (a) Edges corresponding to a split S are shown in bold; other
edges represent splits S1; S2; . . . that are incompatible with S. Angle �i is
associated with split Si. (b) Here, the angle �ðSÞ has been modified to
the critical value �minðSÞ ¼ �6, for which the leftmost box collapses to a
straight line.

Fig. 5. Example of a critical situation where we try to avoid a collision on

the right of the split. The situation (a) before and (b) after modification of

the split angle.

Fig. 6. Determining the coordinates of a node z such that

decreasing the angle of the split by the safe angle � will put z

exactly on the defender line. Note that h ¼ R sin � implies

R sin � ¼ l sin�� l sinð�� �Þ ¼ lðsin�� sinð�� �ÞÞ.



Thus, the nodes that may cause collisions in our
problem must indeed lie in the triangular exclusion
zone Z. tu

In practice, the exclusion zones usually do not contain

nodes when the box-opening algorithm is applied to a

network that was previously constructed by the equal-angle

algorithm.
These considerations lead to the following algorithm:

Algorithm 2 (box opening). Perform the following loop u

times:
For each split S 2 �:

. Identify the extreme angles �minðSÞ and �maxðSÞ to
avoid local collisions.

. For each of the four extreme nodes of the split,
identify the defender and the striker and compute
the safe angle.

. If the exclusion zone is empty, use the four safe
angles and the local constraints to determine the
interval I of possible new angles for S. Else, set
I ¼ ;.

. If I is nonempty, then compute a new angle that
maximizes the total area covered by the boxes
associated with S.

For a given split S0, the angle �ðS0Þ that maximizes the

total area of the set of boxes fb1; . . . ; btg associated with the

set of splits fS1; . . . ; Stg that are incompatible with S0 can be

directly determined from the formula for the total area

associated with the boxes:

Area ¼
X
Si 6kS0

!0!ij sinð�ðS0Þ � �ðSiÞÞj

¼
X
Si 6kS0

!0!i sinð�ðS0Þ � 	iÞ

¼ sin�ðS0Þð!0

X
Si 6kS0

!i cos 	iÞ

� cos�ðS0Þ ð!0

X
Si 6kS0

!i sin	iÞ;

where !i is the weight associated with split Si, and 	i ¼
�ðSiÞ if sinð�ðS0Þ � �ðSiÞÞ > 0 and 	i ¼ �ðSiÞ þ � otherwise.

This can be written as

Area ¼ A sin�ðS0Þ þB cos�ðS0Þ ¼ C cosð�ðS0Þ �DÞ;

with

A ¼ !0

X
Si 6kS0

!i cos 	i; B ¼ �!0

X
Si 6kS0

!i sin	i; C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þB2

p
;

and tanD ¼ B
A .

Therefore, the optimal angle is obtained by maximizing

cosð�ðS0Þ �DÞ over the interval I.
In summary, the box-opening algorithm attempts to

globally optimize the total area of the boxes in a split

network by locally optimizing the area associated with

individual splits. We have implemented this algorithm, and

experiments show that the algorithm is fast and efficient in

practice (see Fig. 8).
If n is the number of taxa and k is the number of splits,

then the complexity of one iteration of the algorithm is

Oðnumber of splits � numbers of nodesÞ;

that is, Oðnkþ k3Þ, as the number of nodes is Oðnþ k2Þ for

an outer-planar split network, as shown in [5].

5 A SPRING EMBEDDER APPROACH

One approach often in graph drawing is to use a spring

embedder algorithm (such as [7]) that simulates a system of

mass particles. The vertices of the graph correspond to mass

points that repel each other, and the edges are interpreted

as springs with attracting forces. The algorithm tries to

minimize the energy of this physical system.
This type of algorithm is not directly applicable to split

networks, as a spring embedder does not respect the

constraint that edges representing the same split must be

parallel and have the same length. To address this, the

following strategy works well in practice:

Algorithm 3 (modified spring embedder). Obtain an embedding

of a split network as follows:

. First, use a spring embedder to compute an
“approximate” embedding of the given split net-
work.

. For each split S represented in the network, let �ðSÞ
be the average angle of all the edges representing S
in the approximate embedding.

. For each edge e, define a new angle �ðeÞ ¼ �ðSÞ,
where S is the split represented by e.

. Determine an exact embedding of the network using
the new angles. This can be done using the algorithms
described in [5], using the computed angles.

In our experience, this method is especially useful when

the split network is significantly not outer-labeled planar, as

depicted in Fig. 9. For complicated outer-labeled planar

networks, the box-opening algorithm produces results that

are often “superior” in the sense that the boxes are more

open while converging just as fast in practice (see Fig. 8).

GAMBETTE AND HUSON: IMPROVED LAYOUT OF PHYLOGENETIC NETWORKS 5

Fig. 7. For different values of the angle � between the split edge and the
defender line, the arcs indicate the boundaries of the regions that should
not contain the striker to avoid a collision between the striker and the
defender line. Then, by knowing the position of the striker, the exclusion
zone Z can be drawn: it should not contain any node of the top part if we
want to move the split angle by the safe angle � without collisions.



6 THE EQUAL-DAYLIGHT ALGORITHM

Given a set of X-splits � and a circular ordering ðx1; . . . ; xnÞ,
the equal-angle algorithm is guaranteed to produce an outer-
planar embedding of a corresponding split network. If the
number of taxa is large, then, as with the equal-angle
algorithm for trees (see [6, p. 578] for details), the angle at
which two edges meet may be very small, and this can make
the graph difficult to read. In the case of trees, Felsenstein [6,
p. 582] describes an equal-daylight algorithm that modifies the
angles of edges around a node v so that the amount of
“daylight” between any two neighboring edges that reaches v
is equal. In Figs. 8b, 8c, and 8d, we demonstrate the effect of
using the equal-daylight algorithm.

Let G ¼ ðV ;EÞ be an embedded split network with node
set V and edge set E. The equal-daylight algorithm is
applied to each node of G in turn as follows: Let v be a node
in G. Let Ev ¼ fe1; . . . ; esg denote the set of edges incident to
v, listed in the order that they are encountered when circling
once around v in a mathematically positive orientation.

First, we determine the set C ¼ fC1; C2; . . . ; Ctg of all
connected components of the graph G�v obtained by

removing v. If t ¼ 1, then the equal-daylight algorithm

cannot be applied to v. Otherwise, consider any component
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Fig. 8. Different layouts of the same split network representing five gene trees for fungal species [15], [14], [11] produced using (a) the unmodified

equal angle algorithm as described in [5], (b) together with 10 iterations of the equal-daylight optimization, (c) and, additionally, 10 iterations of the

box-opening heuristic (d) or with 700 iterations of the spring embedder algorithm. The four drawings took 3, 3þ 20, 3þ 20þ 12, and 3þ 210 seconds

to compute on a laptop, respectively.

Fig. 9. Both networks display all splits contained in the two trees
ðððða; bÞ; cÞ; dÞ; ðe; ðf; ðg; hÞÞÞÞ and ððððh; bÞ; cÞ; dÞ; ðe; ðf; ðg; aÞÞÞÞ. (a) This
network was constructed using the equal-angle algorithm. As it is not
outer-planar, the layout produced by the algorithm is very poor. (b) This
network was constructed by additionally running the described spring
embedder technique.



Ci. We need to determine the minimum angle and
maximum angle of a line segment from the node v to any
node w in Ci. To do so, note that there exists a leftmost edge
el 2 Ev and a rightmost edge er 2 Ev that connect v to some
node in Ci. To determine the minimum angle 	i, initially set
	i equal to the angle of el. Then, leave v via the edge el and
in a depth-first search and visit the whole component Ci,
modifying the angle 	i whenever the angle of the current
node, observed from v, is smaller than the current value 	i.
To determine the maximum angle 
i, proceed from er in a
similar fashion. If el ¼ er, then both angles can be computed
in a single pass. We define the angle covered by Ci to be
�i ¼ 
i � 	i (see Fig. 10a).

We call � ¼ 2��
Pt

i¼1 �i the total daylight angle for v
and � ¼ �

k the equal daylight angle. We now aim to rotate
the components Ci around v so that the angle between any
two adjacent components is �.

Define 	�j ¼
Pj

i¼1 �i þ j�. The goal is to rotate all
components around v so that for each component Ci, the
“leftmost” angle changes from 	i to 	�i . To achieve this, for
each edge e that connect any two nodes in Ci [ fvg, add
	�i � 	i to the angle associated with e.

The equal-daylight algorithm modifies the angles asso-
ciated with different edges in the graph. Again, a simple
traversal of the network can then be used to assign
coordinates to all nodes in the graph based on the angles
(see Fig. 10b).

As described above, each node is treated separately, and
a rearrangement around some node v might change the
daylight angles around some other node w. Hence, in
practice, the algorithm will be iterated a number of times.

7 CONSTRUCTING A ROOTED SPLIT NETWORK

In the visualization of an unrooted split network, edges
point in many different directions, and taxa occur all
around the boundary of the graph. In a rooted network, all
edges point away from the root node (see Fig. 11). More
precisely, if the root node is to be drawn at the bottom of the
graph, then all edges will have angles that lie in a fixed
range ½90 degrees� �; 90 degreesþ �	, with � being a fixed
parameter between 0 and 90 degrees.

Let X ¼ fx1; . . . ; xng be a set of taxa and � ¼ fS1; . . . ; Skg
a set of splits that are assumed to be circular with respect to

the ordering ðx1; . . . ; xnÞ. Assume that X contains precisely

one outgroup taxon, x1, for example, and that � contains

the trivial split that separates x1 from all other taxa.
Consider X0 ¼ X [ fx0g, where x0 is a new taxon that

will represent the root. In terms of the network, we want to

attach a node labeled x0 via a short edge to the interior of

the leaf edge that leads to the node labeled by the outgroup

x1.
In terms of splits, this is done as follows: First, extend

every X-split Si 2 � to an X0-split by adding x0 to the split

part that contains x1 and let �0 be the set of all new splits

obtained in this way. Additionally, add two new trivial

splits: one for x0 and the other for x1.
To construct a rooted split network for �, we first use the

algorithms described in [5] to compute the split network N 0

for �0 topologically. Then, for each split Si ¼ fxp;...;xqg
X�fxp;...;xqg 2 �0

(with 1 � p � q � nÞ, we define

�i ¼ 90 degreesþ 1� pþ q
n

� �
�;

and thus assign an angle in the range ½90 degrees�
�; 90 degreesþ �	 to Si. A modification of the proofs given

in [5] yields the following:

Lemma 2. For any fixed value of � in the open interval (0 degree,

90 degrees), using the angle �i for each split Si 2 �0, we obtain

a rooted plane split network representing �.
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