
HAL Id: lirmm-00311710
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00311710

Submitted on 20 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connectivity of Thetis, a Distributed Hybrid Simulator,
with a Mixed Control Architecture

Olivier Parodi, Abdellah El Jalaoui, David Andreu

To cite this version:
Olivier Parodi, Abdellah El Jalaoui, David Andreu. Connectivity of Thetis, a Distributed Hy-
brid Simulator, with a Mixed Control Architecture. ICAS: International Conference on Auto-
nomic and Autonomous Systems, Mar 2008, Pointe-à-Pitre, Guadeloupe, France. pp.130-135,
�10.1109/ICAS.2008.41�. �lirmm-00311710�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00311710
https://hal.archives-ouvertes.fr


Connectivity of Thetis, a Distributed Hybrid
Simulator, with a Mixed Control Architecture

Olivier Parodi, Abdellah El Jalaoui, David Andreu
LIRMM - University of Montpellier 2 - CNRS

161 rue Ada 34392 Montpellier, France
Email: {parodi, eljalaoui, andreu}@lirmm.fr

Abstract—The purpose of this paper is to present the linkage
of Thetis (a real time multi-vehicles hybrid simulator for hetero-
geneous vehicles) with a control architecture for the management
of contextual tasks on AUVs (Autonomous Underwater Vehicle),
both developed at LIRMM (France).
An AUV is mainly composed of an onboard informatics system
and a set of sensors and actuators. We design a 3-layer control
architecture (global supervisor, local supervisors, and a set of
management modules which are in charge of the means of
perception and actions), allowing for facing Hardware (embedded
instrumentation) and software evolutions. Due to the complexity
and the sophistication of the control of actual underwater
systems, it is necessary to check the embedded robot controller,
i.e. all its constitutive hardware and software sub-systems before
beginning any real mission. To achieve this goal its possible
to call upon simulation, thus avoiding heavy and numerous
experimentations.
Thetis is able to provide the necessary environment to test real
robots and their interactions (communication and collision detec-
tion). Indeed this simulator allows hardware in loop simulations
with the support of virtual sensors.
The paper first describes the architecture and functionalities
of Thetis, then the control architecture of our AUVs is briefly
presented. We conclude with the advantages of connecting the 2
systems together.

I. INTRODUCTION

The need to operate in ever deeper waters and to reduce
the costs of missions, has brought researchers to concentrate
on the elaboration of autonomous vehicles which are able to
fulfil tasks which have until recently needed a human operator.
The need of autonomy in a environment which is in perpetual
evolution requests from the vehicle a capacity to estimate its
state and the environment state. The computing power, the
miniaturization and the fall of consumption of the computers
allow to imagine architectures increasingly sophisticated to
assume scenarii increasingly more complex. In parallel the
number and the complexity of tests necessary to validate this
kind of architecture is growing up. Thus simulation tools play
an important role: they are able to help us in these tests in
order to validate a command or a software architecture.
These technologies limit the human ressources, the difficulty
of real experiments, the cost and the time spent. There are
different sorts of simulators. A useful classification is pro-
posed in [1]. Simulators can be classified in 4 categories: the
offline simulators, the online simulators, the hardware in loop
simulators and the hybrid simulators.
Offline Simulators permit to start designing the control of

robots in a first approximation. Matlab/Simulink is a good
tool for this kind of simulation. Indeed there are a lot of
available toolboxes for robots and in particular for AUVs. In
[2] such a toolbox is presented; it allows to implement the
mathematical models quickly. But we have to keep in mind
that the temporal aspect of the simulation is not taken into
account and it potentially makes the algorithm inoperative
when it is transferred on a real robot and thus the command
is not really validated.
Online Simulators belong to another type of simulator which
allows to take the temporal consistency of the simulation into
account. Indeed, in this type of simulation one second of
simulated time actually corresponds to one second in real time.
However the algorithms are still not executed on the robot
itself and the temporal behavior of the computer used for the
simulation can appear different from that which will be used
to control the robot.
In Hardware In Loop (HIL) simulators the control is executed
on the robot itself but the commands given to the actuators are
directed towards the simulator instead of the real robot or at
the same time as on the real robot [3]. The commands to the
actuators are directed to the simulator which is therefore in
charge of the model evolution, instead of or at the same time
as on the robot. However, in this sort of simulation the external
world is not taken into account. Only the proprioceptive
sensors are used and all the algorithms and onboard systems
can’t be fully tested.
Hybrid simulator are HIL simulators where real and virtual
systems interact together in an augmented reality. It is there-
fore necessary to simulate an environment (static or dynamic)
in which the robot will be able to operate all its systems. It’s
possible to test all the algorithms of the machine from low
level control of sensors or actuators to the whole architecture.
This approach has been used by several authors such as [1]
in which, authors present Neptune, their real time graphic
multi-vehicles simulator, permitting to perform online, HIL
and hybrid simulation.
So first we’ll present the architecture of our simulator: Thetis,
specifying the models we use. Then we’ll expose the control
architecture used on our AUV: Taipan. Finally we’ll show how
and why it is useful to connect the 2 systems.



II. Thetis: HYBRID SIMULATOR

Thetis is a real time hybrid simulator permitting to consider
heterogeneous multi-vehicles scenarii. This type of simulator
represents a real challenge to favor the research on vehicles
cooperation.

A. Critical concepts

This simulator is composed of a set of mechanisms which
allow the exploitation of simulation with enough fineness to
stand comparison with the real world but without replacing it
in any way. Among its concepts, one of the most important is
the capacity of the simulator to ensure a temporal decoupling
between the control loop and the simulation loop. This ensures
that if the controller doesn’t react at the appropriate time, we’ll
observe a divergence on the robot’s behavior. Indeed, there is
no logical synchronization between the simulation loop and
that of the controllers of the robots.
Another important concept is the upgradability of the sim-
ulator. We are able to add some new components (sensors,
vehicles...) in a very easy way. This warrants us the possibility
of using this simulator with different sorts of vehicles. Indeed,
the modularity of this simulator favors the interventions of
different actors. Thus, a sonar specialist will be able to imple-
ment a sonar model, to transfer it onto another computer if he
considers it is too resource-consuming, all that without having
to feel concerned about the simulator global functioning and
without having to deeply intervene in the simulator code.
Finally, a very interesting aspect of this architecture is its
portability. Indeed it is able to work with different robots and
thus connected with different control software architectures.
We only need to adapt the interface between the 2 systems
(simulator and controller), in order to make them work to-
gether ensuring the frames encoding/decoding. Another advan-
tage of the portability is the simulator’s faculty to be divided
and executed on different computers. This avoids to overload
computers and to affect the real time capability of the systems.

B. Implementation and technical considerations

All the concepts proposed in the precedent section are
supported by using 3 mechanisms and an architecture based
on 3 simulators. First an XML-based specifications exchange
data (XML for Extensible Markup Language) provides a high
accuracy degree and structuration of the parameters of the
different models used (modem, radio, fins, motor, ...) while
promoting the modularity and the portability; we are not frozen
on a standard. Indeed we can talk about modularity because
each component of the system is described in an XML file
in which all parameters of the said component are detailed; it
allows to change the components of the system in a very easy
way. For example, if we consider an inertial unit, the model
used in an aerial drone and in an AUV will not necessarily be
the same. By contrast, what will remain the same, will be the
model of the inertial unit used; as for the parameters of each
unit they will be described in 2 separate XML files. Now if we
want to interchange the units, it’s possible by calling a XML
file in place of an other. All the system components work in

Fig. 1. Simplified architecture of Thetis: there is a logical sequencing between
the 2 simulators even if there are independent processes. The cycle duration of
this sequence must be largely lower than the cycle period of the controller.The
temporal decoupling is only effected (and that’s enough) between the simulator
and the controllers).

the same way (fins, acoustical modem, GPS, propeller,...).
Moreover, many systems could use the same formalism to
describe the parameters of a component model without using
all of them. For example, we can imagine that an underwater
communications specialist will need a very accurate model
describing its modem; he should use all the parameters of the
XML file. Another user, who doesn’t need such an accuracy
level, will use the same XML file, but only a part of these
parameters in order to animate its own model. The validation
and extensible properties of the XML language make it an
ideal base to enrich the model parameters files.
Thus the robots (sensors, actuators, communications etc..) used
in this simulator are described in XML formalism. To do this,
we suggest a set of different tags allowing to interchange and
to describe the components of the robots in a easy way. Then
portability and temporal decoupling is favored by using sockets
and local shared memories widely. Thus it’s possible to run
several processes on different computers each of them inter-
acting with others using these mechanisms. Finally we have
created a set of librairies containing a set of classes enabling
us to build the various objects of the simulation system. All
these classes are documented with doxygen tool [13] and will
be soon available online (www.lirmm.fr/∼parodi/thetis). So
as to ensure performances in real time as well as effective
temporal decoupling, the simulator is in fact an application
distributed onto 3 simulators. The first one is a vehicle
simulator which allows the simulation of the robots dynamics.
The second one is a sensors simulator allowing the simulation
of the various sensors of the robots. Lastly the third one
is a static environment simulator (no evolution with time at
yet). It allows the use of exteroceptive sensors to announce
the robot/robot or robot/ground collisions. All these simu-
lators are interconnected on a dedicated UDP/IP network.
The connections between these various blocks are detailed
and explained on figure 1. Only the sensors and vehicles
simulators are connected to the real robot, the environment
simulator being connected only to the 2 other ones. All these
simulators work under linux RTAI. Information about network
configuration are described in a shared XML file. All the XML
files describing the components of the system are loaded at the
initialisation and thus allow to instantiate the different objects



Fig. 2. Architecture of the vehicles simulator

Fig. 3. Simulation cycle of the vehicles simulator

of the simulator.

C. Vehicles simulator

The vehicle simulator is in charge of the robots dynamic
model evolution. We present this simulator structure on figure
2. It is composed of independent processes communicating
via a local shared memory. Before starting the simulation,
this simulator connects itself to the environment simulator to
obtain all the physical constants (ν, ρ, g, ...). In fact, this
simulator is composed of 2 main processes. The first one is
the Socket Server and Dispatcher process, which is in charge
of ensuring the communication between the simulator and
the robots controllers. The robots send actuators commands
calculated by the onboard computer to the simulator through
UDP socket. Then the received data are decoded and extracted
to a shared memory initially created by this process. The
second one is the cycle of simulation. During this cycle
all the forces applied on the robots are computed in order
to determine the accelerations and then robots attitudes and
velocities after an integration step. The computed data are
sent to the environment simulator in order to verify the non
collisions of the objects and if necessary to correct positions.
Finally the computed data are ready to be sent to the sensors
simulator. This cycle is presented on figure 3. The initial
position and attitude of the vehicles are determined at the
initialisation, then the dynamic model evolves according to
the commands sent by the AUV and the environment.

D. Sensors simulator

The sensors simulator is in charge of providing the real
robot with virtual data issued from the simulation. Presently
only the models of some proprioceptive sensors are imple-
mented. This simulator is based on the execution of 3 inde-
pendent processes, communicating via 2 shared memories.The
structure of this simulator is presented on figure 4. There are
2 dispatcher processes (DispatcherFromVHC and Dispatcher-
FromENV) which are respectively in charge of listening to
messages from vehicles simulator (velocity, accelerations, at-
titudes...), and messages from environment simulator (parts
of maps determined according to the position and the range

Fig. 4. Architecture of the sensors simulator

of the robot’s sensors), and of decoding and extracting data
into 2 shared memories (one for each process). The third
process SimuCAP is the sensors simulator which elaborates
answers from each sensor for each robot.These answers are
computed according to each sensor model whose parameters
are described in the XML file. They are elaborated according
to the sensor characteristics, to the situation data issued from
the vehicles simulator and lastly to the data issued from the
environment simulation. Once these answers are computed,
they are sent by name to each robot of the flotilla. We also
call sensor, the communication devices of the robots. We are
currently implementing a messaging distribution mechanism
sent by the robots between them. This mechanism takes into
account the delay, the flow and the losses caused by the type of
communication device in use, and the propagation medium. It
will permit to test some command laws for coordinated AUV
flotilla.

E. Environment simulator

The environment simulator is in charge of producing geo-
physical maps around a given geographical point, detecting the
collision between 2 robots or between a robot and the ground,
and finally computing the new positions of the colliding robots.
These functionalities are being implemented and are architec-
tured around 2 independent processes also communicating via
a shared memory. It does not yet integrate a real environment
(and its obstacles).

III. MODELS AND ASSUMPTIONS

In this chapter we explain the modeling methods which
we have chosen to develop the simulator. Although it is not
exclusively limited to simulate AUVs, it is the first model
that we have implemented because our team works on this
type of robot [4]. Other models will be implemented later
if needed. Hence, the simulated sensors suite is dedicated to
submarine applications and the modeled environment is exclu-
sively underwater. Obviously, all this can be easily modified
in order to deal with heterogeneous robots and environment
like coordination between AUVs, drones and surface crafts.

A. AUV modeling

The robot model is used to compute the robot movements
according to the command vector. The modeling of the AUV,
is made up of the hydrodynamic, hydrostatic and dynamic
phenomena of the robot on the one hand, and of the actuators
model on the other hand. Here is a brief description of these
models:



• Hydrodynamic forces: the simulator uses the 6 dof (De-
gree of Freedom) non linear equations of 6DOF AUV
expressed in the body fixed frame [5]

ν̇ = (MA +MRB)−1
(
τ − (CRB + CA +D)ν − g(η)

)
where:

– ν denotes the system velocities (linear and angular)
– MRB and MA are the inertia matrix and the added

mass matrix
– τ denotes the force and torque produced by the

thrusters and control surfaces
– CRB and CA the rigid-body, the added Coriolis and

centripetal matrixes
– D denotes the damping matrix
– g denotes the gravity and buoyancy force and torque
– η denotes the position and orientation vector

External disturbances (waves, oceanic currents, wind...)
are not implemented yet. Moreover the potential damping,
the skin friction and the wave drift damping are not
considered. Only the damping due to vortex shedding
is computed. Once the estimation of the accelerations is
computed, we integrate a first time to obtain the velocities
in the body fixed frame. It is then necessary to integrate
a second time after shifting the frame so as to obtain the
robot position and attitude in the inertial frame.[

ṗn

Θ̇

]
=

[
Rn

b (Θ) 03×3

03×3 TΘ(Θ)

] [
vb

o

ωb
nb

]
(1)

• Thruster Model: A steady state model is used for the
thruster of the AUVs. We can consider that the response
is instantaneous according to the input. We use a bilinear
model ie a non linear function computing the thrust
according to the angular speed of the propeller ω and
the linear speed of the robot in the thruster direction. See
[1] for more details.

T = CT‖ω‖ω × ω − CT‖ω‖ν × ν (2)

Other authors propose dynamic models [6], [5]. The
possibility of implementing such thruster models will be
studied later.

• fins Model: the robots Taipan [4] have a cylindrical shape
and are equipped with rudder at the stern and with 2
pairs of diving planes located at the bow and at the
stern. The lift Fz is the projection of the resultant F
on the axis, orthogonal to the fluid direction. The drag
force is the projection on the axis, parallel to the fluid
direction. These forces are modeled according to the
following equations, expressed in a frame fixed on the
control surface ([7] and [8]):

Fcz =
1
2
ρSV0Czs

Fxz =
1
2
ρSV0Cxs

(3)

where
– ρ is the density of the fluid

– S is the projected area of the fin, perpendicularly to
the fluid direction

– V0 is the relative velocity of the body with the fluid
– Czs is the lift coefficient corresponding to the axes

of the surface
– Czs is the drag coefficient corresponding to the axes

of the surface
Once the physical action of the planes is expressed, we
consider that the axis of rotation of the planes is situated
at a distance da from the origin of the local frame of the
robot. The forces of the lift and drag,no evolution with
time at yet and the induced moment are therefore given
by: Fx

Fz

Mq

 =

 − 1
2ρSsV

2
0 (Czs sin δ + Cxs cos δ)

− 1
2ρSsV

2
0 (Czs cos δ − Cxs sin δ)

Fz(lcs cos δ − das) + Fx(lcs sin δ)


where:

– l is the distance between the leading edge of the
planes and the system metacenter

– bs is the wingspan
– cs is the chord
– Ss is the surface wing defined by Ss = bscs
– l=0.2 for the taipan class of vehicles.

B. Sensors modeling

The proprioceptive sensors are used to measure the state
variables of the robot, and its derivative. These sensors are
modeled here by using directly the variables produced by the
vehicles simulator. Afterwards, the sensor simulator provides
the samples at the same frequency as the real sensor, taking
care to limit its range and adjust its resolution. It is also
possible to add noise so as to obtain a more realistic simula-
tion. Presently a GPS (Trimble Lassen SKII), a loch doppler
(RDI Workhorse Navigator Doppler Velocity Log), as well
as an attitude and heading reference system (XSens MTi) are
modeled. As the physical phenomena driving the exteroceptive
measurements are complex, the modeling process of the exte-
roceptive sensors can be a non trivial task. We are presently
working on a simple sonar model using classic ray tracing
method.

C. Environment modeling

The environment is modeled using different elements: the
topography, the temperature and salinity distribution, the en-
vironmental disturbances. These informations are included
in a single function [temperature, salinity, current] =
f(x, y, z). Presently, only the topography, the temperature and
salinity distribution are implemented. This model considers
these phenomena as stationary. More details about the archi-
tecture of Thetis can be found in [10].

IV. CONTROL ARCHITECTURE OF THE ROBOT

Such a simulator is fully useful only if the connection with
the robot and its control architecture does not require any



Fig. 5. Taipan 300 in front of the Salagou Lake in France

modification on the control architecture. Indeed, the transition
from simulation to real experiments has to be as transparent
as possible, unless the expected behavior wont be guaranteed.
Thus the best way is, of course, to physically connect the AUV
sensor devices to the output of the sensors simulator.
In order to do this, the sensors simulator must be able
to reproduce the electrical signals of each sensor. But this
solution is very difficult to implement. Indeed, often, con-
structors dont provide complete information about the sensors
internal specifications. Hence, another solution have to be
implemented, for which the code modification has to be as
light as possible, in order to avoid inducing specific behavior
of the control architecture. Thus, from the robot’s controller
side, it is necessary to implement a modular architecture, in
order to modify only the data supply mechanism of the control
architecture, shunting the real sensors.
For its part, the sensors simulator has to provide the sensors
data, with the same updating rate, range, errors etc... as the
real ones. In this context, we stay close enough to reality, in
order to validate our control architecture.

A. Control architecture of Taipan 300

We briefly present here the architecture of our robot Taipan
300 which has been developed by our team. Taipan 300 is a
small AUV which is designed for shallow water operations.
It is 193cm long for a diameter of 15cm and a weight of
32 Kg (fig. 5). Its control architecture is a mixed architecture
composed of 2 levels: a decisional level containing a global
supervisor and several local supervisors (one for each mode:
autonomous, teleoperation, and cooperation) and a executive
level based on a set of modules in charge of low level control
and instrumentation management, all these modules being
under the control of a scheduler. Three types of objects are
used in this architecture. The global supervisor receives from
the operator a set of objectives which defines the mission to
be achieved. Then it transmits a sequence of objectives to the
concerned local supervisor; the latter sends sub objectives to
the scheduler.

1) Scheduler: Two types of instruments can be found on
Taipan 300: actuators and sensors. The first ones are managed
by Perception Modules (PM) and the seconds by Action
Modules (AM).
A PM is constructed for each data type (called variable)
required by the architecture (e.g x, y, z, θ, ϕ, ψ). It is often

Fig. 6. Control Architecture of Taipan 300

necessary to use data coming from different sensors in order to
compute or estimate a variable. Thus a PM is able to manage
several sensors.
PM are in charge of 2 types of computation. The first one is
relative to the operating mode of the sensor, and the second
one is relative to the data computation of the sensors.
The AM which contains the command laws, allows us to
compute the command to be sent to the actuators.
All these modules are activated and configured by the sched-
uler. Thus in order to get the position of the AUV, the scheduler
sends an order to the corresponding PM and to reach a
position, it sends a order to the AM managing thruster and
fins. PM and AM work in a periodic way. This architecture is
represented on figure 6.

2) local supervisor: A Local Supervisor (LS) is dedicated
to manage a resource in a given mode. Concerning Taipan
300, we only have one ressource (the AUV) which has 3 op-
erating modes Autonomous Mode (objectives from the GS are
executed), Teleoperation Mode (low level teleoperation of the
vehicle by the end user) and Cooperation Mode (commands
the AUV in order to position the vehicle in a flotilla). We
only focus here on the autonomous mode. The LS receives
objectives from the GS to be executed. In order to do this, the
scheduler decomposes the objectives into sub objectives and
schedules the different modules (Perception and Action).

3) Global supervisor: The Global Supervisor (GS) receives
from the operator (or from a mission handler) a file containing
one mission to be achieved. A mission is described as a
succession of objectives which must be reached by the system
during the mission. The objectives can be a displacement
or other actions to be achieved in a given geographic place
(e.g. a bathymetric mission). These objectives can be reached
successively or in parallel according to their nature. Infor-
mation about their planning is given by the end user before
the departure. It allows the GS to sequence correctly the
objectives which constitute the mission. The GS also checks
up that the objectives which are executed at the same time
don’t use the same resource. To reach an objective, the AUV
passes through several steps. These different steps require the



Fig. 7. Connection between the architecture modules

use of different command laws and instrumentations. Thus
each objective is decomposed in several more simple entities.
Only one command law is needed by these entities, which
are called sub objectives, during their execution time. For
example the objective inspection of a pipeline will be broken
up into several sequences diving, going to, tracking pipeline,
following pipeline. Finally, the GS sends to the concerned
local supervisor the objectives to be achieved. The latter sends
an execution report after each sub objective is reached. More
details of this architecture can be found in [11] and in [12].

V. CONNECTION OF THE SYSTEMS

As the architecture presented above respects the required
modularity to connect the AUV to the simulator, we are able
to validate the architecture of the AUV. The behavior between
real and simulated mission should be the same. In order to do
this, we have to design the interactions between the modules.
In order to program a mission, we need to interconnect the
necessary modules. This step of the mission conception is
preceded by different processes (precedence graph, required
ressources etc...). Due to space limitation, the presentation of
these processes will be kept for a future paper.
So in order to program a simple setpoint mission (keeping a
desired heading for a given duration), we have to interconnect
the modules as shown on fig. 7. The linkage of modules
consists in establishing dynamic or static links which support
the data and control flow upon the architecture. A module
carries 6 categories of ports (data input port, data output
port, events input port, events output port, parametrization
port, request input port). The activity of these modules are
controlled by a particular module called scheduler. On figure
7, light gray block represent the modules used during the real
mission. The dark gray ones represent those which are used
during the simulation. Finally the white modules are shared
modules used during real missions and simulations. As we
can see, we only have to replace the light gray module by the
dark grey ones to switch between real mission and simulation.
On the left side PRF and MTI modules are respectively the
modules which are in charge of managing the pressure sensor
and the attitude and heading reference system. These sensor
modules are replaced by the STC module when simulator is
used. This STC module is in charge of communicating and
decoding frames from the simulator. It produces data for the

other modules. Then several white modules are used in order to
achieve the mission. We dont give further details here. At the
end of the jobstring, the computed commands are reachable
by the actuators module ACT. For simulation purpose, they
are directed to the ATS module which is in charge of commu-
nicating with the simulator in order to provide the computed
commands. In this way we warrant that the behavior of the
architecture is almost not affected by the use of the simulator.
Thus an hybrid simulator like Thetis is fully operational taking
its interest with such an architecture.
Thanks to mission logs we can verify that the execution of
the modules sequence is the same in both simulation and real
mission.

VI. CONCLUSION

In this paper we have seen that HIL simulators with an ad-
equate control architecture could play an important role in the
development of robots controller. Thetis is a real time multi-
vehicles simulator which need to be completed (environment
simulator) but which is already exploited in order to validate
our command laws. The relevance of the results comes, on the
one hand, from upgradability, modularity and portability of the
hybrid architecture of Thetis, and on the other hand, from the
modularity, the scalability and the robustness of the mixed
architecture of the AUVs controller. We have only evoked the
use of this simulator in a single-robot underwater frame but
it is generic enough to be used with other robots and thus we
can imagine more complex scenarii like the coordination of
AUVs and air drones in order to make coastal monitoring.

REFERENCES

[1] P. Ridao, E. Batlle, D. Ribas, M. Carreras Neptune: a hil simulator for
multiple UUVs, OCEANS ’04. MTS/IEEE TECHNO-OCEAN ’04, 2004

[2] T. Perez, ØN. Smogeli, T.I. Fossen, A.J. Sørensen, An Overview of
the Marine Systems Simulator (MSS): A Simulink Toolbox for Marine
Control Systems, Modeling, Identification and Control, 2006

[3] D. Suriano and C. Moriconi, textitA Distributed Simulator for the
Development of the Unmanned Underwater Vehicles Control Software,
Robotics and Applications and Telematics, 2007

[4] J.M. Spiewak, B. Jouvencel, P. Fraisse, A New Design of AUV for
Shallow Water Applications: H160, ISOPE’06: International Offshore
and Polar Engineering, 2006

[5] TI. Fossen, Marine Control Systems: Guidance Navigation and Control
of Ships, Rigs and Underwater Vehicles, Marine Cybernetics AS, 2002

[6] LL. Whitcomb, DR. Yoerger, Development, Comparison and preliminary
experimental validation of nonlinear dynamic thruster models, IEEE
journal of oceanic engineering, 1999

[7] M. Aucher, Dynamique des sous-marins, Sciences et techniques de
l’armement, 1981

[8] SA. Santos, Contribution à la conception des sous-marins autonomes
: Architecture des actionneurs, architecture des capteurs d’altitude, et
commandes référencées capteurs, Thèse de l’Ecole nationale supérieure
des mines de Paris, 1995

[9] P. Ridao, M. Carreras, J. Batlle, J. Ama, A New Hybrid Control for low
cost AUV,Proc. of the Control Application in Marine Systems, 2001

[10] O.Parodi, A. El Jalaoui, B. Jouvencel, Thetis A Multi-Vehicule Hybride
Simulator, Proc. of the 17th IFAC congress, 2008

[11] A. El Jalaoui, D. Andreu, B. Jouvencel, Contextual Management of Tasks
and Instrumentation within an AUV control software architecture, Conf.
on Intelligent Robots and Systems (Iros06), 2006

[12] A. El Jalaoui, D. Andreu, B. Jouvencel, AUV Control Architecture for
Control Management of Embedded Instrumentation, 4th IFAC Sympo-
sium on Mechatronic Systems, 2006

[13] http://sourceforge.net/projects/doxygen/, accessed on 17/10/2007


