
HAL Id: lirmm-00311712
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00311712v1

Submitted on 20 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communications with Thetis, a Real Time
Multi-vehicles Hybrid Simulator

Olivier Parodi, Vincent Creuze, Bruno Jouvencel

To cite this version:
Olivier Parodi, Vincent Creuze, Bruno Jouvencel. Communications with Thetis, a Real Time Multi-
vehicles Hybrid Simulator. ISOPE: International Society of Offshore and Polar Engineers, Jul 2008,
Vancouver, Canada. pp.326-331. �lirmm-00311712�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00311712v1
https://hal.archives-ouvertes.fr

Paper No. ISOPE-2008-TPC442 First author’s last (family) name: Parodi Total number of pages 8

Communications within Thetis, a Real Time Multi-vehicles Hybrid Simulator
Olivier Parodi, Vincent Creuze, Bruno Jouvencel

Robotic Department, LIRMM – University of Montpellier 2 - CNRS

Montpellier, France

ABSTRACT

The purpose of this paper is to present the communications aspect in

Thetis, a real time multi-vehicles hybrid simulator for heterogeneous

vehicles.

This simulator allows hardware in loop (HIL) simulations including

virtual sensors which allows to provide a representation of a virtual

world, and with the support of communication devices, which allow

overall communications between vehicles.

After a short state of the art, we introduce the main mechanisms of our

simulator. Then we present the modeling of the phenomena which are

encountered when AUVs (Autonomous Underwater Vehicle)

communicate with aquatic modems, and the messages distribution

system considering the assumptions we have made. Finally, we present

results of our Hardware In Loop Simulation in which Taipan 2 and

Taipan 300 (our 2 AUVs) exchange messages in different spatial

configurations.

KEY WORDS:
Simulation; Modeling; Multi-vehicles simulator; Real-time systems.

INTRODUCTION

Development and control of an autonomous vehicle is far from being

an easy task; this is especially true for underwater robots because of the

difficulty to supervise it during the experiments. In order to avoid long

time and expensive design and implementation during which there is a

possibility to lose or damage the material, it is necessary to test all the

sub-systems of the robots before launching the robot in the harsh

underwater environment. Moreover scenarii, in which many

autonomous vehicles are simultaneously used, are nowadays seriously

considered. Indeed this kind of mission allows to deploy heterogeneous

vehicles with different sensors in order to grasp the environment more

efficiently and faster than with a single vehicle. Currently there are few

experimentations in which many AUVs are simultaneously deployed.

Possible reasons are the cost of such experimentations, the unavoidable

logistic burden, and the theoretical aspect of the most control laws,

which rarely consider the computation time or the underwater

communications restrictions.

Hence, simulation tools play an important role: they help us to test and

validate control laws and software architecture, and to detect

preliminary inconsistencies within the scenarii. Moreover, these

technologies limit the required human resources, decrease the number

and difficulty of necessary real experiments, the cost and the time

spent. There are different types of simulators. A useful classification is

proposed in (Ridao, Batlle, Ribas, Carreras, 2004). Simulators are

classified in 4 categories: the offline simulators, the online simulators,

the hardware in loop simulators and the hybrid simulators.

Offline Simulators allow to design the control of robots in a fisrt

approximation. Matlab/Simulink is often used for this kind of

simulation because of the availability of toolboxes (such as the one

proposed by Fossen described in (Fossen, 2002) and because of the

easy implementation of mathematical models. But we have to keep in

mind that the temporal aspect of the simulation is not taken into

account and it potentially makes the control algorithm inoperative when

it is transferred on a real robot. Thus it is not possible to validate

control architecture or a sensor referenced command with such a

simulator.

Online Simulators belong to another type which allows to take into

account the temporal consistency of the simulation. Indeed, in this type

of simulation, 1 second of simulated time actually corresponds to 1

second in real time. This is the case in the SubSim simulator (Tobias

Bielohlawek, 2006). However the algorithms are still not executed on

the robot itself, and the temporal behavior of the computer used for the

simulation can be different from the one onboard the robot.

In Hardware In Loop simulations, the control algorithm is executed on

the robot itself, but the commands sent to the actuators are routed

towards the simulator instead of the real robot (Suriano, Moriconi,

2007). The simulator then considers the actuation commands in order to

compute the evolution. However, in this sort of simulation the external

world is not taken into account, except for the dynamic properties of

the environment. Only the proprioceptive sensors are simulated and the

overall algorithms suite cannot be fully tested.

Hybrid simulators are HIL simulators where real and virtual systems

interact together in an virtual environment. It is therefore necessary to

simulate an environment (static or dynamic) in which the robot will be

fully functionally operative. Therefore, it is possible to test all the

algorithms of the machine, from low level control of sensors or

actuators to the whole architecture. This approach has been used by

several authors such as in (Ridao, Batlle, Ribas, Carreras, 2004), in

which, authors present Neptune, their real time graphic multi-vehicles

simulator, allowing to performe online, HIL and hybrid simulation.

In order to elaborate a command and a strategy to make our 2 AUVs

cooperate together, we are particularly interested in HIL or hybrid

simulators which are able to simulate several heterogeneous vehicles.

Several studies have been made on this topic, in the scope of

underwater robotics.

First works have been done by the DARPA Naval Technology Office

in 1988 (Albus, 1988). This simulator allows the cooperation between

many underwater platforms which are driven by a real time intelligent

sense-decide-act system. The simulation of sensors and environment

are taken into account.

In (Lane et al., 1998), a distributed simulator for underwater vehicles

called core simulation engine (CSE) has been developed. This system is

equipped with operator training capabilities, mission feasibility

assessment and mission replay. A subscription method and a run time

infrastructure allowed the distributed programming.

The Cooperative AUV Development Concept (CADCON) simulator

(Chappell, Komerska, 2001) uses a client-server model in which it is

possible to handle interactions between vehicles controlled by the

simulation clients through an environment simulator. This simulator

system focuses on the high level communication and does not deal with

the dynamics and control of the heterogeneous vehicles.

In (Ridao et al., 2001), a simulator called DEVRE, composed of a set of

processes running on a local area network, has been developed. The

simulation runs onto 3 computers which are the onboard AUV

computer, a human machine interface computer and a third computer

used to compute the dynamics and to represent a virtual world. In this

simulator multi-vehicles simulation and communications between the

AUVs are not allowed.

In (Hornfeld, 2001) they have also developed a HIL simulator for their

AUV DeepC. This simulator provides real-time models (vehicle and

environment), tools for planning and control in a virtual environment.

Although it seems to be a very challenging project, it is difficult to find

publications about the intern characteristics of this simulator.

In (Kobayashi et al., 2001) a simulator has been developed which is

deployed on a 4 computers network. The first one is the control unit

which is in charge of computing the control variables using the data

from the sensors simulator. This computer is the same as the one

onboard AUV. The second one allows to monitor and gives remote

command for teleoperation. The third one is the AUV simulator which

is in charge of computing the vehicle motion from the actuator

command and external conditions. Finally the fourth one generates and

submits the necessary data about execution of AUV simulation.

(Carlson, Beaujean, An, 2004) treats the vehicles as nodes of the

communication system in the network’s routing protocol. This

simulator is designed specifically to support the development and

testing of mobile ad hoc network routing protocols. It supports multiple

heterogeneous vehicles simulation, considering multiple

communication links.

The Subsim simulator (Tobias Bielohlawek, 2006) focuses on a system

with dynamics which executes a control algorithm, simulates and

visualizes sensor data, actuator behavior and camera pictures.

All the above mentioned simulators present several very helpful

specificities, through several models (environment, vehicles…) which

are able to accurately cope with reality. Some of them are specialized in

HIL simulation, although others are mostly designed for multi-AUVs

applications, while others are focusing on accurate environment

simulation. Among all of these references no one has addressed the

problem of temporal decoupling between the command computed by

the onboard computer and the simulator(s). Yet this is a critical

problem on addressed in next section. On the other hand, from the end-

user point of view, the source codes and the associated documentations

are not always available, and in this context it is not convenient to reuse

the existing development. Most of these simulators are not based on a

distributed architecture, meaning that it is not possible to add another

computer when the load of the existing ones becomes too important.

This leads some teams to simplify the used models at the expense of the

quality of the obtained results.

Fig. 1. Simplified architecture of Thetis: there is a logical sequence

between 3 simulators even if there are independent processes on

different computers. The cycle duration of this sequence must be

largely lower than the period of the controller. The temporal decoupling

is only effective (and that's enough) between the simulator and the

controllers. The link between the communications simulator and the

environment simulator is event-driven (when a communication between

vehicles occurs).

Moreover the considered systems are always AUVs (sometimes

heterogeneous) but there is no mention about cooperation capabilities

between a surface vehicle and an underwater one (for example). Yet,

we find more and more scenarii in which an UAV (Unmanned Aerial

Vehicle), an ASV (Autonomous Surface Craft) or a land vehicle are

required to cooperate.

For all these reasons we have developed Thetis, a hybrid simulator

which provides the necessary environment to experiment HIL

simulation with support of communications between the vehicles, and

allows the use of exteroceptive sensors.

Building such a simulator which concurrently provides all these

functionalities is a necessary tool to envisage such complex scenarii.

This is a challenging engineering multi-disciplinary task because of the

number of specialists who must collaborate (acoustician, computer

specialist, control engineer etc…).

For this reason the aim of this simulator architecture is not to provide a

set of “perfect” models: in this paper we describe a simulator

architecture allowing us to deal with the problem of heterogeneous

coordinated vehicles, under communication constraints. Moreover, the

open source Thetis project is built to allow for many different

specialists to develop their own models.

On the other hand this simulator architecture is distributed, in order to

allow the implementation of complex models, without being restricted

by computational burden, thus guaranteeing the real-time aspect.

Finally this simulator allows to interchange the used models, in

function of the desired accuracy.

As this paper focuses on the architectural aspects of the simulator, the

different models, already implemented, are deliberately basic, except

for the vehicles, where full hydrodynamic models are considered, as

exposed in (Fossen, 2002).

This paper describes the mechanisms and structure of the simulator,

focusing on inter-vehicles communication. For details on previous

development, please refer to (Parodi, El Jalaoui, Andreu, 2008) where

we focus on the connectability aspects of Thetis to our real robots.

So first we present the architecture of our simulator: Thetis, specifying

the models we consider. Then we present the messages distribution

system taking into account the assumptions we have made. Finally, we

present results of a simulation where Taipan 2 and Taipan 300

exchange messages in different spatial configurations.

THETIS: HYBRID SIMULATOR

Thetis is a new real-time hybrid simulator allowing for considering

heterogeneous multi-vehicles scenarii, including communication

physical restrictions.

Critical Concepts

This simulator is composed with a set of mechanisms which respects

several properties.

One of the most important is the capability of the simulator to ensure a

temporal decoupling between the control loop and the simulation loop.

This warrants the coherence between simulation results and expected

real behavior. For example, if for any reason, the onboard computer is

unable to provide the actuator commands at an appropriate time

(unexpected delay), then the simulator has to exhibit the natural

consequence of this delay on the vehicle behavior (open loop).

Indeed, in Thetis, there is no logical synchronization between the

simulation loop and the controller computation onboard the robots.

Another important concept is the upgradeability of the simulator. We

are able to add some new components (sensors, vehicles...) in a very

easy way. This warrants us the possibility of using this simulator with

different types of vehicles. Indeed, the modularity of this simulator

favors the interventions of different specialists. Thus, a sonar specialist

will be able to modify the sonar model, without considering the global

simulator functioning. Then, the system designer can also transfer this

model computation onto another computer if he considers it is too

resource-consuming for the original one. Finally, a very interesting

aspect of this architecture is its portability. Indeed it is able to work

with different robots and thus be connected with different control

software architectures. We only need to adapt the interface between the

2 systems (simulator and controller), in order to make them work

together. Moreover, the distributed aspect of Thetis affords the faculty

of the simulator to be divided and executed on different computers,

linked on a dedicated local area network via UDP/IP protocol. This

avoids to overload computers and to affect the real time capability of

the systems.

Implementation and Technical Considerations

All the concepts exposed in the previous section are supported by using

3 mechanisms and the architecture is based on 4 simulators.

• First an XML-based specifications exchange (XML for Extensible

Markup Language) allows to structure the parameters of the

different models (modem, radio, fins, motor …), and configuration

files, while promoting the modularity and the portability. Indeed

modularity is obtained using the XML format, which allows to

specify the components parameters, and modifying them in a very

easy way. For example, if we consider 2 sensor devices,

measuring the same physical quantity, the intrinsic parameters

(time-response, accuracy, rate…) are described in 2 different

XML files, while the physics of the phenomenon remains the

same, and is described in a unique other XML file. Now, the

replacement of a sensor by another is done by calling a XML file

in place of the other. All the system components description

follows the same idea (fins, acoustical modem, GPS, propeller,...).

Moreover, many components could use the same formalism to

describe their intrinsic parameters without using all of them. For

example, we can imagine that an underwater communications

specialist needs a very accurate model describing its modem; he

should use all the parameters of the XML file. Another user, who

doesn't need such an accuracy level, will use the same XML file,

but only a part of these parameters in order to supply its own

model. The validation and extensible properties of the XML

language make it an ideal base to enrich the model parameters

files. Thus the robots (in fact the different components as sensors,

actuators, communication devices, etc...) used in this simulator are

described in XML formalism. To do this, we suggest a set of

different tags allowing to describe the components of the robots in

an easy way.

• Then portability and temporal decoupling is favored by using

sockets and local shared memories widely. Thus it is possible to

run several processes on different computers each of them

interacting with others using these mechanisms.

• In order to ensure real-time performances as well as effective

temporal decoupling, the overall simulation system is in fact an

application divided in 4 simulators. The first one is a vehicle

simulator which allows the simulation of the robots dynamics. The

second one is a sensors simulator allowing the simulation of the

various sensors of the robots. The third one is a communications

simulator in charge of computing the behavior of communications

device (signal processing for an acoustic modem, for example)

and of distributing the different messages to the concerned

vehicles (in fact those which are within range of communications).

Lastly the fourth one is a static environment simulator (no

evolution with time at yet). It allows the simulation of

exteroceptive sensors, it is in charge of computing the possible

collisions and of computing the different acoustic signals

propagation, the latency and distortions of the communication

signals. All these simulators are interconnected on a dedicated

UDP/IP network. This avoids overloading the network in order to

guarantee real-time performances and to avoid packets losses

(potentially possible with UDP/IP network). The connections

between these blocks are detailed and explained on figure 1.

Only the sensors, the communications and vehicles simulators are

connected to the real robot, the environment simulator being

connected only to the 3 other ones. All these simulators work

under Linux RTAI. Information about network configuration is

described in a shared XML file. All the XML files describing the

components of the system are loaded at the initialization and thus

allow to instantiate the different objects of the simulator.

• Finally we have created a set of libraries containing a set of

classes enabling us to build the various objects of the simulation

system. All these classes are documented with doxygen tool

(doxy, 2007) and are available online

(www.lirmm.fr/~parodi/thetis).

Vehicles Simulator

The vehicle simulator is in charge of computing the robots dynamic

evolution. We present this simulator structure on figure 2. It is

composed of 2 independent processes communicating via a local shared

memory. Before starting the simulation, this simulator connects itself to

the environment simulator to obtain all the physical constants

(environment viscosity and density, gravity…).

Fig. 2. Architecture of the vehicles simulator.

The first process is the Socket Server and Dispatcher process, which is

in charge of ensuring the communication between the simulator and the

robots controllers. The robots send actuators commands calculated by

the onboard computer to the simulator through UDP socket. Then the

data received are decoded and written to a shared memory initially

created by this process.

The second process is the actual cycle of vehicles simulation (called

Dynamic Models on the figure 2). During this cycle all the forces and

torques applied to the robots are computed in order to determine the

vehicles accelerations and, after integration steps, vehicles attitudes and

velocities are computed. The computed data are sent to the environment

simulator in order to verify the absence of collisions and if occurs to

correct positions. Afterwards, the computed data are sent to the sensors

simulator. This cycle is presented on figure 3. The initial position and

attitude of the vehicles are given at the initialization (this data is

provided by the XML configuration files), then the dynamic model

evolves according to the actuation effects and the environment.

Fig. 3. Simulation cycle of the vehicles simulator (classically, ν
expresses the vehicle velocity in the vehicle frame; η denotes the
position and attitude of the vehicle, in the earth-fixed frame).

Sensors Simulator
The sensors simulator is in charge of providing to the real robot

(onboard computer) virtual data from the simulation. Presently the

models of proprioceptive and simple exteroceptive (Temperature,

Conductivity…) sensors are implemented. Complex exteroceptive

sensors (sonar and camera) will be the next steps of our work.

This simulator is based on the execution of 3 independent processes,

communicating via 2 local shared memories. The structure of this

simulator is presented on figure 4.

Fig. 4. Architecture of the sensors .

As in the vehicles simulator, there are 2 dispatcher processes

(DispatcherFromVHC and DispatcherFromENV) which are

respectively in charge of listening to messages from vehicles simulator

(vehicles state: velocities, accelerations, attitudes...), and messages

from environment simulator (parts of maps determined according to the

position and the range of the robot's sensors), and of decoding and

writing data into 2 local shared memories (one for each process). The

third process is the sensors simulator which computes output of each

sensor for each robot. These outputs are computed according to each

sensor model (which parameters are described in the XML file), data

from the vehicles simulator (systems state), and at last to the data from

the environment simulation. Once these outputs are computed, they are

specifically sent to the concerned robots.

Environment Simulator
The environment simulator is in charge of providing the stored

geophysical maps around a given geographical point (Temperature,

Salinity, Local current, Plankton density…), computing signal

propagation (when communications between vehicles occurs), signal

distortion and latency, detecting collisions. At each cycle of vehicle

simulation, the environment simulator is called and sends back the

value of the local current and the occurrence of a collision.

Even if many things seems to be computed by the environment

simulator, it is worth noting that only the calculation of the signal

propagation may be resource-consuming depending of the implemented

model. The maps management is light because we only consider static

maps (no evolution with time). It is the same for the collision detection

algorithm: the complexity of calculations depends mainly of the

number of vehicles.

As the others this simulator is based on several independent processes,

each of them sharing its own data with shared memories as we can see

on figure 5. As before we find again 3 dispatcher processes

(DispatcherFromCOM, DispatcherFromVHC and DipacherFromSEN)

which are in charge of listening to messages from the different

simulators. The main program consists in a loop which computes

sequentially the different tasks previously mentioned. The computed

data are sent to the other simulators during this cycle. It has to be noted

that the computed communication signals are only sent to the

communications simulator when (considering latency and bandwidth)

and if necessary (if the vehicles are not within range of

communications no messages will be delivered). Moreover the rate of

communication is considered to be constant in the communication area.

When a communication occurs in this area, other communications

using the same frequency potentially invalidate the communication

channel, and the messages are not delivered.

Fig. 5. Architecture of the environment simulator

Communications Simulator

We are currently implementing a messages distribution mechanism for

inter-robot communications. This mechanism takes into account the

delay, the rate and the losses caused by the type of communication

device in use, and the propagation medium. It allows to teste some

control laws for coordinated AUV flotilla.

The communications simulator is in charge of simulating the signal

processing done by the communication devices. When a vehicle has to

emit a message (radio or acoustic waves), it sends a request to its

concerned communication device (radio, wifi, acsoutic modem…). In

the simulation case, these data are not sent to the physical

communication device, but routed to the communications simulator

(Parodi, El Jalaloui, Andreu, 2008) for more information about the

connectivity of the simulator with our AUVs). The communications

simulator receives a frame which contains the emitting AUV identifier,

the message to be sent in clear (no RAW data) and the identifier of the

communication device to be used for this issue.

The model of the involved communication device is used to generate

the emitted signal. Then, the computed analog signal is sent to the

environment simulator. Presently the model of the communication

device is not implemented yet and we send the clear message. The

required parameters (frequency, emission intensity, communication

rate…) necessary for the environment simulator in order to be able to

provide its propagation model, are initially loaded from the XML

configuration file, related to the involved communication device.

Indeed, for our application, we don’t need to accurately model the

signal propagation in the environment. On the other hand, the simulator

architecture will allow to interested people to implement their own

models.

As mentioned earlier, the environment simulator computes the shape of

the propagated signal and its characteristics. Then they are delivered to

the communications simulator, after a time representing the time of the

signal propagation in the environment. This calculation is made

between the emitter and all the other vehicles. This allows to determine

the vehicles which could be reached (i.e. those which the signal

reception is higher than the trigger point of their communication

device). The communications simulator could transmit the messages to

the concerned vehicles after having decoded the received signal thanks

to the inverse model of the communication device.

In order to realize this, the communications simulator has a structure

quite similar to others, presented fig. 6.

Fig. 6. Architecture of the communications simulator.

MODELS AND ASSUMPTIONS

In this chapter we explain the modeling which we have chosen to

develop the simulator. Although it is not exclusively limited to simulate

AUVs, it is the first model that we have implemented because the

interest of our team (Spiewak, Jouvencel, Fraisse, 2006). Other models

will be implemented later if needed. Hence, the simulated sensors suite

is dedicated to underwater applications and the modeled environment is

exclusively underwater. Obviously, all this can be easily modified in

order to deal with heterogeneous robots and environment like

coordination between AUVs, UAVs and surface crafts.

AUV Modeling
The robot model is used to compute the robot accelerations according

to the actuation command vector. The modeling of the AUV is made up

of the hydrodynamic, hydrostatic and dynamic phenomena of the robot

on the one hand, and of the actuators model on the other hand. Here is a

brief description of these models:

• Hydrodynamic forces: the simulator uses the 6 dof (Degree of

Freedom) non linear equations of 6DOF AUV expressed in

the body fixed frame (Fossen, 2002)

 () () ()()ηντν gDCCMM ARBRBA −++−+= −1
& (1)

where ν denotes the system velocities (linear and angular),

MRB and MA are the inertia matrix and the added mass matrix,

τ denotes the force and torque produced by the thrusters and
control surfaces, CRB and CA the rigid-body, the added

Coriolis and centripetal matrixes, D denotes the damping

matrix, g denotes the gravity and buoyancy force and torque,

η denotes the position and orientation vector
The potential damping, the skin friction and the wave drift

damping are not considered.

Only the damping due to vortex shedding is computed. Once

the estimation of the accelerations is computed, we integrate

a first time to obtain the velocities in the body fixed frame. It

is then necessary to integrate a second time after shifting the

frame so as to obtain the robot position and attitude in the

inertial frame.

()
() 

















Θ
Θ

=








Θ Θ×

×
b

nb

b

o

n

b

n v

T

Rp

ω33

33

0

0

&

& (2)

• Thruster Model: A steady state model is used for the thruster

of the AUVs. We can consider that the response is

instantaneous according to the input.

We use a bilinear model, i.e. a non linear function computing

the thrust according to the angular speed of the propeller ω

and the linear speed of the robot in the thruster direction. See

(Ridao et al., 2004) for more details.

νω νωωω ×−×=
TT
CCT (3)

Other authors propose dynamic models (Whitcomb, Yoerger,

1999), (Fossen, 2002). The possibility of implementing such

thruster models will be studied later.

• fins Model: the robots Taipan (Spiewak et al., 2006) have a

cylindrical shape and are equipped with rudder at the stern

and with 2 pairs of diving planes located at the bow and at the

stern.

The lift FZ is the projection of the resultant F on the axis,

orthogonal to the fluid direction. The drag force is the

projection on the axis, parallel to the fluid direction. These

forces are modeled according to the following equations,

expressed in a frame fixed on the control surface (Aucher,

1981) and (Santos, 1995):

xsxz

zscz

CSVF

CSVF

0

0

2

1

2

1

ρ

ρ

=

=
 (4)

Where ρ is the density of the fluid, S is the projected area of
the fin, perpendicularly to the fluid direction; V0 is the

relative velocity of the body with the fluid, CZS is the lift

coefficient corresponding to the axes of the surface; CXS is

the drag coefficient corresponding to the axes of the surface.
Once the physical action of the planes is expressed, we

consider that the axis of rotation of the planes is situated at a

distance da from the origin of the local frame of the robot.

The forces of the lift and drag (no evolution with time at yet)

and the induced moment are therefore given by:

()

()
() ()























+−

−−

+−

=
















δδ
δδρ

δδρ

sincos

sincos
2

1

cossin
2

1

2

0

2

0

sxassz

xszss

xsczs

q

z

x

lbFdlcF

CCVS

CCVS

M

F

F
 (5)

 where: l is the distance between the leading edge of the

planes and the system metacentre; bS is the wingspan; cS is the chord; SS

is the surface wing defined by
sss cbS = ; l=0,2 for the taipan class.

Sensors Modeling
The proprioceptive sensors provide measurements in order to estimate

the state variables of the robot, and its derivatives. These sensors are

modeled by using directly the variables produced by the vehicles

simulator. Afterwards, the sensors simulator provides the samples at the

same frequency as the real sensor, taking care to limit its range and

adjust its resolution. It is also necessary to add noise so as to obtain a

more realistic simulation.

Presently a GPS (Trimble Lassen SKII), a velocity logs (RDI

Workhorse Navigator Doppler Velocity Log), as well as an attitude and

heading reference system (XSens MTi) are modeled.

As the physical phenomena driving the exteroceptive measurements are

complex, the modeling process of the exteroceptive sensors is a non

trivial task.

We are presently working on a simple sonar model using classic ray

tracing method.

Environment Modeling

The environment is modeled using different elements: the topography,

the temperature and salinity distribution, the environmental

disturbances (currents). These data are included in a single

function [] ()zyxfcurrentsalinityetemperatur ,,,, = . Presently, only the

topography, the temperature, salinity and currents distribution are

implemented. This model considers these phenomena as stationary.

Communications Modeling

The messages distribution model previously mentioned is the same

whatever the communication devices used or the environment

propagation, despite the related parameters, contained in a XML file,

initially loaded.

Nevertheless, we have started with a model developed for the

propagation of sound waves in the aquatic environment, since the main

subject of our team is underwater robotics.

The aquatic acoustic communications are constrained by intrinsic

properties of water (important propagation time, low communication

rate due to the use of low frequency, reflections, and the necessity to

incorporate error-correcting code). Thus we have created a propagation

model which takes into account several physic phenomena which

represent the constraints that we actually meet in our experimentations.

We mainly model the transmission losses (absorption and dispersion)

and the sea relative noise level.

Transmission losses

Whatever is the environment in which the acoustic wave is

propagating, it undergoes an attenuation which mainly depends on the

frequency and the distance traveled by the wave. In fact this attenuation

is due to 3 main phenomena:

• The absorption, which traduces the fact that a part of the

energy is converted into heat along the traveled path and that

we model like (L. Berkhovskikh, Y. Laysanov, 1982)

() 003.01075.2
4100

44

1

11.0 24

2

2

2

2

+×+
+

+
+

= − f
f

f

f

f
fg

 (6)

where f is the signal frequency in KHz and g the attenuation

in dB/Km.

• The dispersion which represents the acoustic wave spread

during its propagation (the surface of a sphere is growing up

with the square of the distance from the emission point,

independently of the wave frequency) :
2log10 dTLD = (7)

where d denote the distance in meters.

• The diffusion (phenomena whereby a beam is deflected in

many directions) and which is not considered here.

Then, total loss is expressed as:
DTL

d
gTL +×=

1000

.

Noise Level

The oceanic noise is mainly due to human activities noise, surface

agitation created by the wind, the rain, the animals and finally the

thermal noise. We resume on fig. 7. the range of the frequency

occupied by the different sources of the Wenz model and their typical

acoustic intensity.

Fig. 7. Isotropic noise level from different sources.

The noise level generally decreases when frequency increases. Wenz

Wenz, 1962) has proposed a model (eq. 8.) which allows us to

approximate the average level of each noise component.

()

()()



















+−=>

−+=<<

−−++=<<

−+














−=<<

−=<

fNBSKHzf

fNBSKHzfKHz

ffNBSKHzfHz

I
f

NBSHzfHz

fNBSHzf

seThermicNoi

ktseHighSeaNoi

kteLowSeaNois

STrafic

Turbulence

log2075:100

log172195:1001

2loglog3172144:1200

45
30

log2076:50010

log30107:10

2

ν

ν

 (8)

where f is the central frequency of the considered band; IS is a traffic

cue (1: low 7: strong); νΚΤ the wind speed in knots.
It should be noted that the noise level NBS given here is a spectral

isotropic noise level expressed in HzPdB µ/ . Indeed, the noise

intensity is expressed as an energy density, i.e. for 1Hz-wide band

frequency.

Hence the noise level (in dB) must be reported on the bandwidth (W

expressed in Hz) of the used receiver system:

WNBSNB log10+= (9)

Propagation

Using the following inequality (eq. 10.), it is possible to determine the

radius of the sphere that is bounded by the reception threshold of the

receiver AUV.

thresholdNBTLSL >−− (10)

where SL stands for Source Level of the transmitter AUV.

Thus it is possible to determine for each AUV (other than the emitter

AUV) if it is in the signal propagation sphere. If not, the message will

not be delivered. Else, we determine more precisely the reception level

taking into account the attitudes of the 2 vehicles and the directivity

diagram of the antenna (using a lookup table).

If the computed signal reception level is higher than the reception

threshold of the modem, the message is delivered after a duration ∆t
which is computed taking account of the distance between the 2

antennas, depending of the size of the message and finally the modems

communication rate (eq. 11):

D

Size

c

d
t +=∆ (11)

where Size is the size of the message to be transmitted and D is the

communication rate.

The low dynamic of the systems and the very small messages to be

exchanged, allows us to consider that the message could be delivery at

once; it does not seem to be a too strong hypothesis.

On the other hand, we determine the areas in which it is no longer

possible to receive a message. Indeed if several AUVs are emitting at

the same time on the same frequency, we consider that the message

cannot be delivered to AUVs staying in the overlapping area, defined

as the intersection of the different propagation spheres of the emitters.

The communication rate in these spheres is considered to be constant

because we exploit the safe mode of our modems that allows to

improve the quality of communication, despite the reduced bandwidth

(20bit/s). It does not seem beneficial for us to implement a more

sophisticated propagation model given the experimental conditions.

Indeed our AUVs are spaced with a few hundred meters. Thus we don’t

need to implement a modal or parabolic algorithm for this kind of

application. We are currently implementing a model based on the ray

theory to increase our simulation accuracy.

PRELIMINARY SIMULATIONS

We have 2 AUVs which are currently being upgraded. The first one is

Taipan 300; this is a small AUV which is designed for shallow water

operations. It is 193cm long for a diameter of 15cm and a weight of 32

Kg (figure 8).

Fig. 8. Taipan 300 in front of the Salagou Lake in France

On the photo (see fig. 8.) the vehicle is fitted with a CTD (located at the

front of the vehicle just behind the white nose), but we are currently

replacing this device by an acoustic modem. This vehicle is moving at a

speed of about 2m/s and its autonomy is about 3h. This AUV can reach

a depth of 100m.

The second AUV is Taipan 2 which is a much more sophisticated

vehicle with several sensors (see fig. 9.)

Fig. 9. Equipment of the new version of Taipan 2

These 2 AUVs carries a Tapac modem. These modems have a

transmission power of 177 dB and a bandwidth of 6Khz. Their

reception trigger level is equal to 15dB beyond environmental noise.

Their radiation chart is omnidirectional. Its transmission frequency is

33 Khz (chirp modulation).

In this simulation we assume that the wind velocity is equal to 5 knot.

Using the Wenz model we determine that the modems maximal

communication range is equal to 1900 m, which correspond to

constructor values.

In order to simplify the interpretation of the results, only one of the 2

vehicles is moving during the simulation. The first vehicle (Taipan 300)

is moving along a straight line, restricted to the horizontal plane.

Moreover, the pitch and roll angle are set to zero, that guarantees the

vehicle to follow a straight line, forced to a constant depth.

The second AUV is fixed (actuators are set to 0) with a constant depth

(the depth value is forced in the vehicle simulator).

In this simulation, Taipan 2 is in a fixed point and emits messages

(constituted by the string “HELLO WOLRD TAIPAN 2 IS

BROADCASTING A MESSAGE”). The trajectory followed by Taipan

300 is shown in figure 10. Each 350s a dot is drawn on the trajectory.

The blue circle on the figure represents the transmission area of Taipan

2. Taipan 2 emits its message at t=60s, t=1500s et t=2300s. These

instants are represented on the Taipan 300 trajectory by 3 squares.

Fig. 10. Trajectory of Taipan 300

We can see that at t=0, Taipan 300 is out of the communication range

of Taipan 2. At t=650s communication becomes possible. Finally at

t=2382s Taipan 300 is out of the Taipan 2 communication range (figure

11).

Fig. 11. Reception level during the trajectory of Taipan 300

Figure 12 represents a timeline with the date of emission/reception of

messages from the vehicles. We assume that each transmission has a

fixed delay and a null duration

Fig. 12. Logs of the simulated mission

Figure 12 presents data logged by the 2 vehicles and the environment

simulator. We distinguish these data on the graph by the height of their

peak 1: Taipan 2, 2: Environment simulator, 3: Taipan300. On the

“zoom 2” we can see that the first message sent by Taipan 2 is received

by the environment simulator (few millisecond later) but never by

Taipan 300 (no Taipan 2 peak after). The second and the third message

are sent by Taipan 2 and received by taipan 300 after 20s (“zoom 1”).

This duration corresponds to the latency and the necessary duration to

send the message.

This simple simulation allows us to illustrate all mechanisms

mentioned in the previous sections. AUV trajectories are enough to

validate the environment and communications simulators.

CONCLUSIONS

In this paper we have presented the communication capabilities of the

simulator Thetis. This HIL simulator plays an important role in the

development of the controllers of our robots. Thetis is a real-time multi-

vehicles simulator which needs to be completed (including complex

exteroceptive sensors). We need to compare the results from the

simulation with real experimentations. This is especially true for the

underwater communications. Taipan 2 should be available in few

months and we will be able to experiment the effective rate of

communication between the AUV and a second acoustic modem

located on a surface vessel.

Our contribution concerns the proposed simulator architecture. This

architecture gathers all the important features that a simulator must

include in order to allow simulation of flotilla. The models used are

certainly less accurate than other within traditional simulators, but the

structure of our simulator allows for easy evolution. The structure of

our simulator allow us to test control laws of AUV involved in flotilla

by taking into account all aspects of this field (e.g. including

communication between vehicles).

The communications model we have presented is not very complex and

accurate, but it could be useful for control design purpose. Interferences

in communication are currently taking into account toward a function

under development. This function verifies if the geographical zone of

communications is sound proofed by an acoustical sensor. This

functionality is very important in case of flotilla simulation. We have

only evoked the use of this simulator with 2 robots in an underwater

environment but it is generic enough to be used with other robots and

thus we can imagine more complex scenarii like the coordination of

AUVs and UAVs in order to achieve coastal monitoring.

REFERENCES

P. Ridao, E. Batlle, D. Ribas, M. Carreras (2004), “Neptune: a hil

simulator for multiple UUVs”, OCEANS '04. MTS/IEEE TECHNO-

OCEAN '04

TI. Fossen (2002), “Marine Control Systems: Guidance Navigation and

Control of Ships, Rigs and Underwater Vehicles”, Marine Cybernetics

AS

Suriano, Moriconi (2007), “A Distributed Simulator for the

Development of the Unmanned Underwater Vehicles Control

Software”, Robotics and Applications and Telematics

Albus (1988), “System Description and Design Architecture for Multiple

Autonomous Underwater Vehicles”, National Institute of standards ans

Technology, Gaithersburg, MD, Technical Note 1251

D.M Lane et al. (1998), “Mixing simulation and real subsystems for

subsea robot development”, Proc; IEEE OCEAN’98, Nice, France, pp.

1382-1386

T. Bielohlawek (2006), “SubSim – An Autonomous Underwater

Vehicle Simulation System”, Ag Robotersysteme Fachbereich

Iinformatik An Der Unuversität Kaiserslautern

Chappell, Steven G.; Komerska, Rick J.(2001), “An Environment for

High-Level Multiple AUV Simulation and Communication”,

Proceedings of UI 2001

Ridao, P., Battle, J., Amat, J., Carreras, M.(2001), "A distributed

environment for virtual and/or real experiments for underwater robots,"

Proceedings 2001 ICRA. vol.4, no., pp. 3250-3255 vol.4

W. Hornfeld (2001), “DeepC, the German AUV Develoment Project”,

status report of the STN ATLAS Elektronik GmbH

Kobayashi et al (2001), "Development of an autonomous underwater

vehicle maneuvering simulator," OCEANS vol.1, no., pp.361-368 vol.1

Carlson, E.A., Beaujean, P.-P., An, E. (2004), "Simulating

communication during multiple AUV operations," Autonomous

Underwater Vehicles, vol., no., pp. 76-82

O. Parodi, A. El Jalaoui, D. Andreu (2008), “Connectivity of Thetis, A

Distributed Hybrid Simulator, with a mixed Control Architecture”, The

Fourth International Conference on Autonomic and Autonomous

Systems ICAS 08

Doxygen, http://sourceforge.net/projects/doxygen/ accessed on 10/07

J.M. Spiewak, B. Jouvencel, P. Fraisse (2006), “A New Design of

AUV for Shallow Water Applications: H160”, ISOPE'06: International

Offshore and Polar Engineering

LL. Whitcomb, DR. Yoerger (1999), “Development, Comparison and

preliminary experimental validation of nonlinear dynamic thruster

models”, IEEE journal of oceanic engineering

M. Aucher (1981), “Dynamique des sous-marins”, Sciences et

techniques de l'armement

SA. Santos (1982), “Contribution à la conception des sous-marins

autonomes : Architecture des actionneurs, architecture des capteurs

d'altitude, et commandes référencées capteurs”, Thèse de l'Ecole

nationale supérieure des mines de Paris

L. Berkhovskikh, Y. Laysanov (1982), “Fundamentals of Ocean

Acoustics », N.Y: Springer

G.M. Wenz (1962), “Acoustic ambiant noise in the ocean: spectra and

source”, Journal of American Acoustic Society, vol 34, pp. 1936-1956

