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ABSTRACT  
 

The purpose of this paper is to present the communications aspect in 

Thetis, a real time multi-vehicles hybrid simulator for heterogeneous 

vehicles. 

This simulator allows hardware in loop (HIL) simulations including 

virtual sensors which allows to provide a representation of a virtual 

world, and with the support of communication devices, which allow 

overall communications between vehicles. 

After a short state of the art, we introduce the main mechanisms of our 

simulator. Then we present the modeling of the phenomena which are 

encountered when AUVs (Autonomous Underwater Vehicle) 

communicate with aquatic modems, and the messages distribution 

system considering the assumptions we have made. Finally, we present 

results of our Hardware In Loop Simulation in which Taipan 2 and 

Taipan 300 (our 2 AUVs) exchange messages in different spatial 

configurations. 
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INTRODUCTION 

 

Development and control of an autonomous vehicle is far from being 

an easy task; this is especially true for underwater robots because of the 

difficulty to supervise it during the experiments. In order to avoid long 

time and expensive design and implementation during which there is a 

possibility to lose or damage the material, it is necessary to test all the 

sub-systems of the robots before launching the robot in the harsh 

underwater environment. Moreover scenarii, in which many 

autonomous vehicles are simultaneously used, are nowadays seriously 

considered. Indeed this kind of mission allows to deploy heterogeneous 

vehicles with different sensors in order to grasp the environment more 

efficiently and faster than with a single vehicle. Currently there are few 

experimentations in which many AUVs are simultaneously deployed. 

Possible reasons are the cost of such experimentations, the unavoidable 

logistic burden, and the theoretical aspect of the most control laws, 

which rarely consider the computation time or the underwater 

communications restrictions. 

Hence, simulation tools play an important role: they help us to test and 

validate control laws and software architecture, and to detect 

preliminary inconsistencies within the scenarii. Moreover, these 

technologies limit the required human resources, decrease the number 

and difficulty of necessary real experiments, the cost and the time 

spent. There are different types of simulators. A useful classification is 

proposed in (Ridao, Batlle, Ribas, Carreras, 2004). Simulators are 

classified in 4 categories: the offline simulators, the online simulators, 

the hardware in loop simulators and the hybrid simulators. 

Offline Simulators allow to design the control of robots in a fisrt 

approximation. Matlab/Simulink is often used for this kind of 

simulation because of the availability of toolboxes (such as the one 

proposed by Fossen described in (Fossen, 2002) and because of the 

easy implementation of mathematical models. But we have to keep in 

mind that the temporal aspect of the simulation is not taken into 

account and it potentially makes the control algorithm inoperative when 

it is transferred on a real robot. Thus it is not possible to validate 

control architecture or a sensor referenced command with such a 

simulator. 

Online Simulators belong to another type which allows to take into 

account the temporal consistency of the simulation. Indeed, in this type 

of simulation, 1 second of simulated time actually corresponds to 1 

second in real time. This is the case in the SubSim simulator (Tobias 

Bielohlawek, 2006). However the algorithms are still not executed on 

the robot itself, and the temporal behavior of the computer used for the 

simulation can be different from the one onboard the robot. 

In Hardware In Loop simulations, the control algorithm is executed on 

the robot itself, but the commands sent to the actuators are routed 

towards the simulator instead of the real robot (Suriano, Moriconi, 

2007). The simulator then considers the actuation commands in order to 

compute the evolution. However, in this sort of simulation the external 

world is not taken into account, except for the dynamic properties of 

the environment. Only the proprioceptive sensors are simulated and the 

overall algorithms suite cannot be fully tested. 

Hybrid simulators are HIL simulators where real and virtual systems 

interact together in an virtual environment. It is therefore necessary to 

simulate an environment (static or dynamic) in which the robot will be 

fully functionally operative. Therefore, it is possible to test all the 

algorithms of the machine, from low level control of sensors or 

actuators to the whole architecture. This approach has been used by 

several authors such as in (Ridao, Batlle, Ribas, Carreras, 2004), in 

which, authors present Neptune, their real time graphic multi-vehicles 

simulator, allowing to performe online, HIL and hybrid simulation. 

In order to elaborate a command and a strategy to make our 2 AUVs 

cooperate together, we are particularly interested in HIL or hybrid 



 

simulators which are able to simulate several heterogeneous vehicles. 

Several studies have been made on this topic, in the scope of 

underwater robotics. 

First works have been done by the DARPA Naval Technology Office 

in 1988 (Albus, 1988). This simulator allows the cooperation between 

many underwater platforms which are driven by a real time intelligent 

sense-decide-act system. The simulation of sensors and environment 

are taken into account. 

In (Lane et al., 1998), a distributed simulator for underwater vehicles 

called core simulation engine (CSE) has been developed. This system is 

equipped with operator training capabilities, mission feasibility 

assessment and mission replay. A subscription method and a run time 

infrastructure allowed the distributed programming. 

The Cooperative AUV Development Concept (CADCON) simulator 

(Chappell, Komerska, 2001) uses a client-server model in which it is 

possible to handle interactions between vehicles controlled by the 

simulation clients through an environment simulator. This simulator 

system focuses on the high level communication and does not deal with 

the dynamics and control of the heterogeneous vehicles. 

In (Ridao et al., 2001), a simulator called DEVRE, composed of a set of 

processes running on a local area network, has been developed. The 

simulation runs onto 3 computers which are the onboard AUV 

computer, a human machine interface computer and a third computer 

used to compute the dynamics and to represent a virtual world. In this 

simulator multi-vehicles simulation and communications between the 

AUVs are not allowed. 

In (Hornfeld, 2001) they have also developed a HIL simulator for their 

AUV DeepC. This simulator provides real-time models (vehicle and 

environment), tools for planning and control in a virtual environment. 

Although it seems to be a very challenging project, it is difficult to find 

publications about the intern characteristics of this simulator. 

In (Kobayashi et al., 2001) a simulator has been developed which is 

deployed on a 4 computers network. The first one is the control unit 

which is in charge of computing the control variables using the data 

from the sensors simulator. This computer is the same as the one 

onboard AUV. The second one allows to monitor and gives remote 

command for teleoperation. The third one is the AUV simulator which 

is in charge of computing the vehicle motion from the actuator 

command and external conditions. Finally the fourth one generates and 

submits the necessary data about execution of AUV simulation. 

(Carlson, Beaujean, An, 2004) treats the vehicles as nodes of the 

communication system in the network’s routing protocol. This 

simulator is designed specifically to support the development and 

testing of mobile ad hoc network routing protocols. It supports multiple 

heterogeneous vehicles simulation, considering multiple 

communication links. 

The Subsim simulator (Tobias Bielohlawek, 2006) focuses on a system 

with dynamics which executes a control algorithm, simulates and 

visualizes sensor data, actuator behavior and camera pictures.  

All the above mentioned simulators present several very helpful 

specificities, through several models (environment, vehicles…) which 

are able to accurately cope with reality. Some of them are specialized in 

HIL simulation, although others are mostly designed for multi-AUVs 

applications, while others are focusing on accurate environment 

simulation. Among all of these references no one has addressed the 

problem of temporal decoupling between the command computed by 

the onboard computer and the simulator(s). Yet this is a critical 

problem on addressed in next section. On the other hand, from the end-

user point of view, the source codes and the associated documentations 

are not always available, and in this context it is not convenient to reuse 

the existing development. Most of these simulators are not based on a 

distributed architecture, meaning that it is not possible to add another 

computer when the load of the existing ones becomes too important. 

This leads some teams to simplify the used models at the expense of the 

quality of the obtained results. 

 

 
Fig. 1. Simplified architecture of Thetis: there is a logical sequence 

between 3 simulators even if there are independent processes on 

different computers. The cycle duration of this sequence must be 

largely lower than the period of the controller. The temporal decoupling 

is only effective (and that's enough) between the simulator and the 

controllers. The link between the communications simulator and the 

environment simulator is event-driven (when a communication between 

vehicles occurs). 

 

Moreover the considered systems are always AUVs (sometimes 

heterogeneous) but there is no mention about cooperation capabilities 

between a surface vehicle and an underwater one (for example). Yet, 

we find more and more scenarii in which an UAV (Unmanned Aerial 

Vehicle), an ASV (Autonomous Surface Craft) or a land vehicle are 

required to cooperate. 

For all these reasons we have developed Thetis, a hybrid simulator 

which provides the necessary environment to experiment HIL 

simulation with support of communications between the vehicles, and 

allows the use of exteroceptive sensors. 

Building such a simulator which concurrently provides all these 

functionalities is a necessary tool to envisage such complex scenarii.  

This is a challenging engineering multi-disciplinary task because of the 

number of specialists who must collaborate (acoustician, computer 

specialist, control engineer etc…). 

For this reason the aim of this simulator architecture is not to provide a 

set of “perfect” models: in this paper we describe a simulator 

architecture allowing us to deal with the problem of heterogeneous 

coordinated vehicles, under communication constraints. Moreover, the 

open source Thetis project is built to allow for many different 

specialists to develop their own models. 

On the other hand this simulator architecture is distributed, in order to 

allow the implementation of complex models, without being restricted 

by computational burden, thus guaranteeing the real-time aspect. 

Finally this simulator allows to interchange the used models, in 

function of the desired accuracy. 

As this paper focuses on the architectural aspects of the simulator, the 

different models, already implemented, are deliberately basic, except 

for the vehicles, where full hydrodynamic models are considered, as 

exposed in (Fossen, 2002). 

This paper describes the mechanisms and structure of the simulator, 

focusing on inter-vehicles communication. For details on previous 

development, please refer to (Parodi, El Jalaoui, Andreu, 2008) where 

we focus on the connectability aspects of Thetis to our real robots. 

So first we present the architecture of our simulator: Thetis, specifying 

the models we consider. Then we present the messages distribution 

system taking into account the assumptions we have made. Finally, we 

present results of a simulation where Taipan 2 and Taipan 300 

exchange messages in different spatial configurations. 

 

 

 

 

 



 

THETIS: HYBRID SIMULATOR 

 
Thetis is a new real-time hybrid simulator allowing for considering 

heterogeneous multi-vehicles scenarii, including communication 

physical restrictions.  

 

Critical Concepts 

This simulator is composed with a set of mechanisms which respects 

several properties. 

One of the most important is the capability of the simulator to ensure a 

temporal decoupling between the control loop and the simulation loop.  

This warrants the coherence between simulation results and expected 

real behavior. For example, if for any reason, the onboard computer is 

unable to provide the actuator commands at an appropriate time 

(unexpected delay), then the simulator has to exhibit the natural 

consequence of this delay on the vehicle behavior (open loop).   

Indeed, in Thetis, there is no logical synchronization between the 

simulation loop and the controller computation onboard the robots. 

Another important concept is the upgradeability of the simulator. We 

are able to add some new components (sensors, vehicles...) in a very 

easy way. This warrants us the possibility of using this simulator with 

different types of vehicles. Indeed, the modularity of this simulator 

favors the interventions of different specialists. Thus, a sonar specialist 

will be able to modify the sonar model, without considering the global 

simulator functioning.  Then, the system designer can also transfer this 

model computation onto another computer if he considers it is too 

resource-consuming for the original one. Finally, a very interesting 

aspect of this architecture is its portability. Indeed it is able to work 

with different robots and thus be connected with different control 

software architectures. We only need to adapt the interface between the 

2 systems (simulator and controller), in order to make them work 

together. Moreover, the distributed aspect of Thetis affords the faculty 

of the simulator to be divided and executed on different computers, 

linked on a dedicated local area network via UDP/IP protocol. This 

avoids to overload computers and to affect the real time capability of 

the systems. 

 

Implementation and Technical Considerations 

All the concepts exposed in the previous section are supported by using 

3 mechanisms and the architecture is based on 4 simulators.  

 

• First an XML-based specifications exchange (XML for Extensible 

Markup Language) allows to structure the parameters of the 

different models (modem, radio, fins, motor …), and configuration 

files, while promoting the modularity and the portability. Indeed 

modularity is obtained using the XML format, which allows to 

specify the components parameters, and modifying them in a very 

easy way. For example, if we consider 2 sensor devices, 

measuring the same physical quantity, the intrinsic parameters 

(time-response, accuracy, rate…) are described in 2 different 

XML files, while the physics of the phenomenon remains the 

same, and is described in a unique other XML file. Now, the 

replacement of a sensor by another is done by calling a XML file 

in place of the other. All the system components description 

follows the same idea (fins, acoustical modem, GPS, propeller,...). 

Moreover, many components could use the same formalism to 

describe their intrinsic parameters without using all of them. For 

example, we can imagine that an underwater communications 

specialist needs a very accurate model describing its modem; he 

should use all the parameters of the XML file. Another user, who 

doesn't need such an accuracy level, will use the same XML file, 

but only a part of these parameters in order to supply its own 

model. The validation and extensible properties of the XML 

language make it an ideal base to enrich the model parameters 

files. Thus the robots (in fact the different components as sensors, 

actuators, communication devices, etc...) used in this simulator are 

described in XML formalism. To do this, we suggest a set of 

different tags allowing to describe the components of the robots in 

an easy way. 

 

• Then portability and temporal decoupling is favored by using 

sockets and local shared memories widely. Thus it is possible to 

run several processes on different computers each of them 

interacting with others using these mechanisms. 

 

• In order to ensure real-time performances as well as effective 

temporal decoupling, the overall simulation system is in fact an 

application divided in 4 simulators. The first one is a vehicle 

simulator which allows the simulation of the robots dynamics. The 

second one is a sensors simulator allowing the simulation of the 

various sensors of the robots. The third one is a communications 

simulator in charge of computing the behavior of communications 

device (signal processing for an acoustic modem, for example) 

and of distributing the different messages to the concerned 

vehicles (in fact those which are within range of communications). 

Lastly the fourth one is a static environment simulator (no 

evolution with time at yet). It allows the simulation of 

exteroceptive sensors, it is in charge of computing the possible 

collisions and of computing the different acoustic signals 

propagation, the latency and distortions of the communication 

signals. All these simulators are interconnected on a dedicated 

UDP/IP network. This avoids overloading the network in order to 

guarantee real-time performances and to avoid packets losses 

(potentially possible with UDP/IP network). The connections 

between these blocks are detailed and explained on figure 1. 

Only the sensors, the communications and vehicles simulators are 

connected to the real robot, the environment simulator being 

connected only to the 3 other ones. All these simulators work 

under Linux RTAI. Information about network configuration is 

described in a shared XML file. All the XML files describing the 

components of the system are loaded at the initialization and thus 

allow to instantiate the different objects of the simulator. 

 

• Finally we have created a set of libraries containing a set of 

classes enabling us to build the various objects of the simulation 

system. All these classes are documented with doxygen tool 

(doxy, 2007) and are available online 

(www.lirmm.fr/~parodi/thetis). 

 

 

Vehicles Simulator 

The vehicle simulator is in charge of computing the robots dynamic 

evolution. We present this simulator structure on figure 2. It is 

composed of 2 independent processes communicating via a local shared 

memory. Before starting the simulation, this simulator connects itself to 

the environment simulator to obtain all the physical constants 

(environment viscosity and density, gravity…). 

 

Fig. 2. Architecture of the vehicles simulator. 
 

The first process is the Socket Server and Dispatcher process, which is 

in charge of ensuring the communication between the simulator and the 

robots controllers. The robots send actuators commands calculated by 

the onboard computer to the simulator through UDP socket. Then the 



 

data received are decoded and written to a shared memory initially 

created by this process. 

The second process is the actual cycle of vehicles simulation (called 

Dynamic Models on the figure 2). During this cycle all the forces and 

torques applied to the robots are computed in order to determine the 

vehicles accelerations and, after integration steps, vehicles attitudes and 

velocities are computed. The computed data are sent to the environment 

simulator in order to verify the absence of collisions and if occurs to 

correct positions. Afterwards, the computed data are sent to the sensors 

simulator. This cycle is presented on figure 3. The initial position and 

attitude of the vehicles are given at the initialization (this data is 

provided by the XML configuration files), then the dynamic model 

evolves according to the actuation effects and the environment. 

 

 
Fig. 3. Simulation cycle of the vehicles simulator (classically, ν 
expresses the vehicle velocity in the vehicle frame; η denotes the 
position and attitude of the vehicle, in the earth-fixed frame). 

 

Sensors Simulator 
The sensors simulator is in charge of providing to the real robot 

(onboard computer) virtual data from the simulation. Presently the 

models of proprioceptive and simple exteroceptive (Temperature, 

Conductivity…) sensors are implemented. Complex exteroceptive 

sensors (sonar and camera) will be the next steps of our work. 

This simulator is based on the execution of 3 independent processes, 

communicating via 2 local shared memories. The structure of this 

simulator is presented on figure 4. 

 

 
Fig. 4. Architecture of the sensors . 

 

As in the vehicles simulator, there are 2 dispatcher processes 

(DispatcherFromVHC and DispatcherFromENV) which are 

respectively in charge of listening to messages from vehicles simulator 

(vehicles state: velocities, accelerations, attitudes...), and messages 

from environment simulator (parts of maps determined according to the 

position and the range of the robot's sensors), and of decoding and 

writing data into 2 local shared memories (one for each process). The 

third process is the sensors simulator which computes output of each 

sensor for each robot. These outputs are computed according to each 

sensor model (which parameters are described in the XML file), data 

from the vehicles simulator (systems state), and at last to the data from 

the environment simulation. Once these outputs are computed, they are 

specifically sent to the concerned robots. 

 

Environment Simulator 
The environment simulator is in charge of providing the stored 

geophysical maps around a given geographical point (Temperature, 

Salinity, Local current, Plankton density…), computing signal 

propagation (when communications between vehicles occurs), signal 

distortion and latency, detecting collisions. At each cycle of vehicle 

simulation, the environment simulator is called and sends back the 

value of the local current and the occurrence of a collision.   

Even if many things seems to be computed by the environment 

simulator, it is worth noting that only the calculation of the signal 

propagation may be resource-consuming depending of the implemented 

model. The maps management is light because we only consider static 

maps (no evolution with time). It is the same for the collision detection 

algorithm: the complexity of calculations depends mainly of the 

number of vehicles.  

As the others this simulator is based on several independent processes, 

each of them sharing its own data with shared memories as we can see 

on figure 5. As before we find again 3 dispatcher processes 

(DispatcherFromCOM, DispatcherFromVHC and DipacherFromSEN) 

which are in charge of listening to messages from the different 

simulators. The main program consists in a loop which computes 

sequentially the different tasks previously mentioned. The computed 

data are sent to the other simulators during this cycle. It has to be noted 

that the computed communication signals are only sent to the 

communications simulator when (considering latency and bandwidth) 

and if necessary (if the vehicles are not within range of 

communications no messages will be delivered). Moreover the rate of 

communication is considered to be constant in the communication area. 

When a communication occurs in this area, other communications 

using the same frequency potentially invalidate the communication 

channel, and the messages are not delivered. 

 

 
Fig. 5. Architecture of the environment simulator 

 

Communications Simulator 

We are currently implementing a messages distribution mechanism for 

inter-robot communications. This mechanism takes into account the 

delay, the rate and the losses caused by the type of communication 

device in use, and the propagation medium. It allows to teste some 

control laws for coordinated AUV flotilla. 

The communications simulator is in charge of simulating the signal 

processing done by the communication devices. When a vehicle has to 

emit a message (radio or acoustic waves), it sends a request to its 

concerned communication device (radio, wifi, acsoutic modem…). In 

the simulation case, these data are not sent to the physical 

communication device, but routed to the communications simulator 

(Parodi, El Jalaloui, Andreu, 2008) for more information about the 

connectivity of the simulator with our AUVs). The communications 

simulator receives a frame which contains the emitting AUV identifier, 

the message to be sent in clear (no RAW data) and the identifier of the 

communication device to be used for this issue. 

The model of the involved communication device is used to generate 

the emitted signal. Then, the computed analog signal is sent to the 

environment simulator. Presently the model of the communication 

device is not implemented yet and we send the clear message. The 



 

required parameters (frequency, emission intensity, communication 

rate…) necessary for the environment simulator in order to be able to 

provide its propagation model, are initially loaded from the XML 

configuration file, related to the involved communication device. 

Indeed, for our application, we don’t need to accurately model the 

signal propagation in the environment. On the other hand, the simulator 

architecture will allow to interested people to implement their own 

models. 

As mentioned earlier, the environment simulator computes the shape of 

the propagated signal and its characteristics. Then they are delivered to 

the communications simulator, after a time representing the time of the 

signal propagation in the environment. This calculation is made 

between the emitter and all the other vehicles. This allows to determine 

the vehicles which could be reached (i.e. those which the signal 

reception is higher than the trigger point of their communication 

device). The communications simulator could transmit the messages to 

the concerned vehicles after having decoded the received signal thanks 

to the inverse model of the communication device. 

In order to realize this, the communications simulator has a structure 

quite similar to others, presented fig. 6. 

 

 
Fig. 6. Architecture of the communications simulator. 

 

MODELS AND ASSUMPTIONS 
 

In this chapter we explain the modeling which we have chosen to 

develop the simulator. Although it is not exclusively limited to simulate 

AUVs, it is the first model that we have implemented because the 

interest of our team (Spiewak, Jouvencel, Fraisse, 2006). Other models 

will be implemented later if needed. Hence, the simulated sensors suite 

is dedicated to underwater applications and the modeled environment is 

exclusively underwater. Obviously, all this can be easily modified in 

order to deal with heterogeneous robots and environment like 

coordination between AUVs, UAVs and surface crafts. 

 

AUV Modeling 
The robot model is used to compute the robot accelerations according 

to the actuation command vector. The modeling of the AUV is made up 

of the hydrodynamic, hydrostatic and dynamic phenomena of the robot 

on the one hand, and of the actuators model on the other hand. Here is a 

brief description of these models: 

• Hydrodynamic forces: the simulator uses the 6 dof (Degree of 

Freedom) non linear equations of 6DOF AUV expressed in 

the body fixed frame (Fossen, 2002) 
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&              (1) 

 

where ν denotes the system velocities (linear and angular), 

MRB and MA are the inertia matrix and the added mass matrix, 

τ denotes the force and torque produced by the thrusters and 
control surfaces, CRB and CA the rigid-body, the added 

Coriolis and centripetal matrixes, D denotes the damping 

matrix, g denotes the gravity and buoyancy force and torque, 

η denotes the position and orientation vector 
The potential damping, the skin friction and the wave drift 

damping are not considered. 

Only the damping due to vortex shedding is computed. Once 

the estimation of the accelerations is computed, we integrate 

a first time to obtain the velocities in the body fixed frame. It 

is then necessary to integrate a second time after shifting the 

frame so as to obtain the robot position and attitude in the 

inertial frame. 
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• Thruster Model: A steady state model is used for the thruster 

of the AUVs. We can consider that the response is 

instantaneous according to the input. 

We use a bilinear model, i.e. a non linear function computing 

the thrust according to the angular speed of the propeller ω 

and the linear speed of the robot in the thruster direction. See 

(Ridao et al., 2004) for more details. 
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Other authors propose dynamic models (Whitcomb, Yoerger, 

1999), (Fossen, 2002). The possibility of implementing such 

thruster models will be studied later. 

 

• fins Model: the robots Taipan (Spiewak et al., 2006) have a 

cylindrical shape and are equipped with rudder at the stern 

and with 2 pairs of diving planes located at the bow and at the 

stern. 

The lift FZ is the projection of the resultant F on the axis, 

orthogonal to the fluid direction. The drag force is the 

projection on the axis, parallel to the fluid direction. These 

forces are modeled according to the following equations, 

expressed in a frame fixed on the control surface (Aucher, 

1981) and (Santos, 1995): 
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Where ρ is the density of the fluid, S is the projected area of 
the fin, perpendicularly to the fluid direction; V0 is the 

relative velocity of the body with the fluid, CZS is the lift 

coefficient corresponding to the axes of the surface; CXS  is 

the drag coefficient corresponding to the axes of the surface. 
Once the physical action of the planes is expressed, we 

consider that the axis of rotation of the planes is situated at a 

distance da from the origin of the local frame of the robot. 

The forces of the lift and drag (no evolution with time at yet) 

and the induced moment are therefore given by: 
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                where: l is the distance between the leading edge of the 

planes and the system metacentre; bS is the wingspan; cS is the chord; SS 

is the surface wing defined by 
sss cbS = ; l=0,2 for the taipan class. 

Sensors Modeling 
The proprioceptive sensors provide measurements in order to estimate 



 

the state variables of the robot, and its derivatives. These sensors are 

modeled by using directly the variables produced by the vehicles 

simulator. Afterwards, the sensors simulator provides the samples at the 

same frequency as the real sensor, taking care to limit its range and 

adjust its resolution. It is also necessary to add noise so as to obtain a 

more realistic simulation. 

Presently a GPS (Trimble Lassen SKII), a velocity logs (RDI 

Workhorse Navigator Doppler Velocity Log), as well as an attitude and 

heading reference system (XSens MTi) are modeled. 

As the physical phenomena driving the exteroceptive measurements are 

complex, the modeling process of the exteroceptive sensors is a non 

trivial task. 

We are presently working on a simple sonar model using classic ray 

tracing method. 

 

Environment Modeling 

The environment is modeled using different elements: the topography, 

the temperature and salinity distribution, the environmental 

disturbances (currents). These data are included in a single 

function [ ] ( )zyxfcurrentsalinityetemperatur ,,,, = . Presently, only the 

topography, the temperature, salinity and currents distribution are 

implemented. This model considers these phenomena as stationary. 

 

Communications Modeling 

The messages distribution model previously mentioned is the same 

whatever the communication devices used or the environment 

propagation, despite the related parameters, contained in a XML file, 

initially loaded.  

Nevertheless, we have started with a model developed for the 

propagation of sound waves in the aquatic environment, since the main 

subject of our team is underwater robotics.  

The aquatic acoustic communications are constrained by intrinsic 

properties of water (important propagation time, low communication 

rate due to the use of low frequency, reflections, and the necessity to 

incorporate error-correcting code). Thus we have created a propagation 

model which takes into account several physic phenomena which 

represent the constraints that we actually meet in our experimentations. 

We mainly model the transmission losses (absorption and dispersion) 

and the sea relative noise level. 

 

Transmission losses 

Whatever is the environment in which the acoustic wave is 

propagating, it undergoes an attenuation which mainly depends on the 

frequency and the distance traveled by the wave. In fact this attenuation 

is due to 3 main phenomena: 

 

• The absorption, which traduces the fact that a part of the 

energy is converted into heat along the traveled path and that 

we model like (L. Berkhovskikh, Y. Laysanov, 1982) 
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where f is the signal frequency in KHz and g the attenuation 

in dB/Km. 

• The dispersion which represents the acoustic wave spread 

during its propagation (the surface of a sphere is growing up 

with the square of the distance from the emission point, 

independently of the wave frequency) :  
2log10 dTLD =                                  (7) 

where d denote the distance in meters. 

• The diffusion (phenomena whereby a beam is deflected in 

many directions) and which is not considered here. 

Then, total loss is expressed as: 
DTL

d
gTL +×=

1000

. 

Noise Level 

The oceanic noise is mainly due to human activities noise, surface 

agitation created by the wind, the rain, the animals and finally the 

thermal noise. We resume on fig. 7. the range of the frequency 

occupied by the different sources of the Wenz model and their typical 

acoustic intensity. 

 

 
Fig. 7. Isotropic noise level from different sources. 

 

The noise level generally decreases when frequency increases. Wenz 

Wenz, 1962) has proposed a model (eq. 8.) which allows us to 

approximate the average level of each noise component. 
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where f is the central frequency of the considered band; IS is a traffic 

cue (1: low 7: strong); νΚΤ  the wind speed in knots. 
It should be noted that the noise level NBS given here is a spectral 

isotropic noise level expressed in HzPdB µ/ . Indeed, the noise 

intensity is expressed as an energy density, i.e. for 1Hz-wide band 

frequency.  

Hence the noise level (in dB) must be reported on the bandwidth (W 

expressed in Hz) of the used receiver system: 

 

WNBSNB log10+=                                                                             (9) 

 

Propagation 

Using the following inequality (eq. 10.), it is possible to determine the 

radius of the sphere that is bounded by the reception threshold of the 

receiver AUV. 

 

thresholdNBTLSL >−−                                                              (10) 

 

where SL stands for Source Level of the transmitter AUV. 

Thus it is possible to determine for each AUV (other than the emitter 

AUV) if it is in the signal propagation sphere. If not, the message will 

not be delivered. Else, we determine more precisely the reception level 

taking into account the attitudes of the 2 vehicles and the directivity 

diagram of the antenna (using a lookup table).  

If the computed signal reception level is higher than the reception 

threshold of the modem, the message is delivered after a duration ∆t 
which is computed taking account of the distance between the 2 

antennas, depending of the size of the message and finally the modems 

communication rate (eq. 11):  



 

D

Size

c

d
t +=∆                                                                                     (11) 

 

where Size is the size of the message to be transmitted and D is the 

communication rate. 

The low dynamic of the systems and the very small messages to be 

exchanged, allows us to consider that the message could be delivery at 

once; it does not seem to be a too strong hypothesis. 

On the other hand, we determine the areas in which it is no longer 

possible to receive a message. Indeed if several AUVs are emitting at 

the same time on the same frequency, we consider that the message 

cannot be delivered to AUVs staying in the overlapping area, defined 

as the intersection of the different propagation spheres of the emitters.   

The communication rate in these spheres is considered to be constant 

because we exploit the safe mode of our modems that allows to 

improve the quality of communication, despite the reduced bandwidth 

(20bit/s). It does not seem beneficial for us to implement a more 

sophisticated propagation model given the experimental conditions. 

Indeed our AUVs are spaced with a few hundred meters. Thus we don’t 

need to implement a modal or parabolic algorithm for this kind of 

application. We are currently implementing a model based on the ray 

theory to increase our simulation accuracy. 

 

PRELIMINARY SIMULATIONS 

 
We have 2 AUVs which are currently being upgraded. The first one is 

Taipan 300; this is a small AUV which is designed for shallow water 

operations. It is 193cm long for a diameter of 15cm and a weight of 32 

Kg (figure 8). 

 

 
Fig. 8. Taipan 300 in front of the Salagou Lake in France 

 

On the photo (see fig. 8.) the vehicle is fitted with a CTD (located at the 

front of the vehicle just behind the white nose), but we are currently 

replacing this device by an acoustic modem. This vehicle is moving at a 

speed of about 2m/s and its autonomy is about 3h. This AUV can reach 

a depth of 100m. 

The second AUV is Taipan 2 which is a much more sophisticated 

vehicle with several sensors (see fig. 9.) 

 

 
Fig. 9. Equipment of the new version of Taipan 2 

 

These 2 AUVs carries a Tapac modem. These modems have a 

transmission power of 177 dB and a bandwidth of 6Khz. Their 

reception trigger level is equal to 15dB beyond environmental noise. 

Their radiation chart is omnidirectional. Its transmission frequency is 

33 Khz (chirp modulation). 

In this simulation we assume that the wind velocity is equal to 5 knot. 

Using the Wenz model we determine that the modems maximal 

communication range is equal to 1900 m, which correspond to 

constructor values.  

In order to simplify the interpretation of the results, only one of the 2 

vehicles is moving during the simulation. The first vehicle (Taipan 300) 

is moving along a straight line, restricted to the horizontal plane. 

Moreover, the pitch and roll angle are set to zero, that guarantees the 

vehicle to follow a straight line, forced to a constant depth.  

The second AUV is fixed (actuators are set to 0) with a constant depth 

(the depth value is forced in the vehicle simulator). 

In this simulation, Taipan 2 is in a fixed point and emits messages 

(constituted by the string “HELLO WOLRD TAIPAN 2 IS 

BROADCASTING A MESSAGE”). The trajectory followed by Taipan 

300 is shown in figure 10. Each 350s a dot is drawn on the trajectory. 

The blue circle on the figure represents the transmission area of Taipan 

2. Taipan 2 emits its message at t=60s, t=1500s et t=2300s. These 

instants are represented on the Taipan 300 trajectory by 3 squares. 

 

 
Fig. 10. Trajectory of Taipan 300 

 

We can see that at t=0, Taipan 300 is out of the communication range 

of Taipan 2. At t=650s communication becomes possible. Finally at 

t=2382s Taipan 300 is out of the Taipan 2 communication range (figure 

11). 

 

 
Fig. 11. Reception level during the trajectory of Taipan 300 

 



 

Figure 12 represents a timeline with the date of emission/reception of 

messages from the vehicles. We assume that each transmission has a 

fixed delay and a null duration 

 
Fig. 12. Logs of the simulated mission 

 

Figure 12 presents data logged by the 2 vehicles and the environment 

simulator. We distinguish these data on the graph by the height of their 

peak 1: Taipan 2, 2: Environment simulator, 3: Taipan300. On the 

“zoom 2” we can see that the first message sent by Taipan 2 is received 

by the environment simulator (few millisecond later) but never by 

Taipan 300 (no Taipan 2 peak after). The second and the third message 

are sent by Taipan 2 and received by taipan 300 after 20s (“zoom 1”). 

This duration corresponds to the latency and the necessary duration to 

send the message. 

This simple simulation allows us to illustrate all mechanisms 

mentioned in the previous sections. AUV trajectories are enough to 

validate the environment and communications simulators.  

 

CONCLUSIONS 
 

In this paper we have presented the communication capabilities of the 

simulator Thetis. This HIL simulator plays an important role in the 

development of the controllers of our robots. Thetis is a real-time multi-

vehicles simulator which needs to be completed (including complex 

exteroceptive sensors). We need to compare the results from the 

simulation with real experimentations. This is especially true for the 

underwater communications. Taipan 2 should be available in few 

months and we will be able to experiment the effective rate of 

communication between the AUV and a second acoustic modem 

located on a surface vessel. 

Our contribution concerns the proposed simulator architecture. This 

architecture gathers all the important features that a simulator must 

include in order to allow simulation of flotilla. The models used are 

certainly less accurate than other within traditional simulators, but the 

structure of our simulator allows for easy evolution. The structure of 

our simulator allow us to test control laws of AUV involved in flotilla 

by taking into account all aspects of this field (e.g. including 

communication between vehicles). 

The communications model we have presented is not very complex and 

accurate, but it could be useful for control design purpose. Interferences 

in communication are currently taking into account toward a function 

under development. This function verifies if the geographical zone of 

communications is sound proofed by an acoustical sensor. This 

functionality is very important in case of flotilla simulation. We have 

only evoked the use of this simulator with 2 robots in an underwater 

environment but it is generic enough to be used with other robots and 

thus we can imagine more complex scenarii like the coordination of 

AUVs and UAVs in order to achieve coastal monitoring. 
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