Oriented Colorings of Partial 2-trees

Pascal Ochem 1 Alexandre Pinlou 2, *
* Auteur correspondant
2 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving mapping f from V(G) to V(H), that is f(x)f(y) is an arc in H whenever xy is an arc in G. The oriented chromatic number of G is the minimum order of an oriented graph H such that G has a homomorphism to H. In this paper, we determine the oriented chromatic number of the class of partial 2-trees for every girth g >= 3. We also give an upper bound for the oriented chromatic number of planar graphs with girth at least 11.
Type de document :
Article dans une revue
Information Processing Letters, Elsevier, 2008, 108, pp.82-86. 〈10.1016/j.ipl.2008.04.007〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00314715
Contributeur : Alexandre Pinlou <>
Soumis le : mercredi 27 août 2008 - 16:15:03
Dernière modification le : mardi 24 avril 2018 - 13:29:12

Lien texte intégral

Identifiants

Citation

Pascal Ochem, Alexandre Pinlou. Oriented Colorings of Partial 2-trees. Information Processing Letters, Elsevier, 2008, 108, pp.82-86. 〈10.1016/j.ipl.2008.04.007〉. 〈lirmm-00314715〉

Partager

Métriques

Consultations de la notice

104