
HAL Id: lirmm-00315916
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00315916v2

Submitted on 15 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Rule Learning via Weighted Model Counting
Frédéric Koriche

To cite this version:
Frédéric Koriche. Online Rule Learning via Weighted Model Counting. ECAI’08: Eighteenth Euro-
pean Conference on Artificial Intelligence, Patras, Greece, pp.5-9. �lirmm-00315916v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00315916v2
https://hal.archives-ouvertes.fr

Online Rule Learning via Weighted Model Counting
Frédéric Koriche1

Abstract. Online multiplicative weight-update learning algorithms,
such as Winnow, have proven to behave remarkably for learning sim-
ple disjunctions with few relevant attributes. The purpose of this
paper is to extend the Winnow algorithm to more expressive target
concepts characterized by DNF formulas with few relevant rules.
For such problems, the convergence of Winnow is still fast, since
the number of mistakes increases only linearly with the number of
attributes. Yet, the learner is confronted with an important compu-
tational barrier: during any prediction, it must evaluate a weighted
sum of an exponential number of rules. To circumvent this issue,
we convert the prediction problem into a Weighted Model Counting
problem. The resulting algorithm, SharpNow, is an exact simulation
of Winnow equipped with backtracking, caching, and decomposition
techniques. Experiments on static and drifting problems demonstrate
the performance of the algorithm in terms of accuracy and speed.

1 INTRODUCTION
A recurrent theme in Machine Learning is the development of online
mistake-driven learning algorithms [4]. Such algorithms are “any-
time learners” that can be interrupted at each instant to provide a
prediction whose correctness is related to the number of mistakes
that have been made so far. Basically, the underlying model takes
place in a sequence of trials. At any time step, the learner is pre-
sented an observation and it is asked to predict its associated class. If
the prediction is incorrect, we charge it one mistake.

In a landmark paper, Littlestone [13] introduced the Winnow al-
gorithm, which has rapidly become the blueprint of many efficient
online learners. Winnow resembles the Perceptron algorithm in its
simplicity, but uses multiplicative, rather than additive, weight up-
dates on input features. Consequently, when the target concept is a
k out of n variable disjunction, the number of mistakes grows as
k logn instead of kn. The fact that the dependence on n is reduced
to logarithmic, rather than linear, makes this algorithm applicable
even if the number of features is enormous.

This remarkable property opens the door to learning problems
characterized by high-dimensional feature spaces. One of them con-
cerns the well-known problem of rule learning which consists in
identifying, from a collection of examples, a small set of rules that
explains all the positive examples and none of the negative ones [10].
In the paradigm of concept learning, any rule theory can be viewed as
a DNF formula, that is, a disjunction of conjunctive features. Based
on this notion, Winnow can naturally be extended to rule theories by
projecting the data into an higher-dimensional feature space in which
any conjunctive feature is viewed as a basic attribute. The enhanced
algorithm inherits of an increased expressiveness while preserving a
strong learning power. Indeed, if the observed examples are vectors
of n attributes taking values over a domain of size d then, providing

1 LIRMM, Université Monptellier 2, France, Frederic.Koriche@lirmm.fr

that the number of all conjunctive features is bounded by (d + 1)n,
the performance of Winnow degrades only linearly with the input
dimension. In fact, for any target concept, the number of mistakes
grows essentially as kn log(d+1), where k is the minimum number
of rules needed to represent the concept into a rule theory.

In its primal form, Winnow maintains a vector that assigns a
weight to each distinct feature. For rule learning, such an imple-
mentation is computationally prohibitive, since the number of possi-
ble rules grows exponentially with the input dimension. Specifically,
during any prediction, the learner is confronted with the problem of
computing the weighted sum of an exponential number of features.

Kernel methods have emerged as a standard approach for solving
counting problems that arise from high-dimensional feature spaces.
The underlying idea is to start from the dual form of the learning al-
gorithm and to use a kernel function that simulates the target feature
space while working with original input data. Specifically, in the set-
ting of Boolean DNF formulas, efficient kernel functions have been
obtained for the Perceptron algorithm and its maximum margin vari-
ants [15]. Unfortunately, it seems impossible to find an analogous
result for the Winnow algorithm. Indeed, as observed by Khardon et
al. [11], the Kernel Winnow Prediction problem is #P-hard, even for
the restricted class of monotone DNF formulas.

Such a computational barrier does not imply that, in practice, the
sole option for the learner is a brute force enumeration of its feature
space. To this very point, in the AI literature, a great deal of attention
has been devoted to a related problem, referred to as Weighted Model
Counting [5, 9, 17]. The problem is to evaluate the sum of weights
of all the assignments satisfying a CNF formula. The basic building
block for most model counting algorithms is the Davis-Putnam (DP)
procedure that performs a backtracking search in the space of can-
didate models [3]. Based on this procedure, recent programs such as
Cachet [16] and SharpSat [19] can handle large instances by combin-
ing formula caching and decomposition into connected components.

The power of these techniques raises the natural question of
whether the Kernel Winnow Prediction problem can be solved in
practice by translation to Weighted Model Counting. This paper pro-
vides initial evidence that the answer is affirmative: such a translation
can be indeed effective for learning, with fast convergence and speed,
“sparse” target concepts involving a small number of relevant rules.
The resulting algorithm, called SharpNow, is an exact simulation of
kernel Winnow, equipped with backtracking, caching, and decompo-
sition techniques. For sparse target concepts, it can efficiently handle
large spaces of conjunctive features with an accuracy superior to that
of kernel Perceptron-like algorithms.

The background about online rule learning can be found in section
2. The translation method and the SharpNow algorithm are presented
in section 3. Experiments on both static and drifting problems are
reported in section 4. Finally, section 5 concludes the paper with a
discussion about related work and perspectives of further research.

2 ONLINE RULE LEARNING
In the online learning model, the algorithm is presented with a series
of examples {xt, yt} labeled by a target concept. At each time step
t, the algorithm first outputs a class prediction ŷt for the observation
xt, and then updates its hypothesis based on the true class yt. We
adopt the convention that yt ∈ {−1,+1}.

The learners of particular interest in this study are the Perceptron
[14] and Winnow [13] algorithms applied to rule theories.

2.1 Rule Theories
Let {x1, · · · , xn} be a set of attributes taking values in a discrete
domain of size d. For convenience, we assume a standard way of
naming values, as a list of natural numbers. A concept is a function
f from dn to {−1,+1}, and an example is a vector x in dn. We say
that a series of examples {xt, yt} is labeled by a target concept f if
f(xt) = yt for each index t.

An atom is an expression xi = j, also denoted xji , where xi is an
attribute and j a value. A conjunctive feature, or rule, is a conjunc-
tion of atoms, and a rule theory is a set of rules. A rule r covers an
example x if for all atoms xji in r, the value of xi in x is j. A rule
theory R covers an example x if at least one rule in R covers x. For
instance, the following expression is a theory with three rules

sky = sunny ∧ humidity = normal
sky = cloudy ∧ temp = mild
sky = rain ∧ wind = weak

The example (sunny ,normal ,mild ,weak) is classified as positive
by this theory, because it is covered by the first rule.

It is well-known that any concept can be represented by an equiv-
alent rule theory. The rule size of a concept f , denoted |f |, is the
minimal number of rules needed to represent f as a rule theory.

The feature space Rn,d of all rules generated from n attributes
taking values over a domain of size d is represented by an indexed
set {r1, · · · , rN}, where N = (d + 1)n. Given an example x, the
feature expansion of x onto Rn,d is a vector φ(x) in {0, 1}N where
φi(x) = 1 if and only if ri covers x.

2.2 Perceptron
For sake of clarity, we examine the zero-threshold version of the Per-
ceptron algorithm. Throughout its execution, it maintains a vector wt

in RN which is initialized to w0 = 0. Upon receiving an example
xt, the algorithm predicts using the rule

ŷt = sign(wt · φ(xt)) (1)

No change is made to wt if the prediction is correct. In case of mis-
take, the algorithm uses the additive rule

wt+1 = wt + ytφ(xt) (2)

For rule theories, implementing the Perceptron in its the primal form
is computationally infeasible since we would need to maintain a
weight vector of (d+1)n size. Yet, it is well-known that the dual form
of the algorithm is a linear combination of inner products formed by
the current observation xt and the previous examples {(xs, ys)} on
which mistakes where made. In the setting of Rn,d, each inner prod-
uct φ(xs) · φ(xt) can be simulated by the kernel function

K(xs,xt) = 2|{i:xs,i=xt,i}|

In particular, the kernel obtained by Sadohara [15] can be derived
from d = 2. Based on the so-called kernel trick, the prediction rule
1 can be replaced with

ŷt = sign

(
m∑
s=1

ysK(xs,xt)

)
(3)

Each trial of the kernel Perceptron algorithm can thus be executed in
polynomial time. Unfortunately, the algorithm can provably require
many updates even for very simple rule theories [11].

Theorem 1. There exists a target concept of polynomial rule size
and a sequence of examples labeled by it which causes the kernel
Perceptron algorithm to make 2Ω(n) mistakes.

Importantly, this result still holds for most Perceptron-like algo-
rithms, including the version parameterized with a learning rate and
a nonzero threshold, and the recent maximum margin variants [12].

2.3 Winnow

The algorithm has a very similar structure. It takes as input two pa-
rameters: a learning rate η and a threshold θ, and maintains a vector
wt which is initialized to w0 = 1. Upon receiving an example xt,
the algorithm predicts according to the rule

ŷt = sign(wt · φ(xt)− θ) (4)

Again no change is made to wt if the prediction is correct. In case of
mistake, the hypothesis is updated with a multiplicative rule

wt+1 = wt exp(ηytφ(xt)) (5)

According to these specifications, the following result can be de-
duced by a simple adaptation of Winnow’s amortized analysis [1].

Theorem 2. Let θ = η
2 sinh η

(d+ 1)n. Then, for any target concept
f , the number m of mistakes made by the Winnow algorithm over
any sequence of examples labeled by f satisfies

m ≤ eη + 1

η
[1 + |f |n log(d+ 1)]

Thus, the Winnow algorithm has a polynomial mistake bound for
learning polynomial-size rule theories. However, the key difficulty is
to provide a computationally efficient simulation of the algorithm.
Specifically, the Kernel Winnow Prediction problem is to infer the
sign of wt · φ(xt) − θ for the last example of a given sequence
{(xt, yt)} of examples labeled by a target polynomial-size rule the-
ory, after applying the prediction rule 4 and the update rule 5 on the
weight vector wt for the previous examples. As shown in [11] this
problem is #P-hard, which implies that, unless #P = P, there is no
general construction that will run Winnow using kernel functions.

In a nutshell, the most important message to be gleaned from on-
line rule learning is that both additive and multiplicative update al-
gorithms are, in theory, limited by either computational efficiency or
convergence reasons. On the one hand, even if kernel Perceptron-like
algorithms may be executed efficiently, they can provably require an
exponential number of mistakes and, on the other hand, even if the
kernel Winnow algorithm has a polynomial mistake bound, it seems
impossible to simulate its execution in polynomial time.

3 WEIGHTED MODEL COUNTING
Despite the undoubtable importance of the aforementioned results,
it remains to be seen whether, in practice, the execution of kernel
Winnow can be simulated using efficient techniques that have been
developed for solving real-world #P problems. The key motivation of
this paper is to convert the Kernel Winnow Prediction problem into a
Weighted Model Counting problem, for which general and efficient
model counting techniques can be applied.

3.1 The Translation Method
Informally, any instance of the Weighted Model Counting problem
consists in a set of weighted clauses; the task is to evaluate the sum
of weights of assignments satisfying these clauses [17]. The intuitive
idea behind the translation method is just to ascribe a weighted clause
to each labeled example that has led to a mistake.

To this end, we need to introduce additional definitions. Consider
again a set {x1, · · · , xn} of attributes taking values over a discrete
domain of size d. In the following, any rule defined over this vocabu-
lary is viewed as an assignment, that is a set of atoms or, equivalently,
a map that assigns to each atom a value in {0, 1}. A literal is an atom
xji or its negation ¬xji and a clause is a disjunction of literals. Given
a rule r and a literal xji (resp. ¬xji), we say that r satisfies xji (resp.
¬xji), if xji ∈ r (resp. xji 6∈ r). Given a rule r and a clause c, we say
that r satisfies c if r satisfies at least one literal occurring in c. Based
on these notions, the feature expansion of a clause c under Rn,d is a
map φ(c) in [0, 1]N where φi(c) = 1 if and only if ri satisfies c.

A weighted clause is an expression of the form (c, w) where c is
a clause and w is a value in R. Intuitively, w reflects how strong a
constraint it is: the higher the weight, the greater the difference in
likelihood between a rule that satisfies the constraint and one that
does not. In this setting, any “unweighted” clause c is treated as an
abbreviation of (c, 0): it denotes a hard constraint that restricts the
space of possible rules. A weighted knowledge base KB is a finite
set of weighted clauses. The weight of KB , denoted ‖KB‖, is

‖KB‖ =

N∑
i=1

∏
(c,w)∈KB

w1−φi(c) (6)

As usual, we take the convention that 00 = 1 and 0z = 0 for any real
number z > 0. Thus, the weight of the knowledge base KB is just
the sum of weights of the assignments that are models of KB .

We are now in position to present the translation method. The
learning algorithm starts with the knowledge base KB0 = ∅. On
seeing an example xt, the algorithm predicts according to

ŷt = sign
(
‖KB t ∪ {¬xji : xt,i 6= j}‖ − θ

)
(7)

Recall that in the above expression, each unary clause ¬xji is
treated as an abbreviation of (¬xji , 0). In case of mistake, KB t is
simply expanded with a weighted clause that conveys, in a concise
form, the information gathered from xt and yt. In formal terms

KB t+1 = KB t ∪
(∨
{xji : xt,i 6= j}, eηyt

)
(8)

For instance, suppose that our learner makes a mistake on the pos-
itive example (sunny ,normal ,mild ,weak). Then its knowledge
base is expanded with the weighted clause (c, eη), where c is the
disjunction of all atoms sky = cloudy , sky = rain, . . . that are
false in the example. In the next prediction, the weight of any rule
that violates c will be multiplied by eη .

Algorithm 1: WMC(KB , A)

Input: a weighted knowledge base KB and a set of atoms A
Output: the sum of weights of all subsets of A according to KB

if INCACHE(KB) then return GETFROMCACHE(KB)
if ISLEAF(KB) then return 2|A| ∗

∏
(c,w)∈KB w

weight ← 1
for each connected component KB i in KB do

let Ai be the set of atoms occurring in KB i

choose an atom a in Ai
KB i,1 ← {(c− {a}, w) : (c, w) ∈ KB i, a 6∈ c}
weight1 ← WMC(KB i,1, Ai − {a})
KB i,2 ← {(c− {¬a}, w) : (c, w) ∈ KB i,¬a 6∈ c}
weight2 ← WMC(KB i,2, Ai − {a})
SETTOCACHE(KB i,weight1 + weight2)
weight ← weight ∗ (weight1 + weight2)

return weight

3.2 The SharpNow Algorithm
In the spirit of model counting algorithms such as Cachet [16] and
SharpSat [19], we begin to develop a procedure for evaluating the
weight of knowledge base that combines backtracking search with
formula caching and decomposition into connected components.

The procedure, called WMC, takes as input a weighted knowledge
base KB and a set of atoms A. Basically, the procedure performs a
depth-first search in the tree of partial assignments generated fromA.
Notably, a leaf of the tree is reached whenever every clause occurring
in KB is empty. In this case, the resulting weight can be evaluated by
simply taking the product of weights of these clauses. Following [2],
the depth-first search procedure is enhanced by using decomposition
into connected components. Namely, by identifying in linear time
the connected components in the constraint graph of KB , the result-
ing weight can be determined by multiplying together the weight of
each connected component. Finally, the WMC procedure is equipped
with a caching technique that prevents it from recomputing the same
component. Because the length of weighted clauses is in O(nd), we
employ the hybrid coding scheme suggested in [19] that concisely
encodes a set of clauses KB as a vector of indices. Notice that the
technique of component caching is particularly relevant in the setting
of online learning when the algorithm is susceptible to recompute
many identical subtrees from one prediction to the next.

Proposition 3. Let KB be a weighted knowledge base, xt an exam-
ple, and At the set of all atoms that are true in xt. Let A be the set
of atoms in At that occur in KB , and A = At −A. Then

‖KB ∪ {¬xji : xt,i 6= j}‖ = 2|A| ∗WMC(KB , A)

Proof. Based on the completeness of the DP backtracking search
procedure for model counting [3], we know that

WMC(KB , A) =
∑
r⊆A

∏
{w : (c, w) ∈ KB , r ∩ c = ∅}

Let KB ′ = KB ∪ {¬xji : xt,i 6= j}. From definition 6, we can infer

‖KB ′‖ =
∑
r⊆At

∏
{w : (c, w) ∈ KB , r ∩ c = ∅}

= 2|A|WMC(KB , A)

With these notions in hand, we can now present the algorithm
SharpNow. As specified by the translation method, the algorithm
starts with an empty knowledge base. During any trial, SharpNow
predicts according to rule 7 and updates its knowledge base in light of
rule 8. The prediction rule is implemented using the WMC procedure
as specified in proposition 3. The following result claims that Sharp-
Now and Winnow make exactly the same predictions on the same
series of labeled examples. As an immediate corollary, the mistake
bound of SharpNow is the same as the one derived for the original
algorithm. This implies, among others, that the size of the knowledge
base maintained by the learner is polynomial in the input dimension.

Theorem 4. SharpNow is an exact simulation of kernel Winnow

Proof. We consider that Winnow and SharpNow are run with the
same parameters η and θ, and the same series of labeled examples
{(xt, yt)}. A sufficient condition for establishing the result is to
prove that the following equation holds:

wt · φ(xt) = ‖KB t ∪ {¬xji : xt,i 6= j}‖ (9)

First of all, consider an assignment r which is not an element of
Rn,d. Then, for any possible example xt, r violates at least one
clause in the set {¬xji : xt,i 6= j}. It follows that r is not a model of
KB t ∪{¬xji : xt,i 6= j}. Thus, to prove 9, we only need to consider
assignments that are elements of Rn,d. So, let ri be a rule in Rn,d,
wt,i the weight of ri maintained by wt, and wKB

t,i the weight of ri
according to KB t, i.e. wKB

t,i =
∏
{w : (c, w) ∈ KB t, ri ∩ c = ∅}.

We shall prove by induction on the number of trials that wt,i = wKB
t,i.

Consider the first trial. We have w0 = 1 and since KB0 = ∅, we
have wKB

0,i = 1. Now consider an arbitrary trial and assume by induc-
tion hypothesis that wt−1,i = wKB

t−1,i at the beginning of the trial. If
no mistake has occurred during the trial, then wt,i = wKB

t,i trivially
holds. Thus, suppose that a mistake has occurred. If φi(xt) = 1,
then we know that ri violates the clause

∨
{xji : xt,i 6= j}. So

wKB
t,i = eytηwKB

t−1,i = eytηwt−1,i = wt,i. As a similar strategy ap-
plies when φi(xt) = 0. By applying the fact thatwt,i = wKB

t,i to each
rule in Rn,d, we therefore obtain the desired result.

4 EXPERIMENTS
To provide empirical support for SharpNow, we evaluated it on sev-
eral learning problems where the target concept is characterized by a
small set of rules. A comparison with other standard online mistake-
driven algorithms relies on their ability to achieve fast convergence
to the optimal hyperplane in the conjunctive feature space Rn,d.

The experiments were conducted on a 3.00 GHz Intel Xeon 5160
with 4 GB RAM running Windows XP. All algorithms were written
in C++. Notably, the SharpNow algorithm was run using a cache of
size 1 GB, and a learning rate η = 1.278 for which the term η

2 sinh η

in theorem 2 is minimized.

4.1 Static Problems
We begin with experiments on several UCI datasets, with no (known)
concept drift, aiming at evaluating the performance of SharpNow rel-
ative to the kernel Perceptron and kernel Passive-Aggressive (PA)
algorithms. Basically, the PA algorithm [7] is a maximum margin
variant of Perceptron that forces the learner to achieve a unit mar-
gin on the most recent example while remaining as close as possible
to the previous hypothesis. Both algorithms were implemented using
the kernel prediction rule 3, and the PA algorithm was run with the
update rule (PA-I) and a slack variable C fixed to 100.

data Perceptron PA SharpNow
set error ms error ms error ms

tic-tac-toe 0.058 0.02 0.073 0.02 0.009 0.21
kr-vs-kp 0.042 0.09 0.073 0.16 0.028 713
nothing 0.032 0.89 0.020 0.70 0.021 16.5
one pair 0.116 2.01 0.113 2.09 0 2.44
two pairs 0.026 0.78 0.042 0.53 0 5.17

three of a kind 0.004 0.12 0.007 0.22 0 4.41
straight 0.167 0.87 0.158 0.70 0.107 119

flush 0.012 0.06 0.011 0.03 0.010 0.03
full house 0.070 0.14 0.069 0.13 0 5.84

four of a kind 0.019 0.03 0.029 0.03 0 2.34
straight flush 0.010 0.03 0.009 0.01 0.007 0.01
royal flush 0.003 0.01 0.003 0.01 0.003 0.01

Table 1. Results for the tic-tac-toe, kr-vs-kp, and poker hand datasets

Experiments were conducted with the “tic-tac-toe” dataset (958
instances, 9 attributes, 27 atoms), the “kr-vs-kp” dataset (3196 in-
stances, 36 attributes, 73 atoms), and the “poker-hand” dataset
(1,025,010 instances, 10 attributes, 85 atoms). The last dataset was
divided into 10 binary problems. Each problem consists in finding
a particular class of poker hand, where all examples of this class are
considered as positive, and all other examples are negative. Each card
is described using two attributes (suit and rank); to compare pairs
of cards, we introduced four additional binary attributes, same-suit,
same-rank, before-rank and next-rank. The total number of atoms
is thus 165. For all experiments, the accuracy results have been ob-
tained using only one epoch of the training set. For the tic-tac-toe and
kr-vs-kp datasets, we employed a standard 10-fold cross-validation.
For the poker-hand dataset, we used the training set of 25,010 in-
stances and a subset of 5,000 test instances in the pool of 1, 000, 000
test instances. The test set was filled with up to 2,500 positives and
the rest as negatives, all examples been chosen at random in the pool.

Results are reported in Table 1. In term of accuracy, the perfor-
mance of SharpNow is remarkable. Notably, for many problems in
the poker hand dataset, we observed that the algorithm converges
using less than 5,000 trials while kernel Perceptron and the kernel
Passive-Aggressive show some difficulty in approaching the target
concept. The running time is measured in milliseconds per trial. As
expected, SharpNow is the slowest because it must solve a Weighted
Model Counting problem during each prediction. Yet, with a speed
of several milliseconds per trial, SharpNow can be used in real-time
for medium-size datasets involving a sparse target function.

4.2 Drifting Problems

A natural application for online learning algorithms is to track con-
cepts that are allowed to change over time. In this setting, we analyze
the performance of SharpNow relative to the kernel Perceptron and
kernel Forgetron algorithms. The Forgetron [8] is a shifting variant
of Perceptron that gradually forgets the oldest supports in the set of
examples on which mistakes were made; to this end, it uses a decay-
ing rule that diminishes the contribution of old supports and a fixed
memory budget B that removes the oldest support.

We conducted experiments with a variant of the Stagger Con-
cepts, a standard benchmark for drifting problems. Each example
is a scene involving objects o1, · · · , ok with attributes color(oi) ∈
{green, blue, red}, shape(oi) ∈ {triangle, circle, square}, and
size(oi) ∈ {small ,medium, large}. In the original problem [18],
each scene involves only one object. To analyze the performance of

SharpNow
Forgetron (B = 25)
Perceptron

Time Step (t)

Te
st

E
rr

or
%

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

Figure 1. Stagger Concepts with 5 objets

algorithms with more complex scenes including multiple objects, we
made 20 series of experiments ranging from k = 1 to k = 20. Each
experiment lasts for 1500 trials, and consists of three rule theories
that lasts for 500 time step each: (1) {color(ok) = red ∧size(ok) =
small}, (2) {color(ok) = green, shape(ok) = circle}, and (3)
{size(ok) = medium, size(ok) = large}. At each trial, the learner
is trained on one example, and tested on 250 positive and 250 nega-
tive examples generated randomly according to the current concept.

The accuracy results obtained with k = 5 and k = 20 are reported
in Figures 1 and 2. We observe that SharpNow needs some time to
readjust its weights but always converges toward the target concepts;
by contrast the kernel Perceptron and kernel Forgetron algorithms
show some difficulty in approaching the first and the last concepts.
This phenomenon increases with k, revealing that SharpNow is quite
robust to irrelevant features. The running time of SharpNow ranges
from less than 1

1000
seconds per trial with k ≤ 5 to 1

4
seconds per

trial for k = 20 (180 atoms and 1028 conjunctive features).

5 CONCLUSIONS

We presented SharpNow, an online rule learning algorithm that aims
at combining a multiplicative weight update strategy and a weighted
model counting method. As an exact simulation of kernel Winnow,
the mistake bound of SharpNow is linear in the input dimension. Pre-
liminary experiments on static and drifting problems tend to confirm
that SharpNow is particularly efficient for learning small rule theo-
ries in presence of many irrelevant conjunctive features.

The problem of extending multiplicative weight-update algorithms
to expressive concept classes has been a subject of ongoing research
in Machine Learning. Yet, to the best of our knowledge, very few
investigations have attempted to handle rule theories. A notable ex-
ception is the work by Chawla et. al [6] who suggested to explore
Markov Chain Monte Carlo (MCMC) methods for approximating
the Kernel Winnow Prediction problem. The main difference with
our study is that MCMC methods cannot guarantee an exact simula-
tion of kernel Winnow. Moreover, the running time of their resulting
algorithm remains quite slow, taking days to learn a DNF formula
over 20 variables. By contrast, the weighted model counting tech-
nique takes several milliseconds per trial for similar problems.

Several avenues of research naturally emerge from this study. One
of them concerns the analysis of SharpNow under noisy environ-
ments using, for example, a discount factor suggested in kernel func-
tions. An orthogonal direction is to extend our method to multi-class
environments by simulating multiplicative voting algorithms [4].

SharpNow
Forgetron (B = 100)
Perceptron

Time Step (t)

Te
st

E
rr

or
%

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

Figure 2. Stagger Concepts with 20 objets

REFERENCES
[1] P. Auer and M. K. Warmuth, ‘Tracking the best disjunction’, Machine

Learning, 32(2), 127–150, (1998).
[2] R. J. Bayardo and J. D. Pehoushek, ‘Counting models using connected

components’, in 17th National Conference on Artificial Intelligence,
pp. 157–162, Austin, TX, (2000).

[3] E. Birnbaum and E. L. Lozinskii, ‘The good old Davis-Putnam pro-
cedure helps counting models’, Journal of Artificial Intelligence Re-
search, 10, 457–477, (1999).

[4] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, And Games,
Cambridge University Press, Cambridge, UK, 2006.

[5] M. Chavira and A. Darwiche, ‘On probabilistic inference by weighted
model counting’, Artificial Intelligence, (2008). To appear.

[6] D. Chawla, L. Li, and S. Scott, ‘On approximating weighted sums with
exponentially many terms’, Journal of Computer and System Sciences,
69(2), 196–234, (2004).

[7] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
‘Online passive-aggressive algorithms’, Journal of Machine Learning
Research, 7, 551–585, (2006).

[8] O. Dekel, S. Shalev-Shwartz, and Y. Singer, ‘The Forgetron: A kernel-
based Perceptron on a fixed budget’, in Advances in Neural Information
Processing Systems 18, Vancouver, Canada, (2005).

[9] C. Domshlak and J. Hoffmann, ‘Probabilistic planning via heuristic for-
ward search and weighted model counting’, Journal of Artificial Intel-
ligence Research, 30, 565–620, (2007).

[10] J. Fürnkranz, ‘Separate-and-conquer rule learning’, Artifical Intelli-
gence Review, 13(1), 3–54, (1999).

[11] R. Khardon, D. Roth, and R. A. Servedio, ‘Efficiency versus conver-
gence of boolean kernels for on-line learning algorithms’, Journal of
Artificial Intelligence Research, 24, 341–356, (2005).

[12] R. Khardon and R. A. Servedio, ‘Maximum margin algorithms with
boolean kernels’, J. of Machine Learning Res., 6, 1405–1429, (2005).

[13] N. Littlestone, ‘Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm’, Machine Learning, 2(4), 285–318,
(1988).

[14] F. Rosenblatt, ‘The Perceptron: a probabilistic model for information
storage and organization in the brain’, Psych. Rev., 65, 386–408, (1958).

[15] K. Sadohara, ‘Learning of boolean functions using support vector ma-
chines.’, in 12th Int. Conference on Algorithmic Learning Theory, pp.
106–118, Washington, DC, (2001).

[16] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi, ‘Combining
component caching and clause learning for effective model counting’,
in 7th Int. Conference on Theory and Applications of Satisfiability Test-
ing, Vancouver, BC, Canada, (2004).

[17] T. Sang, P. Beame, and H. A. Kautz, ‘Performing Bayesian inference
by weighted model counting’, in 20th National Conference on Artificial
Intelligence, pp. 475–482, Pittsburgh, PA, (2005).

[18] J. C. Schlimmer and R. H. Granger, ‘Beyond incremental processing:
Tracking concept drift’, in 5th National Conference on Artificial Intel-
ligence, pp. 502–507, Philadelphia, PA, (1986).

[19] M. Thurley, ‘sharpSat - counting models with advanced component
caching and implicit BCP’, in 9th Int. Conference on Theory and Ap-
plications of Satisfiability Testing, pp. 424–429, Seattle, WA, (2006).

