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Learning to Assign Degrees of Belief in Relational Domains

Frédéric Koriche

Abstract A recurrent problem in the development of reasoning agents is how to
assign degrees of beliefs to uncertain events in a complex environment. The standard
knowledge representation framework imposes a sharp separation between learning
and reasoning; the agent starts by acquiring a “model” of its environment, represented
into an expressive language, and then uses this model to quantify the likelihood of
various queries. Yet, even for simple queries, the problem of evaluating probabilities
from a general purpose representation is computationally prohibitive. In contrast,
this study embarks on the learning to reason (L2R) framework that aims at eliciting
degrees of belief in an inductive manner. The agent is viewed as an anytime reasoner
that iteratively improves its performance in light of the knowledge induced from
its mistakes. Indeed, by coupling exponentiated gradient strategies in learning and
weighted model counting techniques in reasoning, the L2R framework is shown to
provide efficient solutions to relational probabilistic reasoning problems that are
provably intractable in the classical paradigm.

Keywords Learning to reason ⋅Online learning ⋅Relational probabilistic reasoning ⋅
Exponentiated gradient learning ⋅Markov networks ⋅Weighted model counting

1 Introduction

From early on (Cox, 1946), it has been recognized that degrees of belief, or epistemic
probabilities, play an important role in commonsense reasoning. Consider for exam-
ple a doctor equipped with a knowledge base containing factual information about
patients, as well as general information about symptoms, diseases, diagnostic tests,
and medical treatments. In most cases, the knowledge base is not complete enough
to logically entail the illness of a particular patient. Since the efficacy of a treatment
will almost certainly depend on the disease, it is thus important for the doctor to
estimate the likelihood of different possibilities. More generally, if an agent wishes to
employ the expected-utility paradigm of decision theory in order to guide its actions,
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it must assign probabilities to various assertions. Less obvious, however, is the key
question of how to elicit such degrees of belief in a computationally effective manner.

The standard knowledge representation approach claims that beliefs are elicited
in a deductive way: one starts by accepting a certain set of premises, and then accepts
the conclusion that follows from the premises in accordance with certain inference
rules. Actually, many approaches to uncertain reasoning follow this paradigm by
extending logical inference to probabilistic inference. The agent indeed starts by ac-
quiring a compact description of a target probability distribution, and then, utilizes
this description to derive the probability of any possible query. The main assumption
behind this paradigm is that, in general, the description is acquired independently of
the queries that will be posed. To provide compact and reliable descriptions of com-
plex probability measures, various representation formalisms have been proposed in
the literature; some of them extend first-order logical representation languages to
probabilistic inference (Poole, 1993; Bacchus et al., 1996; Muggleton, 1996; Ngo &
Haddawy, 1997; Costa et al., 2003; Kersting, 2006), while others advocate a dual
approach by extending graphical representation languages to relational inference
(Jaeger, 1997; Friedman et al., 1999; Pfeffer, 2000; Taskar et al., 2002; Richardson &
Domingos, 2006). For example, if the domain is represented by a knowledge base in
first-order logic, the probability measure is induced by assigning equal likelihood to
all interpretations that satisfy the knowledge base; the degree of belief of any query
is simply the fraction of those interpretations which are consistent with the query
(Bacchus et al., 1996; Halpern, 2003).

From a pragmatic viewpoint, the usefulness of a computational approach to prob-
abilistic reasoning depends both on the accuracy of the belief estimates and the
efficiency of belief estimation. Unfortunately, the task of deducing degrees of belief
from a general purpose description is computationally prohibitive. In propositional
logic, the problem of inferring the probability of any query from a propositional
theory is #P-hard, and even the apparently easier question of approximating this
probability in a very weak sense is NP-hard (Roth, 1996). The first-order version
of this problem is highly undecidable in general (Abadi & Halpern, 1994). Under
finite domain assumptions, though, it remains decidable. Nevertheless, even if any
first-order theory defined over a finite domain can be transformed into a logically
equivalent ground formula, the size of the resulting formula can grow exponentially
with respect to the initial theory. Consequently, relational probabilistic inference
turns out to be #Exp-hard to evaluate and NExp-hard to approximate. Similar
results have been obtained for graphical representation languages (Jaeger, 2000).

In contrast, this study aims at eliciting degrees of belief in an inductive manner.
The main departure from the deductive approach is that knowledge is not ascribed
a priori, for the purpose of describing an environment, but instead acquired a pos-
teriori, by experience, in order to improve the agent’s ability to reason efficiently in
its environment. Specifically, our approach follows the so-called learning to reason
(L2R) framework that has recently emerged as an active research field of Induc-
tive Logic Programming for dealing with the intractability of reasoning problems
(Khardon, 1999; Khardon & Roth, 1997, 1999; Valiant, 1994, 2000a,b).

The inductive view of probabilistic inference is captured by a computational
model of learning. The environment, or domain in question, is modeled as a proba-
bility distribution P on a space of relational structures, or interpretations. To acquire
knowledge from its environment, the agent is given a “grace period” in which it can
interact with its learning interface. The purpose of this learning interface is to help
the agent in concentrating its effort toward finding a representation KB of P that
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is useful for evaluating queries in some target query language Q. The reasoning per-
formance is measured only after the grace period, when the agent is presented with
new queries from Q and has to estimate their probability according to its repre-
sentation KB . Thus, by contrast with the deductive view of probabilistic inference,
the agent is not required to achieve optimal performance by evaluating any possible
query with perfect precision. Instead, the performance is measured with regard to a
restricted though expressive query language.

Technically, our framework is based on the online mistake-driven learning model
introduced by Littlestone (1988, 1989). In this setting, the L2R protocol is modeled
as a repeated game between the reasoning agent and its learning interface. During
each trial of the game, the agent receives a query Q from the language Q and
assigns a degree of belief PrKB(Q) to it. The agent is charged a mistake only if
its prediction loss is not judged satisfactory for the task at hand. In this case, the
agent is supplied the correct probability PrP(Q) and updates its knowledge base in
light of this feedback information. In essence, the agent is an anytime reasoner that
gradually improves its performance by interacting with its learning interface.

Based on this framework, the requirements for efficient reasoning are twofold.
First, the length of the grace period needed to achieve full functionality must be
polynomial in the dimension of the relational vocabulary. In other words, the agent’s
behavior must converge to yield accurate belief estimates after a polynomial number
of interactions. Second, the computational cost needed to estimate the probability
of any query from the language Q must also be polynomial in the input dimension.

To satisfy these desiderata, we develop an online L2R algorithm which combines
techniques in regression learning and weighted model counting. The algorithm uses
an exponentiated gradient strategy (Kivinen & Warmuth, 1997; Bylander, 1998;
Cesa-Bianchi, 1999) adapted for assigning probabilities to relational queries. The
cumulative number of mistakes made by the reasoner depends only logarithmically
in the size of the target probability distribution, and hence linearly on the input
dimension. Consequently, the learning curve of the reasoner is guaranteed to converge
to yield accurate estimations after a polynomial number of interactions.

The key idea behind efficient relational probabilistic reasoning lies in a suitable
encoding of the “mistake-driven” knowledge that allows tractable forms of weighted
model counting (Sang et al., 2005; Chavira & Darwiche, 2008). Namely, for several
restricted conjunctive query languages, the computational cost of assigning degrees of
belief is polynomial in the number of mistakes made so far, and hence, the dimension
of the input vocabulary. This result highlights the interest of the L2R framework by
providing efficient solutions to relational probabilistic reasoning problems that are
provably intractable in the classical framework.

The necessary background in relational probabilistic reasoning can be found in
section 2. Based on this setting, the core of the paper introduces the L2R framework
(section 3), next presents the exponentiated gradient L2R algorithm (section 4),
and then examines tractable query languages (section 5). In section 6, we compare
our framework with related work by establishing some interesting relationships with
knowledge compilation and statistical relational learning. In particular, the connec-
tion with Markov logic networks (Richardson & Domingos, 2006) is examined in
detail. As a dual contribution of this paper, our results can be viewed as introducing
subclasses of Markov networks for which learning and inference are shown tractable.
Finally, in section 7, we conclude by listing several perspectives of further research.
For the sake of clarity, proofs of Theorems 1 and 2 are given in the Appendix.
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2 Relational Probabilistic Reasoning

We consider reasoning problems where the environment is modeled as a probability
distribution over a space of relational structures. This section briefly reviews the
background for reasoning in such environments.

2.1 Relational Reasoning

A relational vocabulary consists in finite set of relation symbols, each equipped with
its associated arity, and a finite set of constant symbols. In addition, a countable set
of variables is used to construct quantified expressions. As usual, constant symbols
represent objects in the domain of interest, and relation symbols represent properties
of objects and relationships among objects. A term is a constant symbol or a variable.

As complex environments typically involve multiple kinds of objects, it is often
useful to rely on a many-sorted vocabulary (Manzano, 2005), whose main advantage
is to concisely represent the background knowledge about different sorts of objects.
From this perspective, we shall assume that any relational vocabulary also includes
a finite set of sorts. Each term is given a sort s, and each k-ary relation symbol is
given a k-tuple of sorts (s1,⋯, sk). Sorts are essentially what are known as simple
types in connection with programming languages; they represent indivisible kinds of
entities. For example, the variable x might range over people (e.g. Ann, Bob, etc.),
the constant C might represent a city (e.g. Seattle), and the binary relation symbol
At(x, y) might indicate the location of person x at city y. Notice that an untyped
vocabulary is just a vocabulary that contains a single sort.

An atom is an expression of the form R(t1,⋯, tk), where R is a k-ary relation
symbol and each ti is a term of appropriate sort si in the type of R. A ground
atom is an atom with no variables. Formulas are constructed in the usual way from
the atoms, the connectives ¬ and ∧, the quantifier ∀, and the logical constant ⊺.1

Sentences are, as usual, formulas with no free variables. Unless stated otherwise, any
formula under consideration in this study is a sentence. The size ∣F ∣ of a formula F
is the number of occurrences of all relation symbols, constant symbols, and variables
in its description. For example, the size of ∃x∃yAt(x, y) is 3.

TheHerbrand base of a relational vocabulary, is the setH of all ground atoms that
can be constructed from the relation symbols and the constant symbols according to
their appropriate sorts in the vocabulary. The dimension d of a relational vocabulary
is defined as the cardinality of its Herbrand base. Notably, if the vocabulary contains
m relation symbols Ri or arity ai, and n constant symbols, then d ≤ ∑mi=1 n

ai . Clearly,
d is equal to ∑mi=1 n

ai when the vocabulary is reduced to a single sort. In this case,
the Herbrand base is full in the sense that it includes all possible ground atoms
formed from the relation symbols and constant symbols of the vocabulary.

Semantics is given to formulas using relational structures or interpretations. An
interpretation I consists of a set of objects D, called the domain, and a way of
associating each of the elements of the vocabulary the corresponding entities over
the domain. Thus, a sort s is associated with a subset Ds of D, a constant symbol
c of sort s is associated with an object of Ds, and a k-ary relation symbol R of
type (s1,⋯, sk) is associated with a k-ary relation over Ds1 ,⋯,Dsk

. In this study,
1 Other logical connectives like ∨, → and↔, and the quantifier ∃, are defined in the usual

way in terms of ¬, ∧, ∀, and ⊺.
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we shall focus on the common class of Herbrand interpretations which assumes that
the domain is precisely the set of constants of the vocabulary. Thus, a Herbrand
interpretation is just a subset of H. The set ℘(H) of all Herbrand interpretations
generated from H is called the Herbrand space of the vocabulary.

The notion of model is defined by recursion on the structure of formulas. As
usual, I is always a model of ⊺. If F is a ground atom, then I is a model of F iff
F ∈ I. If F is ¬G, then I is a model of F iff I is not a model of G. If F is G1 ∧G2,
then I is a model of F iff I is a model of both G1 and G2. Finally, if F is ∀xG(x)
where x is of sort s, then I is a model of F iff I is a model of G(c) for every constant
symbol c of sort s. The set of all models of F is denoted M(F ).

Given a formula F , we say that F is satisfiable ifM(F ) is nonempty. Given two
formulas F and G, we say that F entails G, denoted F ⊧ G, if M(F ) ⊆ M(G).
Furthermore, we say that F is equivalent to G, denoted F ≡ G, if F ⊧ G and G ⊧ F .

2.2 Probabilistic Reasoning

In presence of uncertainty, logical entailment is often insufficient to determine the
truth of a formula F ; both F and its negation may be consistent with our model of the
environment. In order to quantify uncertainty, we need to evaluate the probability
that F is true in the environment. From this viewpoint, it is useful to represent
the Herbrand space of a relational vocabulary by an indexed set {I1,⋯, IN}, where
N = 2d and d is the dimension of the vocabulary. Thus, a probability distribution
over the Herbrand space ℘(H) is specified by a N -tuple P = (p1,⋯, pN) such that
pi ∈ [0,1] and ∑Ni=1 pi = 1. The value pi is the probability of the interpretation Ii
according to the probability distribution P.

The projection of a formula F onto the Herbrand space ℘(H) is a N -tuple of
features φ(F ) = (φ1(F ),⋯, φN(F )) where φi(F ) = 1 if Ii is a model of F and
φi(F ) = 0 otherwise. Based on this notation, the probability that a formula F is
true according to a probability distribution P over the Herbrand space ℘(H) is

PrP(F ) =
N

∑
i=1
piφi(F )

Definition 1 A relational probabilistic reasoning problem defined over a relational
vocabulary is a pair (P,Q), where P is a probability distribution over the Herbrand
space of the vocabulary, and Q is a countable set of formulas Q over the vocabulary.
P is called the environment and Q the query language.

Example 1 Let us consider the random blocks domain introduced by Chavira et al.
(2006). It describes the random placement of some blocks, viewed as obstacles, on
the locations of a two-dimensional map. The domain involves two sorts of entities:
blocks and locations. The spatial relationship among locations is described by two
binary predicates Left(y1, y2), indicating that location y1 is left of location y2, and
Above(y1, y2), indicating that location y1 is above location y2. The vocabulary also
involves two other predicates: At(x, y), indicating the location y of a block x, and
Connected(y1, y2) which describes whether, after the placement of the obstacles,
there is an unblocked path between y1 and y2. The purpose of the agent is to identify
the underlying “scene” by estimating the probability of various queries. For example,
a query like ∃yConnected(y, l1)∧∀x¬At(x, l1) might express the possibility that there
is an unblocked path to reach l1 given that this location is free. With an instance of
the domain involving 4 blocks and 8 locations, the dimension is (3 × 64) + 32 = 224.
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Example 2 Let us turn to a variant of the so-called blood type domain introduced
by Friedman et al. (1999). Occasionally, a person is unavailable for testing and
yet, because of many reasons such as the clarification of crime, paternity test, or
allocation of frozen semen, it is necessary to estimate the blood type of the person.
The domain involves four kinds of entities: individuals, blood types {A,B,AB,O},
gene copies {1,2}, and alleles {a,b,o}. Each person x has a blood type y, represented
by Blood(x, y). The blood type is a phenotype expressed by the two copies of the
abo gene. Each copy z has an allele u, represented by Gene(x, z, u). The first copy is
inherited from the mother Mother(x,x1), and the second copy is inherited from the
father Father(x,x2). In this setting, the purpose of the agent is to estimate blood
types from the parenthood context. To this end, we would like to express queries
such as Blood(Ann,A)∧Mother(Ann,Mary)∧ ∃zGene(Mary, z, a) indicating that the
blood type of Ann is A given that one abo gene of her mother, Mary, has allele a.
With and instance of blood type domain involving 10 individuals, the dimension of
the vocabulary is 40 + 60 + (2 × 100) = 300.

3 The Learning to Reason Framework

In the learning to reason paradigm, the goal of the agent is to acquire a representation
KB of the environment P for the query language Q. From this perspective, the agent
is given access to a learning interface that governs the occurrences of queries drawn
from Q. The interface most appropriate in our setting is a variant of the reasoning
query oracle (Khardon & Roth, 1997, 1999) adapted for belief estimation. In essence,
the oracle provides training queries and helps the agent in correcting its mistakes by
supplying correct probabilities. To assess regression discrepancies, we use the typical
quadratic loss function L(x, y) = (x − y)2.

Definition 2 A reasoning query oracle for the problem (P,Q), with respect to a
tolerance parameter γ ∈ (0,1], denoted RQγ(P,Q), is an oracle that when accessed
performs the following protocol with the reasoning agent A. (1) The oracle picks an
arbitrary queryQ inQ and returns it to A. (2) The agent A estimates the uncertainty
of Q by assigning a degree of belief PrKB(Q). (3) The oracle responds by “correct” if
L(PrKB(Q),PrP(Q)) ≤ γ, and “incorrect” otherwise. In case of mistake, the oracle
also supplies the correct probability PrP(Q) to A.

The interaction protocol is modeled as a repeated game between the agent and
its interface. During each t ≥ 1, the agent receives a query Qt supplied by the oracle,
makes a prediction according to its knowledge base KB t and, in case of mistake,
updates KB t in light of the feedback information. A reasoning agent is conservative
if it modifies its knowledge base only when it makes a mistake; in other words,
a conservative agent leaves unchanged its hypothesis KB t whenever any prediction
using it is correct. The mistake bound for an agent A on the problem (P,Q), denoted
MA,γ(P,Q), is the maximum number of mistakes that A can make by interacting
with RQγ(P,Q) over any arbitrary sequence of queries drawn from Q.

Definition 3 Given a relational probabilistic reasoning problem (P,Q) defined over
a vocabulary of dimension d, an algorithm A is an efficient mistake bound learning
to reason (MB-L2R) algorithm for (P,Q), if there are polynomials p and q such that
the following conditions hold for any parameter γ ∈ (0,1]: (1) MA,γ(P,Q) ≤ p(d, 1

γ
),

and (2) A evaluates any query Q ∈ Q of size n in q(n, d, 1
γ
) time.
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The online learning to reason framework provides a natural way to make explicit
the dependence of the reasoning performance on the knowledge acquired from the
environment. After a “grace period” of interaction between the agent and its oracle,
the agent is expected to evaluate any query supplied by its interface without the
help of the feedback response. Of course, we cannot force the agent to make all the
mistakes within the grace period. However, we can estimate the asymptotic behavior
of a conservative MB-L2R agent by converting it into a Probably Approximately
Correct (PAC) L2R algorithm. In this setting, we make the assumption that all the
queries supplied by RQγ(P,Q) are drawn independently at random according to a
fixed, but unknown, probability distribution D. Given parameters γ and ε, we say
that a knowledge base KB is an (ε, γ)-good hypothesis if the probability of making
a mistake when KB is used to predict on any query Q taken at random from Q
according to D is at most ε, that is, PrQ∼D[L(PrKB(Q),PrP(Q)) > γ] ≤ ε.

Definition 4 Given a relational probabilistic reasoning problem (P,Q) defined over
a vocabulary of dimension d, an algorithm A is an efficient PAC-L2R algorithm for
(P,Q), if there are polynomials p and q such that the following conditions hold for
any probability distribution D on Q and any parameters δ, ε ∈ (0, 1

2
] and γ ∈ (0,1]:

(1) if A is supplied at least p(d, 1
δ
, 1
ε
, 1
γ
) queries that are drawn independently at

random according to D then, with probability at least 1−δ, A returns an (ε, γ)-good
hypothesis, and (2) A evaluates any query Q ∈ Q of size n in q(n, d, 1

γ
) time.

The simple conversion method due to Angluin (1988) can be adapted to our
framework without modifying the online behavior of the agent. We use a variant
of this method which takes into account the fact that, for an efficient MB-L2R
algorithm, the total number of mistakes is bounded by a known polynomial p. The
method takes as input a sample size s = 1

ε
(ln m

δ
), where m = p(d, 1

γ
)+1, and converts

A into a PAC analogue Apac as follows: Apac starts with KB1 and calls RQγ(P,Q)
exactly s times by keeping the same hypothesis. If all queries were correctly predicted
during this period, then Apac halts and returns KB1. Otherwise, Apac picks the first
query that has led to a mistake together with its feedback information, and utilizes
the update rule of A in order to generate a new hypothesis KB2. Then KB2 is tested
s times, and so on. In essence, the algorithm Apac is a “cautious” variant of A that
evaluates its current hypothesis on a fixed period before generating a new one.

Proposition 1 Let (P,Q) a relational probabilistic reasoning problem. Then, any
efficient conservative MB-L2R algorithm A for (P,Q) can be transformed into a an
efficient PAC-L2R algorithm Apac for (P,Q).

Proof Since A is an efficient MB-L2R algorithm, there exists a polynomial p such
that MA,γ(P,Q) ≤ p(d, 1

γ
). Moreover, since A is conservative, Apac will generate at

most m = p(d, 1
γ
) + 1 hypotheses KB1,⋯,KBm. Now, suppose that none of these

descriptions is an (ε, γ)-good hypothesis. Since each KB i has error greater than ε,
any query is correctly evaluated by KB i with probability (1−ε). Thus, s independent
random queries are correctly evaluated by KB i with probability at most (1 − ε)s.
Since the probability of a union of events is at most the sum of their individual
probabilities, the probability that all s queries are correctly evaluated by any of the
hypotheses in KB1,⋯,KBm is at most m(1 − ε)s ≤ me−εs. Taking s = 1

ε
(ln m

δ
), the

algorithm Apac is therefore guaranteed, with probability 1 − δ, to return an (ε, γ)-
good hypothesis by making at most m

ε
(ln m

δ
) calls to RQγ(P,Q). Finally, since there

exists a polynomial q such that A evaluates any query Q ∈ Q of size n in q(n, d, 1
γ
)

time, by construction, Apac is also guaranteed to evaluate Q in q(n, d, 1
γ
) time. ⊓⊔
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The most important message to be gleaned from the L2R framework is that the
behavior of the reasoning agent is essentially governed by the target environment P,
the query language Q, and the tolerance factor γ. To this very point, the choice of
γ is crucially dependent on the domain in question. Consider for example an event
such as Blood(Ann,A) ∧ Mother(Ann,Mary) ∧ ∀zGene(Mary, z,b). If γ is set to 1

4
,

then any degree of belief less or equal than 50% will be judged satisfactory for this
event, even if it is genetically impossible! On the other hand, if γ is set to 1

2500
, then

any belief greater than 2% will be treated as a mistake.

4 Exponentiated Gradient Learning to Reason

The main idea behind this study is to combine exponentiated gradient strategies in
online learning and weighted model counting techniques in probabilistic reasoning.
For the sake of pedagogy, we begin to focus on the learning strategy by presenting
a direct L2R algorithm that uses an explicit encoding of probability distributions
over the Herbrand space of the input vocabulary. Based on weighted model counting
techniques, we shall then derive an indirect L2R algorithm that simulates the direct
method using an implicit, yet economic, representation of probability measures.

4.1 The Direct Algorithm

The direct L2R algorithm is presented in Figure 1. The key idea is to maintain a
probability distribution P̂ = (p̂1,⋯, p̂N) that approximates the target probability
measure P = (p1,⋯, pN). Initially, the hypothesis is set to the uniform distribution
over the Herbrand space. On each trial t, the agent receives a query Qt supplied by
its learning interface, and makes a prediction ŷt = PrP̂t

(Qt) with its hypothesis P̂t.
In case of mistake, the agent receives the correct value yt = PrP(Qt) of the query
Qt. In light of this information, the agent adjusts the probabilities in P̂t according
to the standard multiplicative weight update rule advocated in online regression
algorithms (Kivinen & Warmuth, 1997). As usual, a normalization is also employed
to guarantee that the resulting hypothesis P̂ belongs to the probability simplex.

The entropy of a target probability distribution P is defined in the usual way
by H(P) = −∑

N
i=1 pi log2 pi. Based on this notion, the behavior of the algorithm is

captured by the following mistake-bound result.

Theorem 1 For any relational probabilistic reasoning problem (P,Q) defined over
a vocabulary of dimension d, on input γ > 0, when η = 4, the direct EG-L2R algorithm
has the following mistake bound

Mγ(P,Q) ≤
ln 2
2γ

(d −H(P))

In other words, the worst-case total number of mistakes of the direct EG L2R
algorithm is logarithmic in the size of the Herbrand space of the input vocabulary,
and hence, linear in the input dimension. Interestingly, as we know that H(P) is
always nonnegative, the reasoning performance of the algorithm improves with the
entropy of its environment. Indeed, the number of mistakes tends to zero as P is
getting closer to the uniform distribution on the Herbrand space ℘(H).
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Fig. 1 The direct EG-L2R algorithm

Input:

learning rate η > 0

Initialization:

set p̂i,1 = 1
N

for 1 ≤ i ≤ N

Trials: in each trial t ≥ 1

receive a query Qt
predict ŷt = PrP̂t

(Qt)

if the prediction is correct then
P̂t+1 = P̂t

else
receive yt = PrP(Qt)

set p̂i,t+1 =
p̂i,t e

ηφi(Qt)(yt−ŷt)

Zt
for 1 ≤ i ≤ N

4.2 The Indirect Algorithm

In relational probabilistic reasoning, a direct implementation of the distribution P̂
is physically impossible as the agent would need to maintain a weight vector of
size Ω(2d). For example, in the blood type domain, with only ten individuals the
agent would need to store about 1090 probability values! To circumvent this physical
barrier, the key idea behind the indirect algorithm is to encode P̂ into a weighted
knowledge base KB , whose size is polynomial in the number of mistakes made so far.
In this representation, the prediction task is thus translated into a weighted model
counting problem (Sang et al., 2005; Chavira & Darwiche, 2008).

To this end, we need additional definitions. A weighted formula is a pair (F,w)
where F is a formula and w is a nonnegative real number. Intuitively, w reflects
how strong a constraint it is: the higher the weight, the greater the difference in
likelihood between an interpretation that satisfies the formula and one that does not.
In this setting, any “unweighted” formula F is treated as an abbreviation of (¬F,0);
it denotes a hard constraint that restricts the space of possible interpretations. A
weighted knowledge base KB is a finite set of weighted formulas. The weight of KB ,
denoted ∥KB∥, is given by2

∥KB∥ =
N

∑
i=1

∏
(F,w)∈KB

wφi(F )

The basic idea behind this notion is to ascribe a weight to each interpretation
Ii (1 ≤ i ≤ N), which is specified by the product of weights w of all formulas (F,w)
satisfied by Ii, i.e. φi(F ) = 1. Thus, the weight of the knowledge base KB is just the
sum of weights of the interpretations that are models of KB .

2 We take the usual convention that 00 = 1 and 0x = 0 for any real number x > 0.
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Fig. 2 The indirect EG-L2R algorithm

Input:

learning rate η > 0

Initialization:

set KB1 = {(⊺,1)}

Trials: in each trial t ≥ 1

receive a query Qt
predict ŷt = PrKBt(Qt)

if the prediction is correct then
KB t+1 = KB t

else
receive yt = PrP(Qt)

set KB t+1 = KB t ∪ {(Qt,wt)} where wt = eη(yt−ŷt)

Now, consider a formula Q of the query language Q. Then, the degree of belief
in Q given KB is defined by

PrKB(Q) =
∥KB ∪ {Q}∥

∥KB∥

Recall that in the expanded knowledge base KB ∪ {Q} the formula Q is treated
as an abbreviation of (¬Q,0). Thus, ∥KB ∪ {Q}∥ denotes the sum of weights of
the interpretations satisfying both KB and Q. By normalizing this sum using the
weight of KB , the degree of belief inQ given KB can be regarded as the probability of
choosing an interpretation I at random that satisfies Q according to the probability
distribution induced by the weights of models of KB .

Interestingly, the weighted-worlds approach to degrees of belief suggested in this
study provides a natural generalization of the random-worlds approach advocated
for the particular case of unweighted knowledge bases (Grove et al., 1994; Bacchus
et al., 1996; Halpern, 2003). Indeed, if KB is reduced to a set of hard constraints,
then ∥KB∥ corresponds to the number of models of KB , and hence, in this case the
degree of belief in Q given KB is just the probability of choosing an interpretation
at random that satisfies Q out of all the interpretations that satisfy KB .

We are now in position to examine the indirect EG-L2R algorithm. As described
in Figure 2, the backbone of the algorithm is formed by maintaining a weighted
knowledge base used to predict the likelihood of incoming queries. The reasoner
starts with the tautology (⊺,1). On each trial t, the agent assigns a degree of belief
PrKBt(Qt) to the input query Qt according to its knowledge base KB t. In case of
mistake, KB t is simply expanded with the weighted formula (Qt,wt) that conveys,
into a concise form, the knowledge gathered by the reasoner during the interaction
with its interface. In particular, the weight wt is adjusted by exponentiating the
gradient of the agent’s prediction loss with respect to its knowledge base.

As a representation theorem, the following result claims that the indirect L2R
algorithm is an exact simulation of the direct L2R algorithm. Namely, on the same
sequential prediction game, both algorithms assign the same degrees of belief.
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Theorem 2 Indirect EG-L2R exactly simulates the Direct EG-L2R.

To summarize, the (indirect) EG-L2R algorithm is characterized by two im-
portant features. First, its mistake bound is linear in the dimension of the input
vocabulary. This is indeed an immediate corollary of Theorems 1 and 2. Second, the
size of the hypothesis KB maintained by the reasoner is also linear in the number of
ground atoms. This follows from the fact the algorithm is conservative and hence,
expands its knowledge base only if it makes a mistake.

Despite these encouraging properties, it remains to be seen how the algorithm
can efficiently evaluate degrees of belief. This is the purpose of the next section.

5 Tractable Query Languages

After an excursion into the learning aspects of the framework, we now concentrate on
the reasoning aspects of the framework by examining several query languages that
are tractable for model counting. The utility of our architecture is thus highlighted by
showing that relational probabilistic reasoning problems defined over some restricted
yet expressive of conjunctive query languages are “mistake bound learnable”. Based
on the conservativeness property of the EG-L2R algorithm and the aforementioned
conversion technique, these reasoning problems can also be shown “PAC learnable”.

The basic building block of tractable languages lies in the notion of decomposable
conjunctive query. Based on this notion, we begin to examine simple hitting query
languages, next we turn to cluster query languages, and then we extend still further
the expressiveness of the framework by exploring conjunctive query languages with
parameterized cluster-width.

5.1 Decomposable Conjunctive Queries

A fundamental issue behind probabilistic reasoning is to evaluate in a reasonable
amount of time the number of all interpretations satisfying a given formula F , that
is ∥F ∥, if we regard F as a strong constraint of the form (¬F,0). Before examining
tractable classes of conjunctive queries, it is instructive to observe how the number
of models of F can be evaluated using the ground atoms of F . Let H(F ) denote the
set of all ground atoms satisfying the following condition: A ∈ H(F ) if and only if
A ∈H and there is a ground substitution θ such that A occurs in the instance Fθ. We
remark that ℘(H(F )) is the space of all Herbrand interpretations generated from
H(F ). The number of all interpretations in ℘(H(F )) satisfying F is denoted ⟪F⟫.
Now, let d be the dimension of our background vocabulary. Based on the above
notations, we can easily verify that ∥F ∥ = 2d−∣H(F )∣ ⟪F⟫. This simple observation
suggests that if ∣H(F )∣ and ⟪F⟫ can be evaluated in polynomial time, then ∥F ∥ can
be evaluated in polynomial time.

All query languages investigated in this study are conjunctive fragments of the
class of quantified propositions described in (Cumby & Roth, 2000; Valiant, 2000b).
More precisely, queries are defined to be restricted relational expressions in which
(1) there is only a single predicate in the scope of each variable, and (2) there is only
a single type of quantifier in the front of each predicate.
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These restrictions can be formalized in the following way. An existentially (resp.
universally) quantified atom is an expression of the form ∃x1,⋯,∃xpR(t1,⋯, tk)
(resp. ∀x1,⋯,∀xpR(t1,⋯, tk)), where 0 ≤ p ≤ k and all the p variables occurring
among the k terms are within the scope of an existential (resp. universal) quanti-
fier. An uniformly quantified atom, or quantified atom for short, is an existentially
quantified atom or an universally quantified atom. A quantified literal is a quantified
atom A or its negation ¬A. Finally, a quantified conjunctive query is a conjunction of
quantified literals. For example, ∃y1 Connected(l1, y1)∧¬∀xAt(x, l2)∧ ∃y2 At(b1, y2)
is a quantified conjunctive query.

Lemma 1 Let A and B be two quantified atoms defined on a vocabulary of dimen-
sion d. Then deciding whether A entails B can be determined in O(d∣A∣∣B∣) time.

Proof Since atoms can be either existentially quantified or universally quantified,
four cases have to be considered. If both A and B are existentially quantified, then
A ⊧ B if and only ifH(A) ⊆H(B). Dually, if both A and B are universally quantified,
then A ⊧ B if and only if H(B) ⊆ H(A). Now, if A is universally quantified and B
existentially quantified, then A ⊧ B if and only if we have H(A)∩H(B) ≠ ∅. Finally,
if A is existentially quantified and B is universally quantified, then A ⊧ B if and
only if ∣H(A)∣ = ∣H(B)∣ = 1, and H(A) = H(B). Notice that the fourth case is not
the contraposition of the third case. Obviously, the first three cases can be decided
in O(d∣A∣∣B∣) time by listing the ground instances of one atom and checking whether
they are instances of the other. The fourth case can be decided in O(d∣A∣ + d∣B∣)
time by testing whether both atoms contain a single ground instance and, in case of
success, comparing these instances. ⊓⊔

Based on the above lemma, the interest of quantified conjunctive queries lies in
the fact that many logical operations can be realized in polynomial time. Given two
formulas F and G, we say that F and G match if F entails G or G entails F . Dually,
we say that F and G clash if F ∧G is unsatisfiable.

Proposition 2 Let Q and Q′ be two quantified conjunctive queries defined over a
vocabulary of dimension d. Then deciding whether Q and Q′ clash or match can be
determined in O(d∣Q∣∣Q′∣) time.

Proof As usual, the sign of a quantified literal L is positive if L can be rewritten as
a quantified atom, and negative otherwise. Consider two quantified literals L and L′,
and let A and A′ be the quantified atoms occurring in L and L′ respectively. Then
L ⊧ L′ if and only if either both L and L′ are positive and A ⊧ A′, or both L and L′

are negative and A′ ⊧ A. In both cases, this can be determined in O(d∣L∣∣L′∣) using
Lemma 1. Now, consider two quantified conjunctive queries Q and Q′. Since literals
are independently quantified, Q ⊧ Q′ if and only if for each literal L′ of Q′ there is
a literal L of Q such that L ⊧ L′. Furthermore, Q ∧Q′ is unsatisfiable if and only if
there is a literal L of Q and a literal L′ of Q′ such that L∧L′ is unsatisfiable, which
is equivalent to state that L ⊧ ¬L′. So, deciding whether Q and Q′ either match or
clash can be determined in O(d∣Q∣∣Q′∣) time by comparing pairs of literals. ⊓⊔

Example 3 Consider an instance of the random block domain with the following
queries ∃yConnected(l1, y)∧∃xAt(x, l2) and ∃y1 Connected(l2, y1)∧¬∃x∃y2 At(x, y2).
Clearly, these queries are clashing because ∃x∃y2 At(x, y2) is entailed by ∃xAt(x, l2).
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To obtain tractable forms of model counting, we need to introduce an additional
restriction on queries which states that any ground atom is covered by at most one
quantified literal. The restriction can be formalized as follows. Two formulas F and
G are said to overlap if H(F ) ∩H(G) ≠ ∅. Based on this notion, a decomposable
conjunctive query is a conjunction of quantified literals which do not overlap each
other. For example, the query ∃y1 Connected(l1, y1)∧¬∀xAt(x, l2)∧∃y2 At(b1, y2) is
not decomposable since the last two literals overlap. On the other hand, the following
expression ∃yConnected(l1, y) ∧ ∃x1 At(x1, l2) ∧ ¬∃x2 At(x2, l3) is decomposable.

Lemma 2 For any quantified literal L, the problem of counting the number of models
of L can be determined in O(∣L∣) time.

Proof We know that ∥L∥ = 2d−∣H(L)∣⟪L⟫. So, we only need to show that both ∣H(L)∣
and ⟪L⟫ can be evaluated in linear time. Let R(t1,⋯, tk) denote the atomic expres-
sion occurring in L. Without loss of generality, we assume that for some integer p
such that 0 ≤ p ≤ k, all the first p terms t1,⋯, tp are variables. For 1 ≤ i ≤ p let ni be
the number of constant symbols of sort si. Obviously, ∣H(L)∣ = ∏

p
i=1 ni. Therefore,

∣H(L)∣ can be evaluated in O(∣L∣) time.
Now, let us turn to ⟪L⟫. Since any literal is either positive or negative, and any

atom is either universally quantified or existentially quantified, four cases have to be
considered. In the following, l is an abbreviation of ∣H(L)∣. First, suppose that the
quantified atom of L is ∀x1,⋯,∀xpR(t1,⋯, tk). If L is positive, then ⟪L⟫ = 1 because
the unique interpretation I satisfying L is I = H(L). If L is negative, then clearly
⟪L⟫ = 2l−1. Dually, suppose that the quantified atom of L is ∃x1,⋯,∃xpR(t1,⋯, tk).
If L is negative, then it can be rewritten as ∀x1,⋯,∀xp¬R(t1,⋯, tk), and hence
⟪L⟫ = 1, because the unique interpretation I satisfying L is I = ∅. Finally, if L is
positive, then it follows that ⟪L⟫ = 2l − 1. Note that in any case, if R(t1,⋯, tk) is
a ground atom (i.e. p = 0), then ⟪L⟫ = 1. Since in all the four cases ⟪L⟫ can be
evaluated in O(∣L∣) time, this completes the proof. ⊓⊔

A decomposable conjunctive query language is a countable set Q of decomposable
conjunctive queries. The key interest behind the notion of decomposability is clarified
by the following property.

Proposition 3 For any decomposable conjunctive query Q, the problem of counting
the number of models of Q can be determined in O(∣Q∣) time.

Proof Let Q be a decomposable conjunctive query. Since ∥Q∥ = 2d−∣H(Q)∣⟪Q⟫ we only
need to prove that both ∣H(Q)∣ and ⟪Q⟫ can be evaluated in linear time. Suppose
that Q contains q quantified literals. The decomposability property implies that
∣H(Q)∣ = ∑

q
i=1 ∣H(Li)∣ and ⟪Q⟫ = ∏

q
i=1⟪Li⟫, because literals do not overlap each

other. Therefore, by application of Lemma 2, the result follows. ⊓⊔

Example 4 Consider again a simple instance of the random block domain involving
2 blocks and 5 locations. The dimension of the vocabulary is thus (3× 25)+ 10 = 85.
Initially, the knowledge base of the agent is (⊺,1), so ∥KB∥ = 285. Now suppose that
our agent receives the query ∃yConnected(l1, y) ∧ ¬∃xAt(x, l2). We thus have

PrKB(Q) =
∥KB ∧ ∃yConnected(l1, y) ∧ ¬∃xAt(x, l2)∥

∥KB∥
=

285−(5+2)×(25 − 1)×1
285

=
31
128
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○⊺

○∃yConn(l1,y) ○∀y¬Conn(l1,y)

○
∃yConn(l1,y)∧∃xAt(x,l2)

○
∃yConn(l1,y)∧∀x¬At(x,l2)

○
∀y¬Conn(l1,y)∧∃xAt(x,l2)

○
∀y¬Conn(l1,y)∧∀x¬At(x,l2)

Fig. 3 A hitting query language for the random blocks domain.

We conclude this section with some useful definitions concerning knowledge bases.
Given a query language Q and a weighted knowledge base KB , we say that KB
is generated from Q if F ∈ Q for any weighted formula (F,w) occurring in KB .
Furthermore, KB is said to be rooted if it contains the tautology (⊺,1). Finally,
KB called irredundant if it does not include a pair of distinct formulas (F1,w1) and
(F2,w2) such that F1 is equivalent to F2. When considering the behavior of the
EG-L2R algorithm, we remark that the knowledge base maintained by the agent is
rooted and generated by the query language of its interface. Clearly, this knowledge
base can be kept irredundant by simply replacing any pair (F1,w1) and (F2,w2) such
that F1 ≡ F2, with the formula (F1,w1w2). If Q is a decomposable query language,
this operation can be realized in polynomial time.

5.2 Hitting Query Languages

In propositional logic, an important class of formulas for which model counting can
be determined in polynomial time is the class of hitting formulas (Büning & Zhao,
2001). Based on the notion of decomposable queries, we extend this class to the
relational setting and show that relational probabilistic reasoning problems defined
over hitting query languages are mistake-bound learnable. In the following, a hitting
set is a set S of formulas where any two of its formulas either match or clash.

Definition 5 A hitting query language is a hitting set of decomposable conjunctive
queries.

Example 5 Any hitting query language can be represented by a tree, where each
vertex is labeled by an equivalence class of formulas. Two queries Q and Q′ that
match are linked by a path in the tree. Conversely, two queries Q and Q′ that are
not joined by any path in the tree must clash. For example, consider in Figure 3 a
labeled tree for the random blocks domain. Then, the set of vertices in the tree forms
a hitting query language. Note that if this language would be expanded with a query
such as ∃xAt(x, l2), then the hitting property would be violated because ∃xAt(x, l2)
does not match or clash with the formulas ∃yConn(l1, y) and ¬∃yConn(l1, y).

The salient feature of hitting query languages lies in the fact that any weighted
knowledge base generated from a hitting language can be represented into an tree-
like data structure for which query evaluation is essentially linear in the size of the
knowledge base and the dimension of the input vocabulary.
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To capture this property within a formal setting, we need to introduce additional
definitions. Consider a hitting set S and a formula F in S. Borrowing the terminology
of trees, an ancestor of F is a distinct formula G of S such that F ⊧ G. A parent of F
is an immediate ancestor of F , that is, an ancestorG of F such that F ⊧ G andG′ ⊭ G
for any distinguished ancestor G′ of F . From a dual viewpoint, a descendant of F is a
distinct formula G in S such that G ⊧ F , and a child of F is an immediate descendant
of F , that is, a descendant G of F such that and G ⊭ G′ for any distinguished
descendant G′ of F . Finally, a formula F is called a root if it does not have any
parent, and a leaf if it does not have any child.

For example, using the hitting set in Figure 3, we observe that ⊺ and ∃yConn(l1, y)
are ancestors of ∃yConn(l1, y) ∧ ∃xAt(x, l2) and ⊺ is the parent of ∃yConn(l1, y).

Now, let KB be a rooted, irredundant knowledge base generated from a hitting
query language Q. Then the tree of KB , denoted Tr(KB), is a labeled rooted tree
defined in the following way. First, to each formula (Fi,wi) in KB we associate a
vertex i in Tr(KB). Second, to each pair of formulas (Fi,wi) and (Fj ,wj) in KB
such that Fi is a child of Fj in the set of formulas of KB , we associate an edge
(i, j). By a(i) (resp. d(i)) we denote the collection of all vertices j such that Fj is
an ancestor (resp. a descendant) of Fi in KB . Third and finally, to each vertex i, we
associate a label (Fi, Ìwi,Ìci) where Ìwi and Ìci are defined as follows

Ìwi = wi ⋅ ∏
j∈a(i)

wj and Ìci =

⎧⎪⎪
⎨
⎪⎪⎩

∥Fi∥ if i is a leaf, and
∥Fi∥ −∑j∈d(i)Ìcj otherwise

The key intuition behind this data structure lies in the fact that Tr(KB) induces
a natural partition of the Herbrand space: any interpretation is associated with the
most specific formula in KB that covers it. From this viewpoint, Ìci is a counter that
captures the number of interpretations that satisfy Fi but none of its implicants in
the knowledge base. Analogously, Ìwi is a real value that captures the weight of these
interpretations. We remark that Tr(KB) is indeed a rooted tree since KB includes
the tautology (⊺,1). For convenience, the root node is simply denoted ⊺.

With this data structure in hand, the degree of belief of a query Q can be
evaluated by expanding Tr(KB) with a new vertex associated to Q. The expansion
procedure presented in Figure 4 takes as input the tree Tr(KB) of a knowledge
base KB and a query Q, and returns as output the new tree Tr(KB ∪ {Q}). The
likelihood of Q is thus obtained by exploring all descendants of Q in the tree.

Lemma 3 Let Q be a hitting query language, KB be a rooted irredundant knowledge
base generated from Q, and Q a query in Q. Let Tr(KB ∪ {Q}) be the structure
obtained from Tr(KB) and Q by the tree expansion procedure. Then

PrKB(Q) =
ÌwqÌcq +∑i∈d(q) ÌwiÌci
Ìw⊺Ìc⊺ +∑j∈d(⊺) ÌwjÌcj

Proof Consider an arbitrary vertex i in Tr(KB ∪{Q}) and let ÌFi denote the formula
Fi ∧ ⋀j∈d(i) ¬Fj . Let Si = { ÌFj ∶ j ∈ d(i)} ∪ { ÌFi}. The key idea of the proof is to
show that Si induces a partition of M(Fi). To establish this assertion, consider an
arbitrary model I of Fi. We first prove that I is model of at most one formula in Si.
Suppose this is not the case. Then, there are at least two formulas ÌG and ÌG′ in Si
such that I is a model of ÌG ∧ ÌG′. Obviously, G and G′ cannot clash. So, G and G′

must match, which implies that either G is a descendant of G′ or the converse. In
both cases, ÌG ∧ ÌG′ is unsatisfiable and hence, this leads to a contradiction.
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Fig. 4 The tree expansion procedure

Input:

The tree Tr(KB) of a weighted knowledge base KB and a query Q

Begin

find the parent p of Q in Tr(KB)

if Fp ≡ Q then return Tr(KB)

add a new a vertex q and the edge (q, p)

for each child i of p such that Fi ⊧ Q, remove the edge (i, p) and add (i, q)

label q with (Q, Ìwq,Ìcq) where Ìwq = Ìwp and Ìcq = ∥Q∥ −∑i∈d(q)Ìci
set Ìcp to Ìcp −Ìcq

return Tr(KB)

End

Now, we prove that I is model of at least one formula of Si. To this end, let j
be the deepest node in the tree for which I is a model of Gj . This node is unique
because otherwise I should be a model of two formulas Gj and Gj′ that would clash.
Now, suppose that I is not a model of ÌGj . Then, by construction of ÌGj , there is a
descendant k of j in the tree such that I is not a model of ¬Gk. So, I is a model of
Gk but this contradicts the assumption that j is the deepest node in the tree.

To summarize, for any model I of Fi, there is exactly one ÌG in Si such that I is
a model of ÌG. Based on this partition, it follows that ∥Fi∥ = ∥ ÌFi∥ +∑j∈d(i)∥ ÌFj∥, and
hence ∥ ÌFi∥ = Ìci. Furthermore, for any formula F , we know that ∥KB ∪ {F}∥ is the
sum of weights of models of KB that are also models of F . It follows that

∥KB ∪ {Fi}∥ = ∥KB ∪ { ÌFi}∥ + ∑
j∈d(i)

∥KB ∪ { ÌFj}∥

By construction, the weight of any model of ÌFi is the product of weights of each
formula (Fk,wk) in KB such that Fk is entailed by Fi. Thus by definition of Ìwi, it
follows that ∥KB ∪ ÌFi∥ = ÌwiÌci. Therefore,

∥KB ∪ {Fi}∥ = ÌwiÌci + ∑
j∈d(i)

ÌwjÌcj

Finally, since PrKB(Q) is given by
∥KB ∪ {Q}∥

∥KB ∪ {⊺}∥
, the result follows. ⊓⊔

Based on the above lemma and the complexity analysis of the tree expansion
procedure, we can derive the following property.

Theorem 3 Let (P,Q) be a relational probabilistic reasoning problem where Q is a
hitting query language over a vocabulary of dimension d, m be the total number of
mistakes made by the EG-L2R algorithm, and n be the largest size of any formula
in Q. Then for any query Q in Q, PrKB(Q) can be evaluated in O(dmn2) time.
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Proof The result can be established by assuming that the agent maintains the tree of
its knowledge base, during each trial t. Note that if t = 1 then Tr(KB t) consists in a
single node labeled by (⊺,1,2d). Now, consider that t ≥ 1 and let Qt be an incoming
query. The agent starts to transform Tr(KB t) into Tr(KB t ∪ {Qt}) according to
the tree expansion procedure, which takes O(dmn2) time. Indeed, searching the
parent of Q takes dmn2 time in the worst case by comparing Q with all formulas in
the tree, using the comparison method suggested in Proposition 2. Updating edges
simply takes O(m) time, and updating vertices takes O(∣Q∣ +m) time. Notably, to
determine Ìcq, we simply need to evaluate the number of the models of Q according
to Proposition 3, and subtract from it each counter in the descendants of Q. Based
on Lemma 3, the agent can ascribe a degree of belief in O(m) time by exploring the
descendants of Q and ⊺ in its tree. If the prediction is correct, then the agent can
reset the original tree in O(m) time by updating at most m edges. Otherwise, the
agent simply needs to propagate the update value eη(yt−ŷt) to Q and its ascendants
in order to derive the new tree Tr(KB t+1). Again, this takes O(m) time. Based on
these operations, the overall cost per trial requires O(dmn2) time. ⊓⊔

We have previously shown that the cumulative number of mistakes of the EG-L2R
algorithm is linear in the input dimension. Since the size of the weighted knowledge
base is linear in the number of mistakes, we obtain the following result.

Corollary 1 There exists an efficient mistake bound L2R algorithm for any rela-
tional probabilistic reasoning problem (P,Q) where Q is a hitting query language.

5.3 Cluster Query Languages

The expressiveness of query languages can be increased by forming clusters of hitting
languages. In propositional logic, a cluster formula is a union of non-overlapping
hitting formulas (Nishimura et al., 2006). This notion is ported to relational query
languages in the following way. A set S of formulas is connected if for any pair of
formulas {F,G} in S, there is a sequence of formulas F1,⋯, Fn such that F = F1,
G = Fn and Fi and Fi+1 overlap for all i such that 1 ≤ i ≤ n− 1. A cluster set is a set
S of formulas where any connected subset of S is a hitting set.

Definition 6 A cluster query language is a cluster set of decomposable conjunctive
queries.

Example 6 By analogy with hitting languages, any cluster query language can be
represented by a tree where each vertex is labeled by an equivalence class of formulas.
Two queries that match are joined by a path in the tree. Dually, two queries that
are not joined by a path in the tree are necessarily clashing or non-overlapping. For
example, consider in Figure 5 a labeled tree for the random blocks domain. Then
the set of vertices in the tree forms a cluster query language.

Theorem 4 Let (P,Q) be a relational probabilistic reasoning problem where Q is a
cluster query language over a vocabulary of dimension d, m be the total number of
mistakes made by the EG-L2R algorithm, and n be the largest size of any formula
in Q. Then for any query Q in Q, PrKB(Q) can be evaluated in O(dmn2) time.



18 Frédéric Koriche

○⊺

○∃yConn(l1,y) ○∀y¬Conn(l1,y) ○∃yConn(l2,y) ○∀y¬Conn(l2,y)

○
∀y¬Conn(l1,y)∧...

○
∀y¬Conn(l2,y)∧...

○
∃yConn(l1,y)∧∃xAt(x,l2)

○
∃yConn(l1,y)∧∀x¬At(x,l2)

○
∃yConn(l2,y)∧∃xAt(x,l1)

○
∃yConn(l2,y)∧∀x¬At(x,l1)

Fig. 5 A cluster query language for the random blocks domain.

Proof Any cluster query language Q is formed by the union Q1 ∪ ⋯ ∪Qd of up to
d non-overlapping hitting languages. Thus, any rooted irredundant knowledge base
KB t generated from Q can be represented by a forest {Tr(KBt,1),⋯,Tr(KBt,d)},
where KB t,i is generated from Qi. To identify clusters, each tree Tr(KBt,i) can be
associated with the d-dimensional characteristic boolean vector ht,i of H(KB t,i).
Now consider an incoming query Qt and suppose that Qt ∈ Qi. The task of finding
KB t,i takes O(dmn) time by testing whether ht,i(j) = 1 for at least one Aj in
H(Qt). Furthermore, since clusters are non-overlapping, PrKBt(Qt) =

∥KBt,i∪{Qt}∥
∥KBt,i∥ .

By application of Theorem 3, this takes O(dmn2) time. Additionally, the cost of
updating Tr(KBt,i) and ht,i only takes O(dm +mn) time. ⊓⊔

Corollary 2 There exists an efficient mistake-bound L2R algorithm for any rela-
tional probabilistic reasoning problem (P,Q) where Q is a cluster query language.

5.4 Parameterized Cluster-Width

As a glimpse beyond cluster languages, we can relax the cluster assumption and
explore the larger family of conjunctive query languages with bounded cluster-width.
Very roughly, the cluster-width of a propositional formula is an upper bound on the
minimum number of boolean variables that must be assigned in order to transform
the initial formula into a cluster expression, for which model counting can be decided
in polynomial time (Nishimura et al., 2006).

The notion of cluster-width is ported to relational query languages using the
following definitions. Given a set S of formulas, a hitting obstruction is a pair of
formulas {F,G} in S such that F and G are connected, but they do not match or
clash. Note that S is a cluster set if and only if it does not contain any hitting
obstruction. With a hitting obstruction we associate the following pair of sets of
ground atoms: {H(F ),H(G)}. Based on this notion, let Gr(S) denote the graph
with vertex set H; two ground atoms A and B are joined by an edge in the graph
Gr(S) if and only if there is an hitting obstruction {F,G} in S where A ∈ H(F )
and B ∈H(G). We call Gr(S) the obstruction graph of S.

Recall that a vertex cover of a graph is a set of vertices that contains at least one
end of every edge of the graph. The cluster-width of a set S of formulas is defined
by the size of a smallest vertex cover in the obstruction graph Gr(S) of S.
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○⊺

○∃yConn(l1,y) ○∃xAt(x,l2) ○∀x¬At(x,l2) ○∀y¬Conn(l1,y)

○
∃yConn(l1,y)∧∃xAt(x,l2)

○
∃yConn(l1,y)∧∀x¬At(x,l2)

○
∀y¬Conn(l1,y)∧∃xAt(x,l2)

○
∀y¬Conn(l1,y)∧∀x¬At(x,l2)

Fig. 6 A k-cluster query language for the random blocks domain with k = 2

Definition 7 A k-cluster-width query language is a decomposable conjunctive query
language with cluster width at most k.

Example 7 Consider again a simple instance of the random block domain with 2
blocks and 5 locations. Suppose that we would like to employ the query language
illustrated in Figure 6. As usual, two queries that match are joined by a path in
the graph. We can observe that there are actually two hitting obstructions: the
first obstruction is given by the pair {∃yConn(l1, y),∃xAt(x, l2)}, and the second
obstruction is the dual pair {∀y¬Conn(l1, y),∀x¬At(x, l2)}. The resulting obstruction
graph of this language is represented in Figure 7. We can easily verify that the size
of a minimal vertex cover for this graph is 2.

Example 8 Now consider an instance of the blood type domain involving four per-
sons: Ann, Bob, Chris and Mary. We would like to estimate the blood type of these
persons from parenthood or genetic observations. The query language is represented
in Figure 8. Again, two queries that match are joined by a path in the graph. We
can distinguish two groups of hitting obstructions. The first group includes queries
relative to Ann and Mary, while the second includes queries relative to Bob and
Chris. The obstruction graph associated to the language is illustrated in Figure 9.
We can easily observe that the size of a minimal vertex cover for this graph is 6.

The key interest of query languages with fixed cluster-width lies in the so-called
notion of backdoor set. In propositional logic, a (strong) backdoor of a satisfiability
problem or a model counting problem is a set of boolean variables which, however
they are assigned, provide a simplified formula that can be solved in polynomial
time (Williams et al., 2003; Ruan et al., 2004). This notion can be extended to our
framework in the following way.

Consider a subset B of the set H of all ground atoms defined over the background
vocabulary. A partial Herbrand interpretation over B is a map I that assigns to
each atom in B a truth value and leaves undefined the atoms in H − B. Given a
decomposable conjunctive formula F , the simplification of F by I, denoted F [I], is
defined as follows: for any literal L in F that is true in I, L is replaced with ⊺, and
for any literal L in F that is false in I, F is replaced with �. More generally, given a
knowledge base KB generated from a decomposable conjunctive query language, the
simplification of KB by I, denoted KB[I], is defined as follows. First, each weighted
formula (F,w) in KB is replaced with (F [I],w), next each resulting formula of the
form (�,w) is removed from KB[I], and then the set of all formulas of the form
(⊺,wi) is replaced with a single root (⊺,∏iwi) in KB[I].
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○At(b1,l2) ○At(b2,l2)

○
Conn(l1,l1)

○
Conn(l1,l2)

○
Conn(l1,l3)

○
Conn(l1,l4)

○
Conn(l1,l5)

Fig. 7 The obstruction graph associated with random blocks domain in Fig. 6.

A set of ground atoms B is called a cluster-backdoor set for a knowledge base KB
if for any partial Herbrand interpretation I over B, the simplification KB[I] of KB
by I is a cluster set of weighted formulas. The following states that the obstruction
graph of our knowledge base can be constructed in polynomial time.

Lemma 4 Let Q be a decomposable query language, where n is the largest size of
any formula in Q. Let KB be a knowledge base containing m formulas generated from
Q and Gr(KB) the obstruction graph of KB . Then for any Q ∈ Q, the obstruction
graph Gr(KB ∪ {Q}) can be constructed in O(d2m + dmn2) time.

Proof Without loss of generality, we assume that KB is decomposed into a set
{KB1,⋯,KBd} of up to d clusters, where each cluster is associated with the charac-
teristic vector of its set of ground atoms. Note that any cluster is not necessarily a
hitting set. Given a query Q ∈ Q, we begin to check whether Q is connected to some
cluster KB i. As shown in the proof of Theorem 4, this can be done in O(dmn) time
using the characteristic vector of each cluster. If Q is not connected to any cluster,
then we return Gr(KB). Otherwise, for each formula Fi occurring in KB i, we first
test whether Fi and Q clash or match, and if they are incomparable, we expand the
obstruction graph with the list of edges (Ai,B) where Ai ∈ H(Fi) and B ∈ H(Q).
By proposition 2, the first operation takes O(dn2) time. The second operation takes
O(dn + d2) time by generating and connecting the ground atoms of Fi and Q. The
result follows by repeating the process to the m formulas in KB i. ⊓⊔

It is well-known that the vertex cover problem is fixed-parameter tractable. In
other words, given a fixed parameter k, we can determine whether a graph containing
n vertices has a vertex cover of size at most k in time bounded by 2knO(1). By a
direct application of the current best worst-case time complexity obtained by Chen
et al. (2005) for the vertex cover problem, we can derive the following property.

Lemma 5 Let KB be a knowledge generated from a decomposable conjunctive query
language over a vocabulary of dimension d, and Gr(KB) its obstruction graph. Then
one can find in time O(1.273k + dk) a vertex cover of Gr(KB) of size at most k, or
determine that no such vertex cover exists.

With these notions in hand, the connection between vertex covers and cluster-
backdoor sets is captured by the following property.

Lemma 6 Let KB be a knowledge generated from a decomposable conjunctive query
language, and Gr(KB) its obstruction graph. Then any vertex cover of Gr(KB) is
a cluster-backdoor set of KB .

Proof Consider a vertex cover B of the obstruction graph Gr(KB). For each hitting
obstruction {F,F ′} in the set of formulas of KB , there is an associated bipartite
subgraph G of Gr(KB) that joins each A ∈H(F ) to each A′ ∈H(F ′). Now, consider
the set BG of vertices in G that belong to B. Obviously, BG is a vertex cover of G.
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○⊺

○Blood(Mary,A) ○Blood(Ann,A) ○Blood(Bob,O) ○Blood(Chris,O)

○Mother(Ann,Mary) ○ Father(Bob,Chris)

○
∃z∃uGene(Mary,z,u)

○
∀z¬Gene(Mary,z,b)

○
∃z∃uGene(Chris,z,u)

○
∀z¬Gene(Chris,z,a)

Fig. 8 A k cluster-width query language for the blood type domain. In this compact
representation, each formula F associated to a vertex s is given by the conjunction of the
labels occurring in any minimal path from ⊺ to s.

Let I be a partial interpretation defined over BG . We shall prove that at least one
of the simplified formulas F [I] and F ′[I] is either ⊺ or �.

First, suppose that F and F ′ are two quantified literals denoted L and L′. By con-
struction, any quantified literal can be rewritten into a finite disjunction of ground
literals or a finite conjunction of ground literals. If both L[I] and L′[I] are left
undefined, then in any case, there are at least two ground literals Li ∈ L and L′j ∈ L

′

such that the corresponding ground atoms Ai and A′
j are left undefined by I. It

follows that BG ∩ {Ai,A
′
j} = ∅, and hence, there is no vertex in BG that covers the

edge (Ai,A
′
j) in G. This, however, contradicts the fact that BG is a vertex cover

of G. Now, consider the general case where F and F ′ are conjunctions of quantified
literals. Again, if F [I] and F ′[I] are left undefined, then there are at least two quan-
tified literals L ∈ F and L′ ∈ F ′ such that both L[I] and L′[I] are left undefined.
However, as shown above, this contradicts the fact that BG is a vertex cover of G.
Therefore, at least one of F [I] and F ′[I] is simplified to ⊺ or �.

Finally, since B is a vertex cover of each bipartite subgraph G of Gr(KB) associ-
ated to a hitting obstruction in KB , it follows that any partial interpretation I over
B will remove each obstruction by deleting at least one formula in the obstruction.
Consequently, B is indeed a cluster-backdoor set of KB . ⊓⊔

Theorem 5 Let (P,Q) be a relational probabilistic reasoning problem where Q is
a k-cluster-width language over a vocabulary of dimension d, m be the total number
of mistakes made by EG-L2R, and n be the largest size of any query in Q. Then for
any query Q, PrKB(Q) can be evaluated in O(1.273k +dk+2k(d2m+dm2n2)) time.

Proof This can be established by assuming that the agent maintains the conflict
graph Gr(KB t) of its knowledge base during each trial. Consider an arbitrary trial
t ≥ 1 and let Qt be the supplied query. By Lemma 4, Gr(KB ∪ {Qt}) can be con-
structed in O(d2m+dmn2) time. Furthermore, by Lemma 5, a vertex cover B of size
at most k for this graph can be found in O(1.273k + dk) time. Finally, by Lemma
6, we know that B is a cluster-backdoor set of KB ∪ {Qt}. Now, let I be a partial
interpretation over B. Then the set of formulas in KB[I] is a cluster set. Each cluster
in KB[I] can be transformed into a tree structure by repeated application of the
tree expansion procedure. To this point, we only need to compile the cluster that
includes Qt. Since there are at most m formulas in that cluster, the tree compilation
requires O(dm2n2) time, and query evaluation takes O(dmn) time. Finally, since
there are 2k distinct partial interpretations generated from B, the result follows. ⊓⊔
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○Mother(Ann,Mary) ○Father(Bob,Chris)

○
Blood(Mary,A)

○
Blood(Ann,A)

○
Blood(Chris,O)

○
Blood(Bob,O)

○
Gene(Mary,z,u)

○
Gene(Chris,z,u)

Fig. 9 The obstruction graph associated to the support set of the language in Fig. 8. The
ground atoms of Gene are compactly represented by Gene(Mary, z, u) and Gene(Chris, z, u)

Corollary 3 There exists an efficient mistake-bound L2R algorithm for any proba-
bilistic reasoning problem (P,Q) where Q is a k-cluster-width query language.

6 Related Work

The framework described here has connections with work in many other areas related
to reasoning and learning. Relational queries and their probabilistic estimation are
central, for example, to both databases and Artificial Intelligence, while learning
in uncertain and relational domains has been studied in numerous settings. Our
framework is distinguished by the close way in which it integrates learning and
reasoning, and by the insistence on having the measures of both computational
complexity and of accuracy bounded by polynomial functions. Among the various
alternative approaches that are relevant to ours, we concentrate on three.

6.1 Statistical Relational Learning

Statistical relational learning (SRL) is concerned with learning in structural and
uncertain environments. As many real-world applications require to handle both
aspects, this research field has received a great deal of attention in the literature.

There are at least three key dimensions that must be taken into account in any
SRL framework. The first dimension is concerned with the type of learning task. In a
learning to classify problem, the overall goal is to produce a relational probabilistic
classifier capable of separating examples according to their class; the performance
of the learner is measured by how well it classifies future examples. By contrast,
in a learning to reason problem, the goal is to produce a relational probabilistic
reasoner capable of quantifying the uncertainty of various events according to its
knowledge; the performance of the learner is here measured by its ability to reason
about the environment. The second dimension is characterized by the representation
language into which hypotheses are described. Various representation languages have
emerged in the literature, using either probabilistic extensions of logical formalisms,
or dually, relational extensions of graphical formalisms; see e.g. (Getoor & Taskar,
2007) for a recent overview on these formalisms. The third dimension is concerned by
the cover relation between hypotheses and examples (De Raedt & Kersting, 2004).
For instance, in learning from interpretations, examples are described by relational
structures, such as Herbrand interpretations, and the cover relation is defined by
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the probability that an interpretation is a model of the given hypothesis. In learning
from entailment, examples are queries, and the cover relation is specified by the
degree of belief assigned to a query according to the hypothesis.

Most current SRL frameworks are devoted to classification tasks; they essentially
differ in the choice of the representation language and the type of cover relation.
In contrast, our framework is concerned with reasoning problems, in the spirit of
learning to reason approaches. Despite this conceptual difference, our framework has
connections with Markov networks, which have often been advocated as a compact
and flexible representation language in statistical learning (Taskar et al., 2002, 2003,
2004; Kok & Domingos, 2005; Richardson & Domingos, 2006; Mihalkova et al., 2007).
A ground Markov network represents a probability distribution over the sample
space ℘(H) of a set H of ground atoms. It is composed of an undirected graph that
associates to each ground atom a vertex, and a set of potential functions associated
to each clique of the graph. A potential function is a non-negative real function of
the state of its corresponding clique. According to the terminology of this paper, a
potential function F can be specified by its projection φ(F ) and its weight w. The
probability distribution associated to a Markov network M is given by

PrM(Ii) =
1
Z

∏
(F,w)∈M

wφi(F )

where Z = ∑
N
i=1∏(F,w)∈M wφi(F ) is the normalizing partition function. First-order

extensions of Markov networks, such as Markov relational networks (Taskar et al.,
2002) and Markov logic networks (Richardson & Domingos, 2006), can be viewed as
templates for constructing ground networks. For example, a Markov logic network is
just a set of weighted formulas (F,w), where each ground instance of F represents
a potential function with weight w. The probability distribution associated to a
Markov logic network M is therefore given by

PrM(Ii) =
1
Z

∏
(F,w)∈M

wψi(F )

where ψi(F ) is the number of ground instances of F that are true in Ii. From
this viewpoint, Markov relational networks constitute a subclass of Markov logic
networks where formulas are restricted to conjunctive queries.

The expressiveness of Markov logic networks and their variants comes, however,
with two important sources of complexity. First, the problem of determining the
number ψi(F ) of ground instances of a formula that are true in an interpretation Ii
is #P -hard (Richardson & Domingos, 2006). Second, the problem of inferring the
degree of belief of any query Q from a Markov logic network M is also #P -hard,
even if Q is a simple atom and M a ground network (Roth, 1996).

In contrast, our framework introduces a new tractable class of Markov networks
that handles both sources of complexity. Indeed, any set of weighted decomposable
conjunctions KB gives rise to a Markov network, in a natural way, by associating
to each weighted formula (F,w) in KB a corresponding potential function. The
graphical structure of the network is formed by associating a vertex to each quantified
atom occurring in KB , and an edge to each pair of quantified atoms occurring in the
same formula of KB . Thus, any clique in which the conjunction of nodes is a formula
F of KB , is associated with the potential function (F,w). The computational cost
of determining the value φi(F ) for any decomposable conjunction F is linear in the
input dimension of the vocabulary. In addition, the cost of inferring the degree of
belief of any decomposable query Q from the network KB is also polynomial in the
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○Mother(Ann,Mary) ○Father(Bob,Chris)

○Blood(Mary,A) ○Blood(Ann,A) ○Blood(Bob,O) ○Blood(Chris,O)

○
∃z∃uGene(Mary,z,u)

○
∃zGene(Mary,z,b)

○
∃z∃uGene(Chris,z,u)

○
∃zGene(Chris,z,a)

Fig. 10 The Markov network obtained from the query language in Fig. 8.

input dimension, provided that the set of formulas occurring in KB ∪{Q} is a cluster
set. More generally, if the cluster-width of this set is fixed by a parameter k, the
running time is then polynomial in the input dimension.

Example 9 Consider again the blood type domain, and suppose that our agent has
made a mistake on each query presented in Figure 8. The graphical structure of
the resulting Markov network is illustrated in Figure 10. For example, the clique
{Blood(Ann,A),Blood(Mary,A),∃zGene(Mary, z,b)} is associated with the potential
function (Blood(Ann,A) ∧Blood(Mary,A) ∧∀z¬Gene(Mary, z,b),w), where w is the
weight given by the exponentiated gradient update rule.

6.2 Knowledge Compilation

Knowledge compilation has also emerged as an active research field for addressing
computational difficulties in reasoning (Selman & Kautz, 1996; Liberatore, 1998;
Darwiche & Marquis, 2002; Del Val, 2005). The idea is to transform a model of
the domain into a compiled structure, which is then used online to answer queries
in polynomial time. The key motivation is to push as much of the computational
overhead into the compilation phase, which is amortized over many queries. Although
most of the work has focused on logical inference, knowledge compilation has recently
been ported to the probabilistic setting, using arithmetic circuits (Darwiche, 2003).
In particular, this approach has been employed for compiling relational Bayesian
networks (Chavira et al., 2006). Technically, a relational model is first instantiated
into a ground Bayesian network which is then compiled into an arithmetic circuit.
Ground conjunctive queries are evaluated by differentiating the compiled circuits in
time linear in their size.

Despite its undoubted success on improving the effectiveness of reasoning tasks,
an important drawback of knowledge compilation is that the compiled structure is
not guaranteed to be polynomial in the size of the input dimension, even in the
restricted case where the compiled structure only approximates the initial theory
(Del Val, 2005). Actually, most of computational problems that are interesting in
commonsense reasoning are not “compilable” ” (Liberatore, 1998). Notably, the size
of a compiled circuit for a relational Bayesian network can grow exponentially in the
size of its ground instance, and hence, doubly exponentially in the input dimension.

Our framework can be viewed as a form of inductive knowledge compilation.
Specifically, the initial model of the domain plays the part of the reasoning query
oracle; based on this interface, the learner iteratively compiles the queries that have
led to a mistake. Thus, the compilation is imposed not on the theory of the domain
but on frequent queries posed to the agent. We argue that our framework is a plau-
sible one for commonsense situations, since in general, an uncertain and relational
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domain can be very complex but the queries are relatively simple. Notably, in the
setting of cluster query languages, we have shown that query evaluation is essentially
linear in the number of mistakes.

6.3 Learning to Reason

Naturally, this study is reminiscent to previous approaches on learning to reason. The
foundations of this paradigm have been established by Khardon & Roth (1997, 1999)
in the setting of propositional reasoning. In a similar spirit, the neuroidal architecture
of Valiant (2000a,b) handles the relational setting by characterizing a variant of
the language R for which learning and entailment are polynomially bounded. Our
framework attempts to move one step further by showing that expressive fragments
of R are also tractable for relational probabilistic reasoning.

The approach closest to ours is the “Bayesian” learning to reason framework
developed by Greiner et al. (1997). Recall that a propositional Bayesian network is
formed by two parts: a qualitative part, or structure, which consists in a directed
acyclic graph where vertices represent variables and edges represent dependencies,
and a quantitative part that associates to each vertex a conditional probability table
that quantifies the effects of the parents of the vertex on itself. The aim of the
Bayesian L2R framework is to induce from a sample of queries, each valued by some
hidden target distribution, a Bayesian network that compactly encodes the target
distribution and accurately evaluates the degree of belief of future queries.

In the Bayesian L2R framework, the hypothesis language is the class of all
Bayesian networks that can be built from the vocabulary. This structural choice has,
however, two important consequences. First, as shown by the authors, the problem
of finding a Bayesian network that minimizes the quadratic loss on a given set of
queries is NP-hard even in the restricted setting where the structure of the network
is fixed and the learner has just to fill the CP-tables. Second, the tractability of
query evaluation in Bayesian networks is only guaranteed for very restricted query
languages, such as Markov-blanket queries (Pearl, 1988). In most cases, including
even atomic queries, probabilistic reasoning is #P-hard (Roth, 1996). By contrast,
in the setting suggested by our framework, the hypothesis language is dependent on
the choice of the target query language. Namely, the hypothesis maintained by the
learner is formed by associating a weight to each query that has led to a mistake.
This dependence, coupled with an exponentiated weight update learning strategy,
enables us to handle more expressive relational query languages that are tractable
for weighted model counting.

7 Conclusions

Along the lines of making degrees of belief applicable under tractable conditions, this
study has stressed the importance of combining learning and reasoning processes
together. Specifically, we have shown that some restricted though expressive classes
of relational probabilistic reasoning problems are mistake-bound learnable.

Clearly, there are many directions in which one might attempt extensions of
this framework. A first direction is to extend the expressiveness of query languages
while maintaining computational efficiency. For example, a conjunctive query such
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as ∃x∃z (Mother(Ann, x)∧Gene(x, z, a)) can be transformed into a linear number of
non-overlapping decomposable conjunctions; model counting can hence be evaluated
in polynomial time. A second direction is to explore other learning strategies such
as, for example, quasi-additive algorithms (Grove et al., 2001; Gentile, 2003) which
might open the door to new learnability results. A third direction is to examine
other types of learning interfaces. In fact, the results obtained in this paper rely on
a “quantitative” oracle capable of supplying the correct probability of input queries.
Yet, the interface is not always a perfect image of the environment, and it might be
interesting to explore “qualitative” oracles, limited to supply a propositional attitude,
or “noisy” interfaces, susceptible to make perception errors.

Finally, we have restricted this study to degrees of belief, sometimes referred to as
unconditional epistemic probabilities (Halpern, 2003). This assumption is justifiable
in many situations where the learner is allowed to decompose conditional queries
of the form G∣F . Namely, suppose that during the grace period, antecedents and
consequents of conditional queries are received separately. Then, after this period,
the learner can estimate PrP(G∣F ), using PrKB(G ∧ F ) and PrKB(F ), provided
that the formulas occurring in conditional queries form a decomposable language
with bounded cluster-width. Nevertheless, in some situations we are not necessarily
informed about the context of events, and it is legitimate to learn directly from
arbitrary queries. From this perspective, the problem of learning to reason about
conditionals looks challenging.

Appendix

Theorem 1 For any relational probabilistic reasoning problem (P,Q) defined over
a vocabulary of dimension d, on input γ > 0, when η = 4, the direct EG-L2R algorithm
has the following mistake bound

Mγ(P,Q) ≤
ln 2
2γ

(d −H(P))

Proof The analysis follows Kivinen & Warmuth (1997) with a slight difference in the
derived bound. Let S = (Q1,⋯,QT ) be a sequence of queries supplied by the oracle.
We proceed by showing that the divergence between P̂t and P decreases after each
mistake. The divergence function employed for the analysis is the Kullback-Leibler
(KL) distance

D(P, P̂t) =
N

∑
i=1
pi ln(pi/p̂t,i)

It is well known that the KL distance is minimal and equal to 0 if and only if P = P̂t.
Based on this divergence function, we first observe that

T

∑
t=1
D(P, P̂t) −D(P, P̂t+1) =D(P, P̂1) −D(P, P̂T+1) ≤ (d −H(P)) ln 2 (1)
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We thus need to prove that the total number of mistakes is bounded by this sum. In
doing so, let us examine the difference of divergences after each mistake. We have

D(P, P̂t) −D(P, P̂t+1) =
N

∑
i=1
pi ln

⎛

⎝

eηφi(Qt)(yt−ŷt)

∑
N
j=1 p̂t,jeηφj(Qt)(yt−ŷt)

⎞

⎠

= η(yt − ŷt)yt − ln(
N

∑
i=1
p̂t,ie

ηφi(Qt)(yt−ŷt))

= η(yt − ŷt)yt − ln(1 − ŷt(1 − eη(yt−ŷt)))

The last equality is derived from the fact that the exponentiated term is a convex
function of the form αφi(Qt) with α = eη(yt−ŷt) > 0 and φi(Qt) ∈ {0,1}. Now, by
Lemma 1 in (Helmbold et al., 1997), we know that ln(1 − z(1 − ex)) ≤ xz + 1

8
x2. By

substituting this inequality into the main equation, we have

D(P, P̂t) −D(P, P̂t+1) ≥ ηyt(yt − ŷt) − ηŷt(yt − ŷt) −
η2(yt − ŷt)

2

8

= η(1 −
η

8
)(yt − ŷt)

2

Summing over all trials and using the upper bound (1), we obtain

T

∑
t=1

(yt − ŷt)
2 ≤

8 ln 2
η(8 − η)

(d −H(P)) (2)

The cumulative loss is minimized when η = 4. For this value, we have

T

∑
t=1

(yt − ŷt)
2 ≤

ln 2
2

(d −H(P)) (3)

Finally, we know that a mistake arises only when (yt − ŷt)
2 > γ. By substituting this

condition into inequality (3) we obtain the desired bound. ⊓⊔

Theorem 2 The indirect EG-L2R algorithm exactly simulates the direct EG-L2R
algorithm.

Proof We assume that both algorithms are run on the same parameter η and the
same sequence S = (Q1,⋯,QT ) of queries supplied by the same oracle RQγ(P,Q).
We must show that PrP̂t

(Qt) = PrKBt(Qt) on each trial t = 1,⋯, T . Given an
interpretation I in ℘(H), let ÌI be the conjunction of all ground literals that are true
in I. Note that ÌI has a unique model, which is I. It follows that PrP̂t

(ÌIi) = p̂t,i
for 1 ≤ i ≤ N . Now, let us consider the following invariant: for any trial t ≥ 1 and
any interpretation I in ℘(H), PrP̂t

(ÌI) = PrKBt
(ÌI). This is a sufficient condition to

prove that PrP̂t
(Qt) = PrKBt(Qt). Indeed, we have

PrP̂t
(Qt) =

N

∑
i=1
p̂t,iφi(Qt) = ∑

I∈M(Qt)
PrP̂t

(ÌI) = ∑
I∈M(Qt)

PrKBt(
ÌI)

= ∑
I∈M(Qt)

∥KB t ∪ {ÌI}∥

∥KB t∥
=

∥KB t ∪ {Qt}∥

∥KB t∥
= PrKBt(Qt)
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The existence of this invariant is proven by induction on the number of trials. Let
t = 1. Here, the knowledge base KB1 is reduced to {(⊺,1)}. We have

PrP̂1
(ÌI) =

1
N

=
∥ÌI∥

∑
N
i=1 ∥ÌIi∥

=
∥KB1 ∪ {ÌI}∥

∥KB1∥
= PrKB1(

ÌI)

Now, consider that t > 1 and assume by induction hypothesis that the property holds
at the beginning of the trial. We have ŷt = PrP̂t

(Qt) = PrKBt(Qt). On receiving the
oracle’s response, two cases are possible. First, suppose that L(yt, ŷt) ≤ ε. In this case,
the property trivially holds at the end of the trial. Now suppose that L(yt, ŷt) > ε.
Recall that KB t+1 = KB t ∪ {(Qt,wt)}, where wt = eη(yt−ŷt). The property is proved
by the following chain of equalities.

PrP̂t+1
(ÌIi) =

p̂t,ie
ηφi(Qt)(yt−ŷt)

∑
N
j=1 p̂t,jeηφj(Qt)(yt−ŷt)

=
PrP̂t

(ÌIi)w
φi(Qt)
t

∑
N
j=1 PrP̂t

(ÌIj)w
φj(Qt)
t

=
PrKBt(

ÌIi)w
φi(Qt)
t

∑
N
j=1 PrKBt(

ÌIj)w
φj(Qt)
t

=
PrKBt+1(

ÌIi)

∑
N
j=1 PrKBt+1(

ÌIj)
= PrKBt+1(

ÌIi)

It follows that PrP̂t
(Qt) = PrKBt(Qt) on any trial t = 1,⋯, T , as desired. ⊓⊔
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