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Abstract – The continuous complex wavelet transform offers a convenient framework for neural spike sorting. Results 
show that wavelet-based neural spike detection outperforms simple threshold detection, especially with signals with low 
signal to noise ratio.  Classification of action potentials using their signatures in wavelet  space performed as well  as a 
classifier based upon principal components analysis, and better than a classifier based upon template matching. Applied on 
experimental  intrafascicular  recordings  of  muscle  spindle  afferent  nerve  response  to  passive  muscle  stretch,  the  spike 
sorting algorithm manages to isolate afferent activity of units having a linear relationship between neural firing rate and 
muscle length, an important step towards a model-based estimator of muscle length.

1. Introduction
Closed-loop control of neural prosthetics is seen as a means 
to  compensate  for  many  of  the  non-linearities  related  to 
muscle  activation,  and  the  unexpected  perturbations  one 
might  encounter  when  using  a  Functional  Electrical 
Stimulation system. With the advent of advanced implanted 
neuroprosthetic  interfaces,  natural  sensors,  such  as  the 
muscle  spindle  afferent  nerve,  are  being  explored  as  an 
alternative source for feedback information. In a previous 
study,  a  simple  feedback  controller  was  implemented  to 
follow a desired joint  angle trajectory in  the presence of 
externally  applied  disturbances  [1].  Muscle  length  was 
estimated  using  aggregate  unspecific  muscle  afferent 
activity and a lookup table. In another study a simple linear 
model  was  proposed  to  express  the  relationship  between 
length  and  unit  neural  firing  rate  [2],  [3].  In  order  to 
improve the estimation of muscle length, separation of units 
in the multi-unit ENG is necessary.

Action  potentials  are  usually  detected  by  looking  for 
signal activity rising above a preset noise gate [4], [5]. The 
detected  spikes  are  classified  using  different methods. 
Principal  components  analysis  (PCA)  and  template 
matching are often used [4],  [5] because of their relative 
simplicity which enables fast, real-time implementation. In 
a recent study it was demonstrated that using a continuous 
complex  wavelet  based  approach  to  action  potential 
detection in the auditory nerve outperforms a matched filter 
approach [6]. In  this  study  we  expand  this  detection 
algorithm so it covers a range of temporal scales of action 
potentials.  Additionally,  we introduce  a  classifier  of  the 
detected  action potentials.  The spike  sorting algorithm is 
evaluated  on  both  synthesized  data  and  experimentally 
recorded  muscle  spindle  afferent  response  to  imposed 
muscle stretches. The algorithm performance is compared 
to methods using PCA and template matching.

2. Methods

2.1 Acute animal experiments
Acute experiments were conducted on 10 anesthetized New 
Zealand white rabbits. One leg of the rabbit was anchored 
at knee and ankle joints to a fixed mechanical frame The 
Achilles  tendon was  attached  to  the  arm  of  a  servo-
controlled motor  using a ligature.  Pulling on the ligature 

stretched  the  Medial  Gastrocnemius  (MG)  muscle  and 
resulted in ankle dorsiflexion. Releasing the tension on the 
ligature  resulted  in  the  muscle  shortening  to  its  original 
length and movement of the ankle in the plantar direction. 

A  thin-film  longitudinal  intrafascicular  electrode 
(tfLIFE)  was  implanted  in  the  MG nerve in  the  rabbit’s 
hind  limb.  The  electrode  enabled  simultaneous  multi-
channel monitoring of the  ENG from the fascicle in which 
the structure was implanted. In order to have purely muscle 
afferent activity in the ENG recordings,  the sciatic  nerve 
was crushed proximal to the implantation site. Signals from 
the structure were amplified and filtered before recording 
them to a multichannel digital tape recorder.

The MG muscle was presented with sinusoidal stretches 
4 mm  in  peak-to-peak  amplitude  and  250 mHz  in 
frequency.  The  force,  relative  position  and  the  4  neural 
signals from the tfLIFE were simultaneously recorded.

2.2 Generating synthetic signals
In order to be able to evaluate the performance of the spike 
sorting algorithm, knowledge of the exact timing and class 
of  each  action  potential  in  the  ENG  signal  is  needed. 
Because  of  uncertainty  about  this  information  in 
experimental  data,  artificial  signals  based  upon  recorded 
action  potentials  were  synthesized.  Around  20  action 
potentials with different waveforms were visually identified 
and extracted from the recorded experimental  data.  From 
the  set  of  extracted  waveforms,  5  action  potentials  with 
distinctly different shapes were chosen to represent 5 neural 
spikes originating from different axons, i.e. different spike 
classes.   The  waveforms  were  normalized  and  used  to 
synthesize  spike  trains.  Spike  train  firing  rates  were 
randomly chosen from within the range found in literature 
[7].  With  the  exception  of  burst  firing,  muscle  spindle 
afferents  can  fire  with  a  rate  up  to  about  75  Hz.  Spike 
amplitudes were scaled by integer values ranging from 3 to 
6 standard deviations of the background noise level, which 
corresponds to values found by visually inspecting the data 
recorded using tfLIFE. These 4 scaling factors represented 
different SNR levels for which the analysis was performed. 
Signals were synthesized by adding the spike trains onto 
experimentally  recorded  background  noise.  Signals  with 
different  number  of  units  firing  simultaneously  were 
synthesized, starting from signals having only 2 units firing, 



up  to  signals  with  10  classes.  Spikes  having  the  same 
waveform and amplitude were considered to be from the 
same axon (belonging to the same class).  A total  of  900 
signals  were  generated:  100  signals  with  2  units  active, 
another 100 with 3 units, and so on until having 100 signals 
with 10 units firing simultaneously.

2.3 Neural spike sorting

2.3.1 Spike detection

Neural  spike  detection  was  based  on  computing  the 
continuous wavelet transform (CWT) of the ENG using the 
complex  Gaussian  wavelet.  This wavelet  was  chosen 
because its  real  and imaginary parts  resemble the typical 
action potential shapes found in experimental data. As the 
output wavelet coefficients are a measure of the degree of 
similarity of patterns in the signal to the wavelet waveform, 
the detection algorithm consisted of searching for wavelet 
coefficients  above  a  preset  threshold.  Detection  was 
evaluated on a range of thresholds.

Inspection  of  extracted  action  potentials  waveforms 
showed that  the  durations  of  neural  spikes  is  in  a  range 
between a few hundred microseconds up to 1 ms. A multi-
scale  CWT  analysis  was  performed  on  extracted  action 
potential waveforms in order to find the scales at which the 
CWT coefficients were maximal. Only the range of scales 
for which the magnitude of the coefficients were larger than 
95% of the  magnitude  of  the  maximal  coefficient  where 
used in the detection algorithm.

2.3.2 Spike classification

The multi-scale complex CWT also offers a framework for 
classifying  the  detected  neural  spikes.  Action  potentials 
differ in their shape and amplitude and it  is necessary to 
choose a feature set and a distance metric with which they 
would be distinguishable.   The multi-scale CWT offers a 
redundant representation of the spike's shape in time-scale 
space.  Exploratory  data  analysis  on  the  extracted  neural 
spike  waveforms  indicated  that  the  CWT  coefficients 
computed  using  the  same  set  or  scale  factors  as  in  the 
detection phase could be suitable as classification features. 
Classification was performed by creating feature vectors for 
the detected spikes and then clustering the data using the 
Euclidean distance metric.

3. Results

3.1 Evaluation on synthetic signals

Performances  of  the wavelet-based  detector  and  the 
detector using simple amplitude thresholding are shown on 
Figure 1 in the form of receiver  operating characteristics 
(ROC curves). These curves are graphical representations 
of  detector  sensitivity  vs  specificity  using  a  range  of 
detection thresholds. On the whole range of SNR levels the 
wavelet-based detector outperforms the detector based on 
amplitude thresholding,  i.e.  for  any given specificity,  the 
corresponding  sensitivity  is  greater  for  the wavelet-based 
detector.  The  performance  gap  becomes  especially 
prominent with low SNR.

Classification  results  are  shown  in  the  form  of 
classification error rates which are ratios of the number of 
misclassified  spikes  to  the  total  number  of  spikes  being 

classified. The wavelet-based classification is compared to 
two other methods of classification: principal components 
analysis and template matching. Results are shown starting 
from the  case  when only  two different  spike  classes  are 
present in the signal up until the case where 10 units are 
simultaneously  firing  (Figure  2).  Classification  based  on 
template matching produced the highest classification error 
rates,  while  wavelet-  and PCA-based approaches  showed 
similar results.

3.2 Evaluation on experimental data 
The spike sorting technique was applied on experimentally 
recorded  muscle  spindle  afferent  nerve  activity.  Only 
periods of plantar flexion were analyzed, since the units are 
silent  during  the  dorsiflexion  period.  The  detection 
threshold  was  chosen  to  be  seven  times  the  standard 
deviation of the background noise level (in wavelet space). 
Throughout all the trials this threshold value corresponded 
to the point on the ROC curves where the specificity starts 
to  rapidly  deteriorate  and  there  is  little  improvement  in 
sensitivity.  The  detected  units  were  classified  into  10 
clusters. This approximately matches  the number of units 
being picked up by one recording site of the tfLIFE when 
the muscle is  maximally stretched (preliminary results  of 
recent unpublished work). The analysis was performed on 
data from 3 rabbits. Preliminary results show that from the 
10  classes,  up  to  2  or  3  spike  classes  show  a  linear 
relationship between their computed neural firing rate and 
instantaneous muscle  length.  Results  from one rabbit  are 

Fig 1. ROC curves for four different SNR levels. Performances of 

a simple threshold detector (empty-circle line) and the wavelet-

based detector (full-triangle line) are compared

Fig 2. Classification error rates depending on the number of units 

present in the signal. Groups of three bars represent the different 

classification  approaches:  template  matching  (black),  principal 

components analysis (gray), and wavelet-based (white). 



shown on  Figure  3. The  left  plot  shows the  relationship 
between the aggregate firing rate of all detected spikes. The 
relationship is  clearly  not  linear  in  the  region  where  the 
normalized muscle length is close to 1. The right plot shows 
the same, but this time the firing rate was computed using 
only the activity of two classes having a linear relationship 
between  unit  firing  rate  and  muscle  length.  A  linear 
regression analysis performed on both shows that the fit on 
the right plot is obviously better.

4. Discussion
Results show that the continuous wavelet transform using 
complex wavelets is the preferred method for neural spike 
detection.  Even  though  wavelet-based  classification  does 
not show improvement in error rates compared to the PCA-
based algorithm, the advantage of using the wavelet-based 
approach is in the fact it is it provides a unique framework 
for  both  spike  detection  and  classification,  i.e.  after 
computing  the  complex  wavelet  coefficients  in  the 
detection phase,  no additional  computation is  required in 
the subsequent classification phase.

Preliminary results show that the spike sorting scheme 
is capable of isolating the activity of single units having a 
linear relationship between firing rate and muscle length. 
The  aggregate  firing  rate  from  muscle  spindle  afferents 
should have some non-linearities where most of the units 
are being recruited or saturate. There should be a range of 
length where they behave linearly. From the point where a 
single unit reaches activation threshold, its activity should 
have a more linear firing rate to length behavior. This is one 
possible  explanation  of  the  more  linear  behavior  of  the 
firing rate computed using a subset of classes.

On-line  estimation  of  muscle  length  would  require  a 
real-time implementation of the wavelet transform, which 
has  been shown to be feasible with well  chosen wavelet 
families [8].

With  each  new  spike  detected,  either  a  new  cluster 
would  be  formed,  either  the  detected  spike  would  be 
associated  to  an  existing  cluster.  In  the  latter  case  the 
cluster centroid would be updated which would also make 
the  algorithm capable  of  tracking  slow changes  in  spike 
waveform  shape  and  amplitude  (either  due  to  electrode 
drift, either to electrode fibrous encapsulation leading to a 
degradation of SNR in the recorded signals).

One  of  the  biggest  obstacles  in  both  detecting  and 
classifying neural spikes proves to be the low SNR of  the 
ENG recordings. In parallel to working on the improvement 
of  signal  processing  methods  to  minimize  the  effects  of 

noise,  novel  recording  techniques  could  also  be  used  to 
improve signal quality [9]. It is expected that, when signals 
are acquired using such techniques, the overall performance 
of the spike sorting algorithm should improve.

Results from experimental data presented in this paper 
are preliminary. Final conclusions can not be drawn before 
processing the data from all 10 rabbit experiments, which is 
work  currently  in  progress.  Comparison  with  different 
muscle stretch profiles is also necessary. 

5. Conclusions
The  continuous  complex  wavelet  transform  offers  a 
convenient framework for both detection and classification 
of  action  potentials  using  intrafascicular  electrodes.  The 
neural  spike  detection  outperforms  the  simple  threshold 
detection, especially with signals with low SNR. Results of 
classification of units into classes based on action potential 
waveform  signatures  in  wavelet  space  indicate  that  the 
classifier  manages  to  isolate  afferent  activity  of  units 
having a linear relationship between neural firing rate and 
muscle length, which is an important step towards a model-
based estimator of muscle length.

Acknowledgments
Authors would like to thank the staff from the Department 
of  Pathology  at  Aarhus  University  Hosptial-Aalborg. 
Financial support for this work was provided by the EADS 
corporate foundation.

Bibliography
[1] K.  Yoshida  and  K.  Horch,  Closed-Loop  Control  of 
Ankle  Position  Using  Muscle  Afferent  Feedback  with 
Functional  Neuromuscular  Stimulation.  IEEE  Trans. 
Biomed. Engineer. 43-2:167-176, 1996
[2] C. Azevedo and K. Yoshida, Towards a Model-Based 
Estimator  of  Muscle Length  and  Force  Using  Muscle 
Afferent Signals For Real-Time FES Control. EUROCON 
conference, Belgrade, Serbia, November 2005
[3] M. Djilas et al.,  Interpretation of ENG signal for FES 
closed-loop  control.  11th  Annual  IFESS Conference, 
Miyagi-Zao, Japan, September 2006
[4] E. Schmidt.  Computer  separation of multi-unit  neuro-
electric data: A review. Journal of Neuroscience Methods, 
12: 95-111, 1984
[5] M. S. Lewicki, A review of methods for spike sorting: 
The detection and classification of neural action potentials. 
Network: Computation in Neural Syst., 9(4): 53-78, 1998
[6] J.  Bourien et  al.  Comparison of  three  spike detectors 
dedicated  to  single  unit  action  potentials  of  the  auditory 
nerve.  In  Proceedings  of  the  29th  Annual  International 
Conference of the IEEE EMBS, Lyon, France, August 2007
[7] P. B. C. Matthews and R. B. Stein. The sensitivity of 
muscle  spindle  afferents  to  small  sinusoidal  changes  of 
length. Journal of Physiology, 200(3):723-743, 1969
[8]  G.  Y.  Luo  et  al.  Real-time  condition  monitoring  by 
significant  and  natural  frequencies  analysis  of  vibration 
signal with wavelet filter and autocorrelation enhancement. 
Journal of Sound and Vibration, 236(3): 413-430, 2000
[9] M. Djilas et al.  Improving the signal-to-noise ratio in 
recordings  with  thin-film  longitudinal  intra-fascicular 
electrodes  using  shielding  cuffs.  3rd   Int.  IEEE  EMBS 
Conference on Neural Eng., Hawaii, USA, May 2007

Fig. 3 Afferent neural firing rate vs muscle length. The left plot 

shows  the aggregate activity of all detected spikes. On the right, 

only activity from 2 clusters, having a good linear fit to the data, 

are used to compute the firing rate. Linear regression analysis was 

performed on both (full lines). On both plots muscle length was 

normalized by 4 mm.


