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The mv-decomposition: definition and
application to the distance-2 broadcast problem
in multi-hops radio networks

Olivier Cogis, Benoı̂t Darties, Sylvain Durand, Jean-Claude König, and Geneviève
Simonet

Abstract We present a new tool called the ”mv-decomposition”, and we describe
some interesting algorithmic properties about it. We propose an algorithm with a
complexity ofO(m) to build a mv-decomposition for each bipartite graph. We use
this mv-decomposition to propose a solution to the distance-2 broadcast problem in
a synchronous multi-hops radio networks where adjacent transmissions are subject
to interferences. More precisely, we propose two algorithms of resolution: the first
one guarantees a complete distance-2 broadcast scheme using O((logn)2) slots for a
time complexity ofO(m(logn)2), while the second builds a solution with a minimal
number of transmissions for a time complexity ofO(m).

1 Introduction

In a multi-hops radio network, nodes communicate with each other via multi-hops
wireless links. The use of the radio medium implies some restrictions and prop-
erties: whenever a node transmits, all the nodes in its communication range may
receive the transmission. Incoming messages have to be forwarded to reach nodes
which are located at more than one hop from the source. Since all nodes share the
same frequency channel, a collision may occurs if two or moreneighbors transmit
simultaneously, preventing correct reception of the message. This paper deals with
the broadcast problem which refers to the sending of a message from a source node
to all the other nodes of the network. We consider the simplified communication
model used in [4, 5]: nodes send messages in synchronous slots. In each slot each
node acts either as a transmitter or as a receiver. A node acting as a receiver in a
given slot gets a message if and only if exactly one of its neighbors transmits in
this slot. In addition, the topology of the network is assumed to be known by all
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the nodes. This model has been widely considered to analyze the complexity of the
broadcast problem. According to this model, a valid broadcast strategy consists of
finding a schedule scheme, i.e. a particular schedule of transmissions among the
network nodes.

Many research have focused on producing schedule-based broadcasting schemes
in known radio networks. Chlamtac and Kutten have proved that finding a scheme
with a minimum number of slots is a NP-Hard problem [4]. Authors from [5] have
first proposed a polynomial algorithm inO(nm(logn)2) for constructing a schedule
which achieves a broadcast inO(D.(logn)2) slots, whereD is the source eccentric-
ity, n the number of nodes andm the number of links. Other results have progres-
sively reduced this bound toO(D. logn+(logn)2) in [2, 11], thenO(D +(logn)5)
[9], to end withO(D +(logn)4) [10]. In this last paper authors announce a sched-
ule scheme for broadcasting which requiresO(D+(logn)3) slots when the network
graph is planar. In [1], the authors present a class of 2-diameter graphs which require
Ω((logn)2) slots to complete a broadcast.

The broadcast problem has also been studied under the assumption that the topol-
ogy is unknown: a first scheme usingO(n11/6) slots has been proposed in [6]. This
bound has been decreased in multiple works [12, 7, 13] to reach O(n(logn)2) slots
in [8]. Actual lower bounds for the broadcast problem without knowledge of the
topology are inΩ(nlogn) [6, 3].

This paper is organized as follows: in section 2 we present a new tool: the mv-
decomposition, and describe some of its algorithmic properties. We use the mv-
decomposition in section 3 to propose strategies with performance guarantees for
the distance-2 broadcast problem: this problem is a restricted version of the broad-
cast problem in which the objective consists of informing nodes located at two hops
away from the source node. We conclude this section by givingan algorithm which
constructs a distance-2 broadcast strategy requiringO((logn)2) slots. The qual-
ity of the strategy returned by our algorithm is the same as the solution proposed
by [5], but the computation time complexity is improved fromO(nm(logn)2) to
O(m(logn)2).

2 A new tool: the mv-decomposition

This section is organized as follows: in a first step, we propose a common graph
model for radio networks, and we introduce some useful definitions and notations.
Then we propose a new tool, which we call the mv-decomposition, and pose some
algorithmic properties. We also propose an algorithm with acomplexity ofO(m) to
compute an mv-decomposition for each bipartite graph.
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2.1 Model description and definitions

A radio network is commonly modelized by an undirected graphG = (V,E), where
V represents the network nodes, andE contains pairs of nodes which can directly
communicate. The source node is noteds.

Let G = (X,Y,E) be a bipartite graph. Acover of a subsetY′ ⊆ Y in G, is a
subsetX′ ⊆ X such thatY′ ⊆ NG(X′), whereNG(X′) is the union of neighborhoods
of vertices ofX′ in G.

We say thatX′ is a minimal cover(for the inclusion) ofY′ in G whenX′ is a
cover ofY, but none of its subsets is.

For a given coverX′ of Y in G, we notemvG(X′) the set of neighbors ofX′ which
are adjacent to exactly one element ofX′.

Lemma 1. let G = (X,Y,E) be a bipartite graph and X′ ⊆ X a minimal cover of
Y′ ⊆Y.

Then each vertex of X′ has an adjacent vertex in Y which is not adjacent to any
other vertex of X′. In other words, mvg(X′) ≥ |X′|.

Proof. Let X′ ⊆ X be a cover ofY′ ⊆ Y in GB, andx be a vertex ofX′. If each
neighbor ofx in Y is also adjacent to another vertex inX′, thenX′−{x} is still a
cover ofY′.

Let G = (X,Y,E) be a bipartite graph such thatX coversY. We say that a col-
lection(Xi)i∈I of subsets ofX saturates Yin GB whenY =

⋃

i∈I mvG(Xi). Then the
saturation cost ofG is the minimal cardinal of a collection of subsets ofX which
saturatesY in G. We note itσ(G).

2.2 The mv-decomposition: definition and properties

In the following sections, let us defineX0 = X andY0 = Y. A mv-decompositionof
a bipartite graphG consists of the data of an integerK, a collection(Xi)1≤i≤K of
K subsets ofX which saturatesY in G, and two others collections(Yi)1≤i≤K and
(Zi)1≤i≤K , such that for eachi with Xi 6= /0 we have :

• Xi+1 ⊆ Xi is a minimal cover ofYi ,
• Zi is defined such that the subgraph ofG induced byXi ∪Zi is a perfect matching:

each vertex has degree 1,
• Yi+1 = Yi −Zi+1.

Thedepthof an mv-decomposition is the smallest valueK, for whichYK = /0. Let
us note that, for any collection(Xi)1≤i≤K which saturatesY in G, one can deduce an
mv-decomposition of depthK, by computing the setsYi andZi from the knowledge
of Xi . That is why, in the following, an mv-decompostion is sometime described as
the collection(Xi)1≤i≤K .
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Fig. 1 an mv-decomposition of a bipartite graph

Property 1 Let G= (X,Y,E) be a bipartite graph such that X covers Y . Then for
each mv-decomposition we have:

1. {Xi}0≤i≤K et {Yi}0≤i≤K are two sequences such that Xi ⊆ Xi−1 and Yi ⊆ Yi−1,
with XK 6= /0 and YK = /0. In addition Xi covers Yi for 0≤ i ≤ K.

2. {Z j}i≤ j≤K is a partition of Yi−1. In particular {Zi}1≤i≤K is a partition of Y.
3. For each i such that1≤ i ≤ K, we have|Zi | = |Xi| 6= /0, and Zi ⊆ mvG(Xi).
4. For each i such that1 ≤ i ≤ K, each vertex x of Xi has, for each j such that

1≤ j ≤ i, exactly one neighbor in Zj which is not adjacent to any other vertex
of Xi.

Proof. Let us considerXi ⊆ X andYi ⊆ Y, Yi 6= /0, such thatXi coversYi (true for
i = 0). ThenYi has some minimal coverXi+1 ⊆Xi . Lemma 1 allows to affirm that for
eachXi+1 6= /0, Zi+1 is defined and not empty, and then thatYi+1 is strictly included
in Yi . This also guarantees thatXi+1 is a cover ofYi+1. This proves points (1), (2)
and (3).

For eachi and j such that 1≤ j ≤ i ≤ K, we haveXi ⊆ Xj . Then any vertexx
of Xi is also a vertex ofXj . Since the subgraph ofG induced by verticesXj ∪Z j is
a perfect matching, then there exists a vertexzj ∈ Z j adjacent tox but not with any
other vertex ofXj .

For any mv-decomposition ofG with a depthK, we haveK ≤ ∆G(X), where
∆G(X) is the maximum degree of a node ofX in G.

Property 2 Let G= (X,Y,E) be a bipartite graph such that X covers Y . Then for
any mv-decomposition of G with a depth K, we have :

K ≤ ∆G(X) (1)
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Where∆G(X) is the maximum degree of a vertex of X in G.

Proof. According to points 2 and 4 of property 1, we havedG(x) ≥ K. This allows
us to conclude.

We propose the algorithm ”mv-decomposition”which computes an mv-decomposition
from a given bipartite graphG = (X,Y,E).

Algorithm 1 : mv-decomposition

Data: A bipartite graphG = (X,Y,E)
Result: A collection(Xi)1≤i≤K of subsets ofX which saturatesY in G
// Variables declaration :
StackP[x]: stack of vertices ofY that are adjacent only tox, ∀x∈ X.1

int L: number of vertices ofY which have been saturated.2

int i: actual depth3

// variables initialization :
L = 0 ; X[0] = X; i = 14

Initialize P[x], ∀x∈ X.5

while L < |Y| do6

X[i] = /07

// Computing a minimal cover X[i] :
foreachx∈ X[i −1] do8

if |P[x]| = 0 then9

// Suppress x from the neighborhood of its
neighbors :
foreachy∈ N(x) do10

N(y) = N(y)−{x}11

if |N(y)| = 1 then12

// If y has only one neighbor z, it is
added to P[z]
P[N(y)] = P[N(y)]∪{y}13

end14

end15

else16

// x is selected in the current cover.
X[i] = X[i]∪{x}17

// a vertex y becomes the receiver of the
transmission of x :
Let y∈ P[x]. P[x] = P[x]−{y}.18

L++19

end20

end21

end22

Theorem 1 The algorithm mv-decomposition has a complexity of O(m).
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Proof. The initialization phase (line 5) runs inO(m) and consists of filling the stacks
P[x],∀x∈ X.

Thereafter, for a givenx∈ X :

• The part of code between lines 9 and 16 is executed at most once, and consists
of suppressing the vertexx from G.

• The part of code between lines 17 and 21 is executed at mostdG(x) times.

The part of code between lines 9 and 15 has a complexity ofO(dG(x)) (by using
advanced implementation techniques). The part of code between lines 17 and 21 has
a complexity ofO(1).

It is concluded that the overall complexity of the algorithmis of the order of :

O(∑
x∈X

dG(x)) = O(m)

3 Using the mv-decomposition to solve the distance-2 broadcast
problem

We employ the mv-decomposition to define solutions with performance guarantees
for the distance-2 broadcast problem in multi-hops synchronous radio networks.
This problem is a particular case of the broadcast-problem and can be described
as follows: let us consider a single source broadcast problem. After the first slot is
completed, all the nodes which are adjacent to the source node have a knowledge
of the broadcasted information. Their transmissions must be scheduled in order to
inform all the nodes that are two hops away from the source. A recursive approach of
this process, depending on the distance of nodes from the source, allows to broadcast
the message on the whole network.

The data can be restricted to a bipartite graphG = (X,Y,EB) whereX andY
respectively denotes the set of vertices at distance 1 and 2 of s in G, andE the set of
possible direct communications:EB =

{

{x,y}|x∈ X,y∈Y,{x,y} ∈ E
}

. We say that
finding a distance-2 broadcast strategy consists of broadcasting a single message
from nodes ofX to nodes ofY. In a synchronous model, two important criterias are
the number of required slots, and the number of realized transmissions.

In the first sub-section, we use the mv-decomposition to propose a distance-
2 broadcast strategy with a minimal (not minimum, which is anNP-hard prob-
lem) number of transmissions, and a number of slots bounded by the maximum
degree of the graph. In the second sub-section, we propose analgorithm to com-
pute a distance-2 broadcast strategy withO(logn)2) slots, for a time complexity of
O(m(logn)2).
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3.1 Minimizing both the number of slots and the number of
transmissions

Let I be an instance of the distance-2 broadcast problem composedof a bipartite
graphG = (X,Y,E) such thatX coversY.

The following theorem establishes a link between a cover ofY in a bipartite
graph, and the number of required transmissions for the distance-2 broadcast prob-
lem on the same graph.

Theorem 2 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then we
have :

1. If C is a minimal cover of Y, then there exists a broadcast strategy from X to Y
with a minimal number of transmissions equal to the cardinality of C.

2. Finding a broadcast strategy with a minimum number of transmissions is tanta-
mount to finding a minimum cover.

Proof. Let C ⊆ X be a minimal cover ofY of cardinalityk, with C = {ci}1≤i≤k.
Let us consider the following strategy : during each slot exactly one node ofC is
transmitting. All the nodes ofC have transmitted the information afterk slots, and
no interference has occurred. Thus all the nodes ofY have successfully received
the information, and we infer points 1 and 2. The number of transmissions is clearly
equal to the cardinality of the coverC. Let us note that asC is minimal, each element
of C has to transmit at least once. Q.E.D.

Let us consider a collection(Xi)1≤i≤K of subsets ofX resulting from the mv-
decomposition ofG. From this mv-decomposition we can propose a distance-2
broadcast strategyS1: At slot i, all the nodes ofXK+1−i are transmitting the mes-
sage. Since the collection(Xi)1≤i≤K saturatesY, each node ofY can receive the
information. The number of transmissions is equal to∑K

i=1 |Xi |. This number is not
minimal, sinceX1 is already a minimal cover ofY.

We define a second strategyS2 as follows :

• During the first slot, all the nodes ofXK transmit the message.
• During the sloti with 2≤ i ≤ K, all the nodes ofXK+1−i −XK+2−i transmit the

message.

This second strategy differs from the previous one in the fact that when a node
transmits at sloti, it does not transmit anymore. We propose the following property
:

Property 3 The strategy S2 produces a complete broadcast from X to Y .

sketch of proof:

We recall thatXi+1 ⊆ Xi for all i such that 1≤ i ≤ k−1. Each node ofX1 transmits
exactly once. The validity of this strategy can be deduced ifwe compare it withS1 .
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�

The number of used slots by strategyS2 is K. Its cost in number of transmissions
is equal to:

|XK |+
K

∑
i=2

|XK+1−i −XK+2−i| = |X1|

If the setX1 is a minimal cover ofY, then we obtain a valid broadcast strategy
(all the nodes will receive the information), where the number of transmissions is
minimal, in accordance with Theorem 2.

With both strategiesS1 andS2, the number of used slots is less or equal than
∆G(X), in agreement with property 2. We show in the following sub-section that we
can obtain a strategy with a better cost in term of number of slots.

3.2 Minimizing the number of slots

In this sub-section, we propose another strategy to solve the distance-2 broadcast
problem. The objective is here to minimize the number of usedslots, regardless the
number of effective transmissions.

Our approach consists of showing that one can ensure that enough number of
nodes ofY could receive the message in exactly one slot. By generalizing this prop-
erty, we obtain a valid broadcast strategy, and we evaluate its cost in number of
slots. First we establish some properties concerning the receptivity, ie the maximum
number of nodes that can receive a transmission correctly inone slot.

Property 4 Let G= (X,Y,E) be a bipartite graph such that X covers Y . Then the
receptivityρ(G) satisfies the following inequation:

max
X′⊆X

|mvG(X′)| = ρ(G) ≥ max(∆G(X),
|Y|

∆G(X)
)

Proof. Let x be a vertex ofX having degree∆G(X). Then|mvG({x})|= ∆G(X). The
inequalityρ(G) ≥ ∆G(X) is deduced from the definition ofρ(G).

Let X′ ⊆ X be a minimal cover ofY in G. WhileY =
⋃

x∈X′ NG(x), then we have
:

|Y| ≤ ∑
x∈X′

|NG(x)| = ∑
x∈X′

dG(x) ≤
∣

∣X′
∣

∣ .∆G(X) ≤ mvG(X′).∆G(X)

The second inequalityρ(G) ≥ |Y|
∆G(X) is deduced again from the definition ofρ(G).

As an immediate corollary of property 4, we have :

ρ(G) ≥
√

|Y|

In fact, we are going to improve this bound to show that :
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ρ(G) ≥
|Y|

1+ ln |Y|

Property 5 Let G= (X,Y,E) be a bipartite graph such that X covers Y . Then for
each mv-decomposition for G, we have :

∀i|1≤ i ≤ K, |mvG(Xi)| ≥ i ×|Xi | (2)

Proof. According to point 4 of property 1, each nodex of Xi has in eachZ j , with
1≤ j ≤ i, a neighbor which is not adjacent to any other vertex ofXi. According to
point 2 of the same property, thesei neighbors are pairwise distinct.

Theorem 3 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then for
each mv-decomposition of G, we have :

ρ(G) ≥ max
1≤i≤K

|mvG(Xi)| ≥
|Y|
HK

(3)

σ(G) ≤ K (4)

where Hn is the harmonic number Hn = 1+ 1
2 + 1

3 + · · ·+ 1
n.

Proof. The first inequality of (3) stems from the definition ofρ(G). The second is
deduced from the followings:

|Y| =
K

∑
i=1

|Zi |

=
K

∑
i=1

|Xi |

≤
K

∑
i=1

|mvG(Xi)|

i

≤
K

∑
i=1

max1≤i≤K |mvG(Xi)|

i
= max

1≤i≤K
|mvG(Xi)|×HK

Now we prove the inequality 4. Lety be any vertex ofY. According to point 2 of
property 1,y∈ Zi for onei such that 1≤ i ≤ K. According to point 3 of the same
property,y∈ mvG(Xi). ThenY =

⋃K
i=1mvG(Xi), and allows us to conclude.

Theorem 4 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then :

ρ(G) ≥
|Y|

1+ ln∆G(X)
(5)

σ(G) ≤ ∆G(X) (6)

(Let us remind thatσ(G) is the saturation cost of G, i.e. the minimal cardinality of
a collection of subsets of X which saturates Y in G). We note itσ(G).
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Proof. Can be deduced from theorem 3 and property 2, bearing in mind that the
harmonic numberHn is an increasing function ofn which satisfiesHn ≤ 1+ lnn.

We propose the following algorithm :

Algorithm 2 : the algorithm ”Saturation”

Data: A bipartite graphG = (X,Y,E) such thatX coversY
Result: A collection(Wt)1≤t≤L which saturatesY in G
R= Y;1

t = 0;2

while R 6= /0 do3

t = t +1;4

compute an mv-decomposition of G[X,R];5

Let Kt be its depth, and let
(

Xt
i

)

0≤i≤Kt
be the resulting sequence.;6

choosei in {1, . . . ,Kt} so that the cardinality ofmvG[X,R]
(Xt

i ) is maximum;7

R= R−mvG[X,R]
;8

Wt = Xt
i ;9

end10

L = t;11

Return{Wt}1≤t≤L ;12

Clearly,{Wt}1≤t≤L is a collection of subsets ofX and saturatesY.
A valid broadcast strategy can be logically deduced from{Wt}1≤t≤L, if the ver-

tices ofWi emit at sloti. The number of slots is the cardinality of{Wt}1≤t≤L, ie the
number of iterations of the algorithm.

Theorem 5 The algorithm ”‘Saturation” runs in O((ln |Y|)2) iterations. In other
words, a broadcast strategy constructed from the collection (Wt)1≤t≤L requires
O((ln |Y|)2) slots.

Proof. In agreement with property 2,Kt ≤ ∆G[X,R]
≤ |R|. During one iteration we

have, in accordance with theorem 3 :

∣

∣

∣
mvG[X,R]

(Xt
i )

∣

∣

∣
≥

|R|
Hk

≥
|R|

1+ ln |R|

Let us noteun the cardinality of the setRafter thenth iteration. Then we have :

u0 = |Y|

un+1 ≤ un

(

1−
1

1+ lnun

)

,0≤ n≤ L

uL = 0

Let (vn)n∈N be the geometric sequence defined as:
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vn = |Y|

(

1−
1

1+ ln |Y|

)n

We have :
vθ((ln |Y|)2) = 0

Indeed :

vn < 1 ⇔ lnvn < 0

⇔ ln |Y|+nln

(

1−
1

1+ ln |Y|

)

< 0

While ln(1+x) ≤ x, in order thatvn < 1, it requires that ln|Y|− n
1+ln|Y| < 0, soit

n > ln |Y|× (1+ ln|Y|).
Clearly we havevn ≥ un,∀n and thenL ≤ ln |Y|× (1+ ln |Y|).

Theorem 6 The algorithm ”Saturation” has a time complexity of O(m× (ln |Y|)2).

Proof. During each iteration, the algorithm computes an mv-decomposition. In
agreement with theorem 1, any mv-decomposition can be computed inO(m). Let us
recall that the number of iterations of this algorithm is inO((ln |Y|)2), in accordance
with theorem 5.

Thus, we have proposed an algorithm to compute a strategy using O((logn)2)
slots. The quality of the solution returned by our algorithmis the same as the
algorithm of [5], but we have improved the complexity fromO(mn(logn)2) to
O(m(logn)2).

4 Conclusion

We have proposed the mv-decomposition as a new theoretical tool with interesting
algorithmic properties. These properties have been used todevelop different algo-
rithms for the distance-2 broadcast problem in multi-hops synchronous radio net-
works. The mv-decomposition allows to create broadcast solutions where the num-
ber of transmissions is minimal, ensuring a number of slots below the maximum
degree of the graph. The algorithm which computes this solution has a complexity
of O(m).

We have also proposed an algorithm which builds a distance-2broadcast strategy
of O((ln |Y|)2) slots for a time complexityO(m(logn)2). This improves the result of
[5] which announces a broadcast strategy with the same number of slots for a time
complexityO(mn(logn)2). An interesting perspective would be to adapt the mv-
decomposition for the distance-3 broadcast problem, by including a weight function
on the elements ofY, and to generalize this approach for the broadcast problem on
arbitrary graphs.



12 Cogis, Darties, Durand, König, Simonet

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower boundfor radio broadcast. J. Comput.
Syst. Sci.43(2), 290–298 (1991)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop
radio networks: An exponential gap between determinism andrandomization. J. Comput.
Syst. Sci.45(1), 104–126 (1992)

3. Bruschi, D., Pinto, M.D.: Lower bounds for the broadcast problem in mobile radio networks.
Distrib. Comput.10(3), 129–135 (1997). DOI http://dx.doi.org/10.1007/s004460050030

4. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - Problem analysis and protocol
design. IEEE Transactions on Communications33, 1240–1246 (1985)

5. Chlamtac, I., Weinstein, O.: The wave expansion approachto broadcasting in multihop radio
network. IEEE Transaction Communication (39), 426–433 (1991)

6. Chlebus, B., Ga̧sieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in
unknown radio networks. In: SODA ’00: Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, pp. 861–870. Society forIndustrial and Applied Mathe-
matics, Philadelphia, PA, USA (2000)
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