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The mv-decomposition: definition and
application to the distance-2 broadcast problem
in multi-hops radio networks

Olivier Cogis, Benoit Darties, Sylvain Durand, Jean-@aikonig, and Genevieve
Simonet

Abstract We present a new tool called the "mv-decomposition”, and escdbe
some interesting algorithmic properties about it. We peapan algorithm with a
complexity ofO(m) to build a mv-decomposition for each bipartite graph. We use
this mv-decomposition to propose a solution to the distéhbeoadcast problem in

a synchronous multi-hops radio networks where adjacensinéssions are subject
to interferences. More precisely, we propose two algoritlofiresolution: the first
one guarantees a complete distance-2 broadcast scherg@ugimgn)?) slots for a
time complexity ofO(m(logn)?), while the second builds a solution with a minimal
number of transmissions for a time complexityQ@(fm).

1 Introduction

In a multi-hops radio network, nodes communicate with eablerovia multi-hops
wireless links. The use of the radio medium implies somerictisins and prop-
erties: whenever a node transmits, all the nodes in its camgation range may
receive the transmission. Incoming messages have to barfded to reach nodes
which are located at more than one hop from the source. Sihnedes share the
same frequency channel, a collision may occurs if two or nmeighbors transmit
simultaneously, preventing correct reception of the ngssahis paper deals with
the broadcast problem which refers to the sending of a med$sam a source node
to all the other nodes of the network. We consider the sinaglitommunication
model used in [4, 5]: nodes send messages in synchronosslsi@ach slot each
node acts either as a transmitter or as a receiver. A nodegaasi a receiver in a
given slot gets a message if and only if exactly one of its meigs transmits in
this slot. In addition, the topology of the network is assdni@ be known by all
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the nodes. This model has been widely considered to andigzeoimplexity of the
broadcast problem. According to this model, a valid broatlsaategy consists of
finding a schedule scheme, i.e. a particular schedule o$rmessions among the
network nodes.

Many research have focused on producing schedule-basaddasting schemes
in known radio networks. Chlamtac and Kutten have provetlfthding a scheme
with a minimum number of slots is a NP-Hard problem [4]. Authxom [5] have
first proposed a polynomial algorithm @(nm(logn)?) for constructing a schedule
which achieves a broadcast@{D.(logn)?) slots, whereD is the source eccentric-
ity, n the number of nodes amd the number of links. Other results have progres-
sively reduced this bound ©(D.logn + (logn)?) in [2, 11], thenO(D + (logn)®)
[9], to end withO(D + (logn)#) [10]. In this last paper authors announce a sched-
ule scheme for broadcasting which requigé® + (logn)?) slots when the network
graphis planar. In [1], the authors present a class of 2-gliangraphs which require
Q((logn)?) slots to complete a broadcast.

The broadcast problem has also been studied under the assnthat the topol-
ogy is unknown: a first scheme usi@jn'"/®) slots has been proposed in [6]. This
bound has been decreased in multiple works [12, 7, 13] tdw@&éo(logn)?) slots
in [8]. Actual lower bounds for the broadcast problem withkoowledge of the
topology are inQ(nlogn) [6, 3].

This paper is organized as follows: in section 2 we presemvatnol: the mv-
decomposition, and describe some of its algorithmic priogerWe use the mv-
decomposition in section 3 to propose strategies with perdoce guarantees for
the distance-2 broadcast problem: this problem is a réstiicersion of the broad-
cast problem in which the objective consists of informingeslocated at two hops
away from the source node. We conclude this section by gaimalgorithm which
constructs a distance-2 broadcast strategy requififigogn)?) slots. The qual-
ity of the strategy returned by our algorithm is the same asstlution proposed
by [5], but the computation time complexity is improved fradinm(logn)?) to
O(m(logn)?).

2 A new tool: the mv-decomposition

This section is organized as follows: in a first step, we psepa common graph
model for radio networks, and we introduce some useful dafiré and notations.
Then we propose a new tool, which we call the mv-decompasitiad pose some
algorithmic properties. We also propose an algorithm witlomplexity ofO(m) to
compute an mv-decomposition for each bipartite graph.
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2.1 Model description and definitions

A radio network is commonly modelized by an undirected gréph (V, E), where
V represents the network nodes, @dontains pairs of nodes which can directly
communicate. The source node is naged

Let G = (X,Y,E) be a bipartite graph. Aoverof a subsel’ CY in G, is a
subseX’ C X such that'’ C Ng(X’), whereNg(X') is the union of neighborhoods
of vertices ofX’ in G.

We say thatX’ is a minimal cover(for the inclusion) ofY’ in G whenX’ is a
cover ofY, but none of its subsets is.

For a given coveK’ of Y in G, we notemys (X’) the set of neighbors of’ which
are adjacent to exactly one elemenidf

Lemma 1.let G= (X,Y,E) be a bipartite graph and XC X a minimal cover of
Y'CY.

Then each vertex of Xas an adjacent vertex in Y which is not adjacent to any
other vertex of X In other words, my(X") > |X'].

Proof. Let X’ C X be a cover off’ CY in Gg, andx be a vertex ofX'. If each
neighbor ofx in Y is also adjacent to another vertex)i, thenX’ — {x} is still a
cover ofY’.

Let G = (X,Y,E) be a bipartite graph such thdtcoversY. We say that a col-
lection (X )ic| of subsets oK saturates Yin Gg whenY = |J;c; ms(Xi). Then the
saturation cost o6 is the minimal cardinal of a collection of subsetsXfvhich
saturate¥ in G. We note ita(G).

2.2 The mv-decomposition: definition and properties

In the following sections, let us defing = X andYy =Y. A mv-decompositionf
a bipartite graplG consists of the data of an integér a collection(X)1<i<k of
K subsets oX which saturate¥ in G, and two others collection&ri)1<i<x and
(Zi)1<i<k, such that for eachwith X; # 0 we have :

e X171 C X is a minimal cover of;,

e Z;is defined such that the subgraph®induced byX; UZ; is a perfect matching:
each vertex has degree 1,

o Yi1=Y—Z,1.

Thedepthof an mv-decomposition is the smallest vakigfor whichYx = 0. Let
us note that, for any collectiofX;)1<i<x Which saturate¥ in G, one can deduce an
mv-decomposition of deptl, by computing the set§ andz; from the knowledge
of X;. That is why, in the following, an mv-decompostion is sormetidescribed as
the collection(X;)1<i<k-
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Fig. 1 an mv-decomposition of a bipartite graph

Property 1 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then for
each mv-decomposition we have:

1. {X}to<i<k et{Yi}o<i<k are two sequences such thatXX;_; and Y C Y,_1,
with X« # 0 and % = 0. In addition X covers Yfor 0 <i < K.
. {Zj }i<j<x is a partition of Y_1. In particular {Z; }1<j<k is a partition of Y.
. Foreachisuch that <i <K, we havdz| = |X| # 0, and Z C mw(X).
4. For each i such thal <i < K, each vertex x of phas, for each j such that
1 < j <1, exactly one neighbor injAvhich is not adjacent to any other vertex

of X.

Proof. Let us consideX; C X andY; C Y, Y; # 0, such thai; coversy; (true for

i =0). Theny; has some minimal cové§.1 C X;. Lemma 1 allows to affirm that for
eachXi1 # 0, Z;;1 is defined and not empty, and then that; is strictly included
inY;. This also guarantees th4t, 1 is a cover ofYi 1. This proves points (1), (2)
and (3).

For eachi and j such that I< j <i <K, we haveX; C X;. Then any vertex
of X is also a vertex oK;. Since the subgraph @ induced by verticeX; U Z; is
a perfect matching, then there exists a veiex Z; adjacent tok but not with any
other vertex oX;.

w N

For any mv-decomposition d& with a depthK, we haveK < Ag(X), where
Ag(X) is the maximum degree of a nodeXfn G.

Property 2 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then for
any mv-decomposition of G with a depth K, we have :

K < Ag(X) (1)
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WhereAg(X) is the maximum degree of a vertex of X in G.

Proof. According to points 2 and 4 of property 1, we halgx) > K. This allows
us to conclude.

We propose the algorithm "mv-decomposition” which comguae mv-decomposition
from a given bipartite grap® = (X,Y,E).

Algorithm 1: mv-decomposition
Data: A bipartite graphG = (X,Y,E)
Result A collection(X;)1<i<k of subsets oK which saturate¥ in G
/!l Vari abl es declaration :
1 StackP[x]: stack of vertices oY that are adjacent only tg Vx € X.
2 int L: number of vertices of which have been saturated.
3 inti: actual depth
/'l variables initialization :
4 L=0;X[0=X;i=1
5 Initialize P[x], ¥x € X.
6 while L < |Y| do
7 X[i]=0
/'l Conputing a mninml cover X il
foreachx € X[i — 1] do

if |P[x]| = 0then
/1 Suppress x fromthe nei ghborhood of its
nei ghbors :
10 foreachy € N(x) do
11 N(y) = N(y) — {x}
12 if IN(y)| =1then
/1 1f y has only one neighbor z it is
added to P[Z
13 PIN(y)] = PIN(y)] U {y}
14 end
15 end
16 else
/1l xis selected in the current cover.
17 X[i] = X[iJu{x}
/1l a vertex y becones the receiver of the
transm ssion of x:
18 Lety € P[x]. P[X| = P[x] — {y}.
19 L++
20 end
21 end
22 end

Theorem 1 The algorithm mv-decomposition has a complexity @hD
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Proof. The initialization phase (line 5) runs@(m) and consists of filling the stacks
P[x],Vx € X.
Thereafter, for a givere X :

e The part of code between lines 9 and 16 is executed at most andeconsists
of suppressing the vertesfrom G.
e The part of code between lines 17 and 21 is executed ataags} times.

The part of code between lines 9 and 15 has a complexi®(d§(x)) (by using
advanced implementation techniques). The part of codedestlines 17 and 21 has
a complexity ofO(1).

It is concluded that the overall complexity of the algoritief the order of :

O ;de(x)) = O(m)

3 Using the mv-decomposition to solve the distance-2 broadst
problem

We employ the mv-decomposition to define solutions with genfance guarantees
for the distance-2 broadcast problem in multi-hops synobus radio networks.
This problem is a particular case of the broadcast-probledhcan be described
as follows: let us consider a single source broadcast pmobAdter the first slot is
completed, all the nodes which are adjacent to the source hade a knowledge
of the broadcasted information. Their transmissions mastdineduled in order to
inform all the nodes that are two hops away from the sourcecéinsive approach of
this process, depending on the distance of nodes from tliees@llows to broadcast
the message on the whole network.

The data can be restricted to a bipartite grépk- (X,Y,Eg) whereX andY
respectively denotes the set of vertices at distance 1 ahd & &, andE the set of
possible direct communicatiorsg = {{x,y}|x€ X,y € Y,{x,y} € E}. We say that
finding a distance-2 broadcast strategy consists of bratidgaa single message
from nodes oiX to nodes ofY. In a synchronous model, two important criterias are
the number of required slots, and the number of realizedingssions.

In the first sub-section, we use the mv-decomposition to ggepa distance-
2 broadcast strategy with a minimal (not minimum, which isN#-hard prob-
lem) number of transmissions, and a number of slots boungietido maximum
degree of the graph. In the second sub-section, we propoakyarithm to com-
pute a distance-2 broadcast strategy vW@togn)?) slots, for a time complexity of
O(m(logn)?).
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3.1 Minimizing both the number of slots and the number of
transmissions

Let | be an instance of the distance-2 broadcast problem commpdsebipartite
graphG = (X,Y, E) such tha¥ coversy.

The following theorem establishes a link between a coveY af a bipartite
graph, and the number of required transmissions for tharist2 broadcast prob-
lem on the same graph.

Theorem 2 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then we
have :

1. If Cis a minimal cover of Y, then there exists a broadcaateggy from X to 'Y
with a minimal number of transmissions equal to the cardipaif C.

2. Finding a broadcast strategy with a minimum number of¢raissions is tanta-
mount to finding a minimum cover.

Proof. Let C C X be a minimal cover o¥ of cardinalityk, with C = {ci }1<j<k.
Let us consider the following strategy : during each slotclyaone node ofC is
transmitting. All the nodes o€ have transmitted the information afteslots, and
no interference has occurred. Thus all the node¥ bfive successfully received
the information, and we infer points 1 and 2. The number ofdnaissions is clearly
equal to the cardinality of the cov€r Let us note that & is minimal, each element
of C has to transmit at least once. Q.E.D.

Let us consider a collectio(X;)1<j<k of subsets oX resulting from the mv-
decomposition ofG. From this mv-decomposition we can propose a distance-2
broadcast strateg$:: At slot i, all the nodes oKk, 1_; are transmitting the mes-
sage. Since the collectiofX;)1<i<k Saturatesr, each node of can receive the
information. The number of transmissions is equagfo, |Xi|. This number is not
minimal, sinceX; is already a minimal cover of.

We define a second strate§yas follows :

e During the first slot, all the nodes &k transmit the message.
e During the sloti with 2 <i <K, all the nodes oKk _1_j — Xk+2-j transmit the
message.

This second strategy differs from the previous one in thetfzet when a node
transmits at slot, it does not transmit anymore. We propose the following prop

Property 3 The strategy Sproduces a complete broadcast from X to Y.

sketch of proof:

We recall thatX;, 1 C X for all i such that < i < k— 1. Each node oX; transmits
exactly once. The validity of this strategy can be deducaditompare it witts; .
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The number of used slots by strategpis K. Its cost in number of transmissions
is equal to:

K
Xk |+ 22|XK+14 — Xk2—i| = [Xq]
=

If the setX; is a minimal cover ofY, then we obtain a valid broadcast strategy
(all the nodes will receive the information), where the nembf transmissions is
minimal, in accordance with Theorem 2.

With both strategie$; and S, the number of used slots is less or equal than
Ag(X), in agreement with property 2. We show in the following sebt®n that we
can obtain a strategy with a better cost in term of numberat§ sl

3.2 Minimizing the number of slots

In this sub-section, we propose another strategy to soklvealistance-2 broadcast
problem. The objective is here to minimize the number of i&det$, regardless the
number of effective transmissions.

Our approach consists of showing that one can ensure thagbnwmber of
nodes ofY could receive the message in exactly one slot. By genenglthis prop-
erty, we obtain a valid broadcast strategy, and we evalisiteost in number of
slots. First we establish some properties concerning ttept#ity, ie the maximum
number of nodes that can receive a transmission correctigiénsiot.

Property 4 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then the
receptivityp(G) satisfies the following inequation:

maxim(X')| = p(G) > maxAg(X), L -

X'CX AG(X))

Proof. Letx be a vertex oK having degredg(X). Thenmvs({x})| = Ac(X). The
inequalityp(G) > Ag(X) is deduced from the definition @f(G).

Let X’ C X be a minimal cover of in G. WhileY = [J,cx Ng(X), then we have

YIS T INe()l = T da(x) < [X].Aa(X) < mis(X).Aa(X)

xeX! xeX!
The second inequality(G) > %(‘X) is deduced again from the definition ofG).
As an immediate corollary of property 4, we have :
p(G) = VIY|

In fact, we are going to improve this bound to show that :
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>__ 11
POz N

Property 5 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then for
each mv-decomposition for G, we have :

WL < <K, [me()] > x X ?)

Proof. According to point 4 of property 1, each nog@f X; has in eacl¥;, with
1< j <i, a neighbor which is not adjacent to any other verteXjofAccording to
point 2 of the same property, theiseeighbors are pairwise distinct.

Theorem 3 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then for
each mv-decomposition of G, we have :

p(G) > max|me(x)| > 1. @)
o(G) <K (4)

where H, is the harmonic number =1+ % + % +-- 1+ %

Proof. The first inequality of (3) stems from the definition @fG). The second is
deduced from the followings:

K

.Z'Z”

P

oL

- lilvai(N)l

maxl<.<K My (Xi)]
: Z

M

= max |m H
1<|<)I§| VG( )|X K

Now we prove the inequality 4. Lgtbe any vertex of. According to point 2 of
property 1,y € Z; for onei such that 1< i < K. According to point 3 of the same
propertyy € mv(X). ThenY = UX ; my(X;), and allows us to conclude.

Theorem 4 Let G= (X,Y,E) be a bipartite graph such that X covers Y. Then:

Y]
p(G) > m (5)
0(G) <Ac(X) (6)

(Let us remind that'(G) is the saturation cost of G, i.e. the minimal cardinality of
a collection of subsets of X which saturates Y in G). We naté®).
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Proof. Can be deduced from theorem 3 and property 2, bearing in rhiaidthe
harmonic numbeH;,, is an increasing function af which satisfied,, < 1+ Inn.

We propose the following algorithm :

Algorithm 2 : the algorithm "Saturation”

Data: A bipartite graphG = (X,Y, E) such thaiX coversY

Result A collection (W )1<t<. Which saturate¥ in G

R=Y;

t=0;

while R# 0 do

t=t+1;

compute an mv-decomposition of G[X,R];

Let K¢ be its depth, and Ie(tXf)O<i<K‘ be the resulting sequence.;
choosd in {1,...,K;} so that the cardinality ahvGy, g (Xt) is maximum;
R=R-— mg,
W =X

end

11 L=t

Return{W }1<i<( ;

xR

© 0O N o 0~ W N PP

=
o

=
N

Clearly,{W }1<t<_ is a collection of subsets &f and saturate¥.

A valid broadcast strategy can be logically deduced f{&kh} 1 <1<, if the ver-
tices ofW emit at sloti. The number of slots is the cardinality M }1<i<|, ie the
number of iterations of the algorithm.

Theorem 5 The algorithm ™Saturation” runs in @(In|Y|)?) iterations. In other
words, a broadcast strategy constructed from the collectdf)i<i<. requires
O((In]Y)?) slots.

Proof. In agreement with property X; < AG[
have, in accordance with theorem 3 :

«r < |R|. During one iteration we

ty < IR R
m D> > 11
e ()] 2 He ~ 1+In|R
Let us noteu, the cardinality of the seR after then'" iteration. Then we have :
o = [Y]

1
< 1- 0<n<L
Un+l = Un( 1+Inun>a > >

u=2~0

Let (Vn)nen be the geometric sequence defined as:
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1 n
Y (1-——
Vn ||< 1+mw0

We have :
Vo((in|v))2) =0
Indeed :

Ww<1l&sIlnv, <0

1
InfY|+nin(1-—— ) <0
< InfYl+ ( 1—|—In|Y|)<

While In(1+x) < x, in order that, < 1, it requires that IfiY| — 1++1\Y\ < 0, soit
n>In|Y|x (1+In|Y|).
Clearly we have/, > uy,Vnand therl <In|Y| x (1+In|Y]).

Theorem 6 The algorithm "Saturation” has a time complexity of @x (In[Y|)?).

Proof. During each iteration, the algorithm computes an mv-deazsitipn. In
agreement with theorem 1, any mv-decomposition can be ctadmuO(m). Let us
recall that the number of iterations of this algorithm i€3((In|Y|)?), in accordance
with theorem 5.

Thus, we have proposed an algorithm to compute a strategg @ilogn)?)
slots. The quality of the solution returned by our algoritisnthe same as the
algorithm of [5], but we have improved the complexity fro@(mn(logn)?) to
O(m(logn)?).

4 Conclusion

We have proposed the mv-decompaosition as a new theoraimialvith interesting

algorithmic properties. These properties have been usdduelop different algo-
rithms for the distance-2 broadcast problem in multi-hopgchronous radio net-
works. The mv-decomposition allows to create broadcastisnls where the num-
ber of transmissions is minimal, ensuring a number of slelsv the maximum

degree of the graph. The algorithm which computes this swoldtas a complexity
of O(m).

We have also proposed an algorithm which builds a distartme@dcast strategy
of O((In|Y|)?) slots for a time complexit®(m(logn)?). This improves the result of
[5] which announces a broadcast strategy with the same nuofiséots for a time
complexity O(mn(logn)?). An interesting perspective would be to adapt the mv-
decomposition for the distance-3 broadcast problem, Hydlicg a weight function
on the elements of, and to generalize this approach for the broadcast problem o
arbitrary graphs.
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