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Abstract. We study two algorithmical problems inspired from routing
constraints in a multihop synchronous radio network. Our objective is
to satisfy a given set of communication requests in the following model:
nodes send omnidirectional radio transmissions in synchronous slots; dur-
ing a given slot, a node can receive a message from an adjacent node if
and only if no other neighbour is transmitting - otherwise, radio inter-
ferences may occur if two or more neighbors transmit in the same slot
-. The objective is to minimize the number of slots used. The two prob-
lems differ in that the routing policy may be imposed (DAWN-path), or
not (DAWN-request). In this second case, a path must be assigned for
each request, to define the nodes to use to reach the destination from the
source. We present some complexity results, in particular showing that
both problems are NP-hard when the network is restricted to a tree.
We also present a polynomial algorithm in O(n2K) when the number of
requests is bounded (by above) by a constant K.

Key words: Radio Network, Request Satisfaction, Complexity

1 Introduction

A radio network is a collection of transmitter-receiver stations (or nodes) com-
municating with one another via multihop wireless links. The use of the radio
medium implies some restrictions and properties: whenever a node transmits, all
the nodes in its communication range may receive the transmission. Incoming
messages have to be forwarded to reach nodes which are located more than one
hop away from the source. Since all nodes share the same frequency channel, a
collision may occur if two or more neighbors transmit simultaneously, preventing
correct reception of the message.

In this paper, we study two communication problems inspired from routing
constraints in this kind of network. We consider the following simplified commu-
nication model, which has been widely used for the broadcast problem[1, 4–6,
10, 12, 13] or the gathering problem [2, 3] in multihop radio networks : nodes
send messages in synchronous slots; during each slot each node acts either as a
transmitter or a receiver. A node acting as a transmitter sends a message which
can potentially reach the nodes that are in its communication range. A node
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acting as a receiver successfully receives a message from a transmitter node if
no other neighbor transmits in this slot. If two or more neighbors of a receiver
node u transmit simultaneously in a given slot, then the messages may interfere
with each others (collide) and the messages are not transmitted successfully to
u. We note that two neighbors u and v may successfully transmit in the same
slot to u′ and v′, if we assume that u′ and v are not adjacent, and respectively
v and u′ : the node u acting as transmitter simply ignores the transmission of
v and reciprocally. Such a network is characterized as a ∆-port transmission, 1-
port reception, half-duplex, synchronous network. We suppose that the network
topology is fixed, at least during the time the problem must be solved. All those
properties specify the model we use in this work.

In this context, we consider the problem of satisfying a set of communication
requests within a minimum timeframe, by indicating for each node the slots
on which it has to relay transiting packets. A request is a couple of source-
destination nodes representing the starting and ending nodes of a given message.
The second section of this paper details the model and introduces the DAWN-
path and DAWN-request problems. General complexity results are discussed
in a third section where we will show that these problems are quite difficult
even for particular cases. However we present in the fourth section a polynomial
algorithm when the number of requests is bounded by a constant K.

2 Describing the model and expressing the problem

2.1 The model

The network is represented as an undirected graph G where the set V (G) of ver-
tices corresponds to the set of nodes of the network. An edge e = {u, v} ∈ E(G)
denotes that u can directly communicate to v (no additional node is required to
relay the message) and reciprocally1 .

A request r is a couple (s, t)|s, t ∈ V (G), where s represents the source and
t the destination of the request.

A path of length k in a graph G is an ordered list (v0, v1, . . . , vk), where
vi ∈ V (G) for any i ∈ [0, k], and such that the edge (vi, vi+1) exists in E(G) for
any i ∈ [0, k − 1], and all the edges are different. Throughout the paper all the
considered paths are simple paths, that is, paths which visit a vertex at most
once. Paths are used here to represent a communication road in the network.

Given a graph G and a collection of communication requests R, let P be a
routing function on R which associates to each r = (s, t) ∈ R a path P (r) in G,
(also denoted by Pr), beginning with s and ending with t.

Given a graph G, a collection of requests R, and a routing function P , we
define a date assignment d to be a function which takes two arguments r and
x, with r = (s, t) ∈ R, x ∈ Pr and x 6= t, and returns an integer d(r, x). This

1 We consider that if x can directly communicate with y then y can directly commu-
nicate with x. We can deduce that the graph is symmetrically directed, and will be
represented by an undirected graph.
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integer corresponds to a slot, such that x transmits the message of r to the
next hop during this slot. Multiplexing is not allowed, this implies that each
transmission only contains a single message. A date assignment d is said to be
valid if and only if for each request r = (x0, xk) with Pr = (x0, x1, ..., xk) the
proposition d(r, x0) < d(r, x1) < ... < d(r, xk−1) is true. Moreover we say that a
valid assignment is conflict-free if and only if for each d(r, xi) = d(r′, yj) where
r 6= r′, the following holds :

1. xi 6= yj : prevents multiplexing

2. xi+1 6= yj ∧ yj+1 6= xi : a node cannot receive and transmit simultaneously
3. {xi, yj+1} /∈ E(G)∧{yj , xi+1} /∈ E(G): ∆-port-transmission, 1-port-reception

We note max(d) = maxr∈R,x∈V (G) d(r, x) the cost of d, i.e. the number of
slots used by a date assignment d.

2.2 The DAWN problem

Given a set of requests to satisfy in a synchronous radio network and a maximum
number of slots, the problem DAWN (Date Assignment in Wireless Network)
consists in finding a conflict-free date assignment along communication paths.
According to whether the paths are given (e.g. by the routing function) or not,
we distinct two main problems: DAWN-paths and DAWN-request.

The DAWN-path problem is stated as follows:
INPUT: An undirected graph G, a collection of requests R =

{

ri = (si, ti)|1 ≤

i ≤ K
}

, a routing function P on R which associates to each request ri a path
P (ri) linking the vertices of ri, a natural integer D.
QUESTION: Does a valid and conflict-free date assignment exist in such a man-
ner that the number of required slots is lower than or equal to D?

Let min-DAWN-path be the optimization version of DAWN-path. For each
natural integer D we define the D-DAWN-path problem as the subclass of
DAWN-path where the maximum number of allowed slots is D. Note that D
is bounded by above by |V (G)| × |R| otherwise the answer is obviously ”yes”.
Figure 1 presents an instance of DAWN-path (1(a)) and a solution (conflict-free
assignment) to it (1(b)).

We observe that there is no optimal fixed routing for the DAWN-path prob-
lem [8, page 97]. This leads us to propose the DAWN-request problem:
INPUT: An undirected graph G, a collection of requests R =

{

ri = (si, ti)|1 ≤

i ≤ K
}

, a natural integer D.
QUESTION: Does a valid and conflict-free date assignment exist in such a man-
ner that the number of required slots is lower than or equal to D?

As stated before, we call min-DAWN-request the optimization version of
DAWN-request, and D-DAWN-request the subclass of DAWN-request where D
is the maximum number of allowed slots.
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a b c d e f

g h i j k

(a)

1 3 4 5 6

1 2 3 5

(b)

Fig. 1. An instance (G, R, P ) of min-DAWN-path containing 2 requests r1 = (a, f),
r2 = (g, k), P (r1) = (a, b, c, d, e, f) and P (r2) = (g, h, i, j, k) (sub-fig. a). A valid and
conflict-free date assignment and within a minimum number of slots (sub-fig. b).

3 Complexity results

We adopt the terminology of [7]: a problem is not approximable within a constant
factor if no polynomial approximation algorithm with a constant performance
guarantee exists. Moreover an approximation algorithm has a constant perfor-
mance guarantee of ρ if for each instance I of a problem it finds a solution the
cost of which is at most ρ times the cost of the optimal solution for instance I.

In the following subsection we show that in general min-DAWN-path and
min-DAWN-request are NP-hard and not approximable within a constant factor.
These results are based on the complexity of coloring problems on graphs. The D-
COLORING problem [11] consists in assigning a color (represented by a number
bounded by above by D) to each vertex assuming that two adjacent vertices
are assigned different colors. It is known that D-COLORING is NP-complete
for any constant D ≥ 3, and that the corresponding minimization problem min-
COLORING is NP-hard and not approximable within a constant factor.

In a second subsection we show these problems remain NP-hard even when
the network is a tree, but here the reduction does not enable us to prove the
inapproximability (within some constant). In the third subsection we locate the
boundaries between polynomiality and NP-completeness for D-DAWN-path and
D-DAWN-request when only D varies.

3.1 Two difficult problems

The first theorem proves the NP-completeness of both problems in general.

Theorem 1. Problems min-DAWN-path and min-DAWN-requests are NP-hard
and not approximable within some constant factor. For any D ≥ 3, decision
problems D-DAWN-path and D-DAWN-request are NP-complete.

Proof. We first prove the NP-completeness of D-DAWN-request by a reduction
to D-COLORING.

D-DAWN-request is in NP : given a routing function P and a date assignment
d as a solution of an instance, one can check in a polynomial time if P enables
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each message to reach their destination, and if d is a valid conflict-free date
assignment using fewer than D slots.

Let IC = (GC) be an instance of D-COLORING, and let us note n =
|V (GC)|. From IC we define an instance I = (G, R) of D-DAWN-request, where
G is a graph such that V (G) = {sx, tx|x ∈ V (GC)} and E(G) =

{

{sx, tx}|x ∈

V (GC)
}

∪
{

{sx, ty}|{x, y} ∈ E(GC)
}

∪
{

{tx, ty}|x, y ∈ V (GC)
}

. We define the

set R =
(

rx = (sx, tx)|x ∈ V (GC)
)

of n communication requests. Clearly, the in-
stance I can be constructed in a polynomial time. Figure 2(b) gives an example
of a graph G constructed from the graph GC of figure 2(a).

1 2 3

4 5

(a) A graph GC

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5
⋃

{ti}1≤i≤5
is a clique

(b) The resulting graph G

Fig. 2. Construction of G from Gc

We show that, if there exists a valid conflict-free date assignment for I using
k ≤ D slots, then there exists a solution to the instance IC of D-COLORING
with cost k ≤ D and reciprocally.

Let S = (P, d) be a solution of I = (G, R) where P is a routing function
for R and d a valid and conflict-free date assignment for (G, R, P ) with cost
k = max(d) ≤ D. Let us suppose there exists a request ri = (si, ti) in S such
that the message is not directly emitted from si to ti, but requires at least one
relay node tj |j 6= i. If tj transmits in slot u, then no other node sl may transmit
in the same slot, while ∪i≤nti is a clique. Then we can extract a solution S′

from S with cost z′ ≤ z in which si transmits directly to ti at slot u. Thus
from any solution S with cost k, we compute a proper solution S′ = (P ′, d′)
with cost k∗ ≤ k ≤ D such that each message is directly transmitted from its
source to its destination. Clearly P ′(ri) = (si, ti)∀ri ∈ R. Let c be the function
which assigns to each vertex x ∈ V (Gc) the color d′(rx, sx). Let us note that
max(d′) = max(c) ≤ D. The resulting coloring is valid because if x and y are
adjacent in Gc then by construction the edges {rx, ty} and {ry, tx} exist in G
and imply that d(rx, sx) 6= d(ry, sy).

Reciprocally, let c be a vertex coloring of Gc with cost k ≤ D . Let P the
routing function such that P (ri) = (si, ti)∀ri ∈ R, and d be the date assignment
which associates the date c(x) to each couple (rx, sx). Then d is a valid conflict-
free date assignment such that max(c) = max(d).
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To conclude, we claim that to any vertex coloring c of IC corresponds a
solution to I composed of a routing function P a valid and conflict-free date
assignment d of (G, R) such that max(c) = max(d), and reciprocally. Since D-
COLORING is NP-complete for any D ≥ 3 [11] and D-DAWN-request belongs
to NP, then D-DAWN-request is also NP-complete for any D ≥ 3. This proof can
be extended to prove the NP-completeness of D-DAWN-path for any D ≥ 3, by
adding to the instance I the routing function P such that P (ri) = (si, ti)∀ri ∈ R.
By adapting this proof to the optimization versions of these problems we show
that min-DAWN-path and min-DAWN-request are NP-hard by a reduction to
min-COLORING. Therefore the reduction preserves the inapproximability of
min-COLORING, which is NP-hard and not approximable within some constant
factor. This allows to conclude. �

We now show that DAWN-path and DAWN-request are still NP-complete
even if the network is a tree. This resolves an open question suggested in [9]. The
proof can be extended to binary tree or Unit Disk Graph (intersection graph of
disks with equal diameters). UDG are often used to model the topology of ad-hoc
wireless communication networks. Let us introduce the following propositions:

Lemma 1. Let I = (G, R, P, D) be an instance of DAWN-path, let x a vertex
from V (G) and i an integer. Then there exists an instance I ′ = (G′, R′, P ′, D)
of the same problem with V (G) ⊆ V (G′), R ⊆ R′, such that :

– each valid and conflict-free date assignment d on I ′ requires exactly D slots,
and is also a valid and conflict-free date assignment on I,

– for each valid and conflict-free date assignment d on I ′ and each request
r ∈ R′ we have d(r, x) 6= i,

– the instance I can be constructed in a polynomial time.

Proof. Let us consider the following items:

– an instance I = (G, R, P, D) of DAWN-path,
– a request r ∈ R such that P (r) = (s, . . . , x, y, . . . , t),
– a chain C = {c1, c2, c3, . . . , cD+1} of length D + 1, with V (G) ∩ V (C) = ∅,
– a request r′ = (c1, cD+1),
– a natural integer i ∈ [1, D].

We note H = (V (G) ∪ V (C), E(G) ∪ E(C) ∪ {{y, ci}}) and define P (r′) =
(c1, c2, c3, . . . , cD+1). Note that if G is a tree, then H is also a tree. Figure 3
schematically illustrates such a construction. We claim the following :

1. The instance I ′ = (H, R∪{r′}, P, D) can be constructed in polynomial time
from I = (G, R, P, D),

2. let d be a valid and conflict-free date assignment for I ′, then we have
d(r′, ci) = i, d(r, x) 6= i, and d is a valid date assignment for I. �

This construction presented in the proof of lemma 1 will be used in the proof
of theorem 2 to prevent some nodes from transmitting during certain slots. In
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s

x y

t

c1 ci−1 ci ci+1 ci+2 cD+1

r

r′

G

Fig. 3. How to prevent a node x from transmitting in slot i

the following, we say that a request r = (s, t) starts at slot t if the source node
s proceeds to the transmission of the message of r during the tth time slot.

Let u and D be two natural integers such that D ≥ 6. We define a tight (u, D)
DAWN-path instance as the DAWN-path instance (C[1,D+7u], R, P, D) where
C[1,D+7u] is a chain having D + (7u) vertices {1, 2, . . . , D + 7u} and the edges
{i, i+1}|∀0 ≤ i ≤ D+7u−1. R is the set of 2u requests {r1, r̄1, r2, r̄2, . . . , ru, r̄u}
with ri = {(7i − 5, 7i + D − 9)} and r̄i = {(7i − 6, 7i + D − 8)}|∀i ≤ u.

Lemma 2. Let us consider a tight (u, D) instance for some integer u and D.
Let us suppose d is a valid and conflict-free date assignment, and i ∈ [1, u]. We
make the following observations:

1. (d(ri, 7i − 5), d(r̄i, 7i − 6)) ∈ {(5, 1), (1, 3)},
2. d(ri, j + 1) = d(ri, j) + 1, ∀j ∈ P (ri) − {7i + D − 9},
3. d(r̄i, j + 1) = d(r̄i, j) + 1, ∀j ∈ P (r̄i) − {7i + D − 8}.

Given two natural integers i ∈ [1, u] and j ∈ P (ri) :

1. if d(ri, 7i − 5) = 1 then d(ri, j) = j − 7i + 6 and d(r̄i, j) = j − 7i + 9
2. if d(ri, 7i − 5) = 5 then d(ri, j) = j − 7i + 10 and d(r̄i, j) = j − 7i + 7

Proof. This obvious proof is left to the reader. �

Theorem 2. DAWN-path and DAWN-request remain NP-complete even if the
graph representing the network topology is a tree.

Proof. The proof is based on a polynomial reduction of any instance of 3-SAT
problem [11] to an instance (G, R, P, D) of DAWN-path where G is a tree.

Let ISAT = (U, W ) be an instance of 3-SAT, composed of a set of variables
U = {x1, x2, ..., xn} and a set of clauses of 3 literals W = {c1, c2, ..., cm}. We
note n = |U |, m = |W |, and set D = m + 7n + 3.

Let us consider the tight (n, D) instance (G1, R1, P, D). The main idea of the
proof consists in assigning two requests ri and r̄i to each variable xi ∈ W . Thus
for the sake of clarity we note rxi

the request ri and rx̄i
the request r̄i.

Let G2 be the tree such that V (G2) = V (G1) ∪ (ci, 1), (ci, 2)|i ∈ [1, m] and
E(G2) = E(G1) ∪

{

{(ci, 1), (ci, 2)}, {7n + i, cs
i}|i ∈ [1, m]

}

. In the following we
note cs

i the couple (ci, 1) and ct
i the couple (ci, 2) for any integer i. Let R2
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21 8 9 1516 21 2425 3132 3839 47. . .

rx̄1

rx̄2

rx̄3
rx1

rx2

rx3

rc1 rc2

cs
1

ct
1

cs
2

ct
2

Fig. 4. A graph G2 and a set of requests R1 ∪R2 constructed from an instance ISAT =
(U, W ) where U = {x1, x2, x3} and W = {c1, c2}. Here D = 26.

be the set of requests {rci
= (cs

i , c
t
i)|i ∈ [1, m]}. Now, consider the instance

(G2, R1 ∪ R2, P, D) (see Figure 4 for an example).

By applying the construction of lemma 3.1 several times, we create an in-
stance I = (G, R, P, D) by adding elements to (G2, R1∪R2, P, D) as follows : for
each request rci

= (cs
i , c

t
i) we prevent cs

i from transmitting to ct
i the message of

request rci
during each slot t ≤ D, except for 3 specific ones which are defined

from the literals of the clause ci : if ci contains the positive (resp. negative)
literal associated to the variable xj |j ≤ n, then cs

i is allowed to transmit in slot
7n + i − 7j + 6 (resp. 7n + i − 7j + 8). Since G2 is a tree, G is also a tree and
the routing function is still obvious.

The size of I is polynomial in the size of ISAT , and it can be constructed in
a polynomial time. We claim that if there is a solution in D slots to I, then we
can deduce a solution to the instance ISAT and reciprocally.

Let us consider a valid and conflict-free date assignment d on the instance
I. According to lemma 2 and for each integer i ∈ [1, n], one request of {rxi

, rx̄i
}

must start at slot 1, and the other as soon as possible, and once a request has been
started, its progression cannot be stopped. Moreover each request rci

|i ∈ [1, m]
is clearly satisfied by d. The slot which has been assigned to (rci

, cs
i ) is one of

the three allowable values defined from the literals of clause ci. Our construction
implies that there exists j such that d(rci

, cs
i ) is of the form 7n + i − 7j + 6

or 7n + i − 7j + 8, according to xj is a positive or a negative literal. If xj is a
positive literal, then the source of rxj

is located on vertex 7j− 5, i.e. at distance
7n+ i7j + 5 from the vertex 7n+ j which is adjacent to cs

i . Then rxj
necessarily

starts at slot 1 - and we have d(rxj
, 7n + i) = d(rci

, cs
i ) - otherwise messages

would collide. We adopt a similar reasoning when xj is a negative literal. Then
for each clause ci, there exists at least one (positive or negative) literal l ∈ ci,
such that the request rl starts before rl̄. By affecting the value ”True” to all
variables xi where rxi

has been started at slot 1 (i.e. before rx̄i
) and ”False”

otherwise, we obtain a solution to the instance ISAT .

Reciprocally we can deduce a solution to the instance I from a solution to
ISAT : for each variable xi we start the request rxi

before rx̄i
if and only if xi has

the value ”True”. For each clause ci, we start rci
at the first valid and available

slot (this slot exists since the clause ci is satisfied by at least one literal).
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To conclude we point out that 3-SAT is NP-complete and that DAWN-path
belongs to NP. Then the DAWN-path is NP-complete even if the network is
a tree. This implies the NP-completeness of DAWN-request, since there is one
unique path linking each source to its destination when the network in a tree.�

3.2 Locating the boundaries between polynomiality and

NP-completeness

We have shown that DAWN-path and DAWN-request are NP-complete even
when the network topology is very restrictive. In the following subsection, we
focus our interest on the influence of the maximum number of slots D on the
complexity of these problems.

Theorem 1 already affirms that D-DAWN-path and D-DAWN-request are
NP-complete when D ≥ 3. By the way when D = 1 one can verify in polynomial
time if an instance can be satisfied: for each request r = (s, t), s must be adjacent
to t, and can only emits at the first slot. Hence t cannot be adjacent to another
source node s2, and s must be a source only for t. The next theorem states that
one can check in a polynomial time if there is a solution to a D-DAWN-path
instance when D ≤ 2.

Theorem 3. The 2-DAWN-path decision problem is polynomial

Proof. Let I = (G, R, P ) an instance of 2-DAWN-path. One can suppose that
for each request r = (s, t) the path P (r) contains at most one vertex l between
s and t, otherwise the instance is clearly insolvable. We propose an algorithm in
three steps :

– Dates are forced for transmitters belonging to two-hop requests.
– Therefore dates 1 (resp. 2) are spread to every transmitter which cannot

transmit during the second (resp. first) slot.
– Remaining dates are computed using a 2-SAT-like algorithm. �

Theorems 1 and 3 show that D-DAWN-path is polynomial when the maxi-
mum number of slots D is lower than or equal to 2, and becomes NP-complete
when D ≥ 3. Theorem 4 proves that D-DAWN-request is NP-complete for D = 2.

Theorem 4. The 2-DAWN-request decision problem is NP-complete

Proof. Let ISAT = (U, W ) be an instance of 3-SAT where U = {x1, . . . , xn}
denotes a set of variables and W = {c1, . . . , cm} a set of clauses. For each
variable xi ∈ U let Hxi

= (X, Y, E) be the complete bipartite graph K3,2

such that X = {(1, xi), (1, x̄i)} and Y = {(2, xi), (2, x̄i}. For each clause ci =
{l1, l2, l3} ∈ W , let Fci

= (X, Y, E) be the complete bipartite graph K3,2 such
that X = {(1, ci), (2, ci)} and Y = {(ci, l1), (ci, l2), (ci, l3)}. Note that l1 to l3 can
be positive or negative literals, each literal corresponding to a variable xi ∈ U .
Let I = (G, R) be a 2-DAWN-request instance with V (G) =

{

{
⋃

xi∈U V (Hxi
)}∪

{
⋃

ci∈W V (Fci
)}

}

and E(G) =
{

{
⋃

xi∈U E(Hxi
)}∪{

⋃

ci∈W E(Fci
)}∪{(ci, l), (2, l)
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|ci ∈ W, l ∈ ci}
}

. Figure 5 presents an example of graph G constructed from a
3-SAT instance ISAT = (U, W ). The requests collection R contains exactly all
the requests of the form ((1, ci), (2, ci))|ci ∈ W , and ((1, l), (2, l)) where l is a
literal corresponding to a variable xi ∈ U .

(1, c1) (2, c1) (1, c2) (2, c2) (1, c3) (2, c3)

(1, x1) (1, x̄1)

(2, x1) (2, x̄1)

(1, x2) (1, x̄2)

(2, x2) (2, x̄2)

(1, x3) (1, x̄3)

(2, x3) (2, x̄3)

(c1, x1) (c1, x̄2) (c1, x3)(c2, x1) (c2, x̄2) (c2, x̄3) (c3, x̄1) (c3, x2) (c3, x̄3)

Fig. 5. graph constructed from ISAT = (U, W ) with U = {x1, x2, x3} and W =
{c1, c2, c3} with c1 = {x1, x̄2, x3}, c2 = {x1, x̄2, x̄3} and c3 = {x̄1, x2, x̄3}.

Let d be valid date assignment d for I using only 2 slots. We assign to
any literal l the value ”True” if and only if (1, l) emits at slot 1 , and ”False”
otherwise. Given a clause ci ∈ W , exactly one node of the form (ci, l) emits at
slot 2. This node is adjacent to a node (2, l), which could receive the message of
the request ((1, l), (2, l)) at slot 1 only. Thus (1, l) is true and c is satisfied.

Reciprocally, suppose that ISAT admits a solution. For each literal l fixed
at ”True”, let us assign the date 1 to vertex (1, l) and the date 2 to (2,¬l) .
Let ci be a clause from W . Date 1 is assigned to vertex (1, ci). Date 2 must be
assigned to exactly one adjacent vertex of (1, ci). We can choose any couple with
the corresponding literal l fixed at ”True”. This date is available since (ci, l) is
only adjacent to (2, ci) (the destination) and (2, l), which has already received
the message at slot 1. Since 3-SAT is NP-complete and 2-DAWN-request is in
NP, 2-DAWN-request is indeed a NP-complete problem. �

Thus we have shown that knowledge of the routing policy plays a role in the
complexity of both problems, since the limit between polynomiality and NP-
completeness is located between 2 and 3 for DAWN-path, but between 1 and 2
for DAWN-request.

4 Solving instances with a bounded number of requests

We give a polynomial algorithm for min-DAWN-path problem and min-DAWN-
request problem when the number of requests is bounded by above by a constant
K. The following notation and definition will be used :

– For i ∈ [1, n], let πi(t) denotes the ith element of a n-tuple t = (x1, x2, ..., xn).

– The contracted form of a tuple (x1, x2, . . . , xn) is the tuple (xi)(i∈[1,n])∧(xi 6=xi−1).
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We propose a polynomial algorithm to solve instances I with a number of
requests bounded by K. We build a state graph, where each vertex describes a
possible state of the network at a given slot. An edge links X and Y if and only
if one can go from state X to state Y or reciprocally in only one slot. For a given
min-DAWN-path instance I = (G, R = (r1, r2, ..., rk), P ) with |R| ≤ K the state
graph S(I) is defined as follows:

– the vertex set is the cartesian product P (r1) × P (r2) · · · × P (rK). A vertex
X = (x1, x2, . . . , xK) indicates that for each i ≤ K, the message of request
ri has reached the node πi(X) = xi ∈ V (G).

– there is an edge between X = (x1, x2, . . . , xK) and Y = (y1, y2, . . . yK) of
S(I) if and only if the simultaneous emission of nodes {xi|xi 6= yi, 1 ≤ i ≤ K}
allows to deliver each message from xi 6= yi to yi in one slot only. Formally,
for X = (x1, x2, . . . , xK) and Y = (y1, y2, . . . yk), (X, Y ) ∈ E(S(I)) if we
have, for each i such that xi 6= yi :
• xi and yi are immediately consecutive in P (ri),
• there is no j 6= i, such that xj 6= yj and {xj, yi} ∈ E(G),
• for each j 6= i such that xj 6= yj , we have |xi, yi, xj , yj | = 4.

The state graph S(I) of a min-DAWN-request instance I is constructed ac-
cording to the same method, except that the set of vertices is the set V (G) ×
V (G) × · · · × V (G) = V (G)K . These state graphs can be constructed in a poly-
nomial time, since K is a constant. We can distinguish two vertices in S(I): the
source (s1, s2, . . . , sK) and the sink (t1, t2, . . . , tK) where si and ti are respec-
tively the source and the target of the request ri for any i ∈ [1, K].

We conclude the section with this theorem:

Theorem 5. min-DAWN-path and min-DAWN-request can be solved by a polynomial-
time algorithm with complexity O(n2K) when the number of requests is bounded
by above by a constant K.

Proof. (sketch of the proof) Consider I = (G, R = (r1, r2, . . . , rK), P ) a min-
DAWN-path instance with |R| ≤ K, and let us construct the state graph S(I).

One may check that a shortest path between the source and the sink in S(I)
can be associated with an optimal conflict-free date assignment and reciprocally.
Such a path can be found with a O(n2K) complexity algorithm. �

5 Conclusion and perspectives

We have studied the complexity of the request satisfaction problem in a syn-
chronous radio network. Table 1 summarises the results of this paper.

We have suggested other results [8] on particular cases i.e. on dynamic net-
work, or when requests cannot be paused as soon as they have started. Possible
perspective for this research work consist in studying the complexity of DAWN-
path and DAWN-request on specific topologies, in order to discover polynomial
cases even when the number of requests is unbounded. Particularly the complex-
ity when the network is a chain is an open question (however for this case, we
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DAWN-path: Complexity: DAWN-request:

Min-DAWN-path NP-hard (even in trees),
not approximable within
some constant factor.

Min-DAWN-request

D-DAWN-path D ≤ 2 Polynomial D ≤ 1 D-DAWN-request
D ≥ 3 NP-complete D ≥ 2

min-DAWN-path, |R| ≤ K Polynomial : O(n2K) min-DAWN-request, |R| ≤ K

Table 1.

have a constant factor approximation algorithm). Moreover, finding heuristics
with performance guarantee for difficult instances constitutes a natural extension
of this work.
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