
HAL Id: lirmm-00322900
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00322900

Submitted on 11 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Approach for Class Model Normalization
Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut

To cite this version:
Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut. A Generic Approach for Class Model
Normalization. ASE: Automated Software Engineering, Sep 2008, L’Aquila, Italy. pp.431-434,
�10.1109/ASE.2008.66�. �lirmm-00322900�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00322900
https://hal.archives-ouvertes.fr

A generic approach for class model normalization ∗

Jean-Rémy Falleri Marianne Huchard Clémentine Nebut

LIRMM, CNRS and Université Montpellier 2,

161, rue Ada, 34392 Montpellier cedex 5, France

E-mail: {falleri, huchard, nebut}@lirmm.fr

Abstract

Designing and maintaining a huge class model is a very

complex task. When an object oriented software or model

becomes bigger and bigger, duplicated elements start to ap-

pear, decreasing the readability and the maintainability of

the software. In this paper, we present an approach, imple-

mented in a tool and validated by a case study, that helps

software architects designing and improving their class

models. Since many different languages (UML, EMOF,

Java, . . .) allow to express class models, this approach has

been made generic i.e. capable of dealing with any lan-

guage described by a meta-model. Using this approach,

software architects will be able to design and maintain more

efficiently their class models.

1. Introduction

Designing and maintaining class models is a crucial task

in object oriented software design. A well designed class

model makes the software easier to understand, maintain

and reuse. Designing a class model is an iterative task:

classes, properties/attributes, associations and methods are

added and modified as the software evolves.

When the software reaches a large size (in terms of num-

ber of classes, methods, attributes and associations), it is al-

most impossible for a software architect to know each detail

of the architecture. Consequently, element duplications are

unintentionally introduced. For instance, many class mod-

els contain two different classes that own a property named

name or ident. Because of the huge number of meth-

ods and properties, removing code duplications becomes

a very difficult task and can hardly be manually achieved.

Table 1 gives an insight of the number of duplicated at-

tributes names (identifiers) in four class models that will be

used in the case study (see section 5). UML2 and Docbook

are two metamodels designed with Ecore, Apache Common

∗France Télécom R&D has supported this work (CPRE 5326)

Collections (ACC) and Minjava are written in Java. Those

name duplications do not necessarily imply redundant dec-

larations since two attributes can have the same name and

different meanings. However, it gives an indication on the

actual number of duplicated attributes.

Docbook UML2 Minjava ACC

#Classes 40 246 29 250

#Attributes 183 615 340 544

#Attrib. name

duplications

161 319 63 373

For a given identifier I duplicated n times, we count n duplica-

tions (and not one).

Table 1. Attribute name (identifier) duplica-

tions in four class models

Literature on class model design shows that it is possible

to compute normal forms of a given class model. In [18],

five different normal forms are defined: two normal forms

regarding the classes and their attributes, two for classes and

their methods and the last one concerning classes and asso-

ciations. All these normal forms guarantee that a given at-

tribute or method will appear exactly once in the whole class

model and that inheritance links correspond to attribute and

method sets inclusion or refinement. These forms differ by

the amount of multiple inheritance links used to address the

previous criterion (for instance, classes that do not intro-

duce an attribute or a method can be removed and replaced

by multiple inheritance links). In the rest of the paper, a

class model is said to be in normal form if and only if there

is no redundancies in it and inheritance links correspond to

attribute and method sets inclusion or refinement.

The contribution presented in this paper is a generic ap-

proach and tool using Model-Driven Engineering and Rela-

tional Concept Analysis to perform class model normaliza-

tion, and a case study on real world class models coming

from different languages (Java and Ecore).

Formal Concept Analysis [16] has proven [18] to be an

1

efficient approach to perform class model normalization.

FCA is a clustering method that automatically classifies el-

ements described by binary attributes. When applied to

class models, it can find duplicated properties or methods

and produce a normalized class model that minimizes the

number of classes needed to introduce all the properties and

methods of the initial model. On the other hand, FCA is un-

able to deal with other kind of specialization/generalization

mechanisms existing in class models. For instance a method

that redefines a method is not going to be created by a FCA

process.

Relational Concept Analysis [6], an extension of Formal

Concept Analysis, is an even more efficient approach to deal

with object oriented softwares. It is a relational extension of

FCA that allows to deal with entities described by binary at-

tributes and by relations with the other entities. Using RCA,

most of the constructions (invariant or covariant method re-

definition, covariant attribute redefinition) proposed by ob-

ject oriented languages are supported. More details about

FCA and RCA are presented in Section 2.

Class models can be expressed in many different lan-

guages, such as modeling languages (UML, Ecore, . . .) or

object-oriented programming languages (Java, C++, . . .).

The crucial point tackled by our approach is the difficulty

to deal with all these different languages : before applying

an FCA or RCA process, the source data have to be trans-

lated into the input FCA data format. We propose to use

Model Driven Engineering to deal with this issue.

The rest of this paper is structured as follows. Section 2

gives a quick presentation of formal and relational concept

analysis. Section 3 shows how we use Model Driven En-

gineering to build a generic approach and tool, that is pre-

sented in Section 4. Section 5 presents and discusses a case

study of the application of our tool to real world models

and softwares. Section 6 discusses related world and con-

cludes.

2. Formal and Relational Concept Analysis

Formal Concept Analysis [19] is a clustering method that

classifies a set of entities described by binary attributes.

More formally, let K = (E,A, R) be a formal context. E
is a set of entities, A is a set of attributes and R a binary

relation such as R ⊆ E × A. A sample formal context is

shown at the right of Figure 1. In this context, entities are

the rows and attributes are the columns.

With a formal context, several concepts can be produced.

A concept is a set of entities that share several attributes. It

can be considered as an abstraction of these entities. More

formally, a concept is a pair (X, Y) with X ⊆ E, Y ⊆
A and X = {e ∈ E|∀y ∈ Y, (e, y) ∈ R} is the extent

(covered entities), Y = {a ∈ A|∀x ∈ X, (x, a) ∈ R} is the

intent (shared attributes).

As the definition states, the sets of entities and attributes

are maximal, i.e. there is no other entity that belongs to

the concept extent and owns all the attributes of the intent.

Moreover, there is no other attribute that belongs to the con-

cept intent and that is owned by all the entities of the ex-

tent. These properties ensure maximal factorization of at-

tributes, and in the context of class model, avoids property

and method duplications.

The concepts can be organized in a specialization lattice:

a concept c1 is lower than a concept c2 if the extent of c1

is included in the extent of c2 (and inversely, the intent of

c2 is included in the intent of c1). The specialization lattice

ensures, in the context of class model normalization, that

inheritance or specialization links respect property/method

sets inclusion and refinement. A sample lattice correspond-

ing to the context of Figure 1 is shown at the left of Figure 2.

Three steps are required to apply formal concept analysis

on a class model. First, the class model is converted into a

formal context. This step is shown on Figure 1. Each class

of the class model is converted into an entity in the formal

context. The properties of the class are converted into at-

tributes in the formal context, and the binary relation of the

formal context is built according to attribute possession.

Figure 1. First step of FCA on a UML model

Second, a concept lattice is built, according to the for-

mal context. This concept lattice will contain concepts that

represent the existing entities (and thus the classes) of the

formal context, and new concepts that will lead to the cre-

ation of new classes. The last step is to build a class model

according to the concept lattice. This step is shown in Fig-

ure 2. It is clear that the output class model is normalized

whereas the input class model was not. This normal form is

called attribute lattice factored form in [18].

Figure 2. Second step of FCA on a UML

model

Formal Concept Analysis is powerful to distribute at-

tributes in a class hierarchy, but is unable to deal with re-

lational descriptions. As an example, let us consider the

class model in the top of Figure 3. The same conversion and

application of FCA on this model, as previously described,

would lead to the creation of the model shown in the right of

Figure 3. The resulting model, even if it is in normal form,

could still be improved. A new attribute with type Person

could be introduced in the class Person. Then, the friends

and colleagues properties should redefine this new attribute.

Figure 3. Limitations of FCA on a UML model

Relational Concept Analysis [6, 19] is an extension of

FCA. It is designed to take into account entities described

by binary attributes with relations linking them. In RCA,

instead of having just one formal context, there is one for-

mal context for each kind of entities. Then these formal

contexts are filled out with other contexts that show rela-

tions between entities coming from one context and enti-

ties coming from another context (which can be the same).

More formally, a Relational Context Family (RCF) is a

pair F = (K, L) where K is a set of formal contexts

where Ki = (Ei, Ai, Ri) and L a set of relational contexts,

Li = (Ea, Eb, Ri) with Ri ⊆ Ea ×Eb. Figure 4 shows the

relational context family corresponding to the class model

at the left of Figure 3.

Figure 4. Applying RCA on a UML model: pro-

duced contexts

An iterative lattice construction is applied on the rela-

tional context family. A concept lattice is built for each

formal context Ki of the Relational Context Family. The

discovered concepts of these lattices are injected as new en-

tities in the RCF, and new lattices are built. This iterative

construction stops whenever for each category of entities,

the lattices built while performing two successive steps are

isomorphic. The set of lattices produced after each step of

the process is called a Concept Lattice Family (CLF). The

class model in Figure 5 has been produced from the contexts

of Figure 4.

Figure 5. RCA result on a UML model

The description of FCA and RCA given is this section

are very brief, but more detailed explanations, with exam-

ples, can be found in [18, 2, 14].

3. Generic encoding of the input and the output

: issues and MDE-based solution

In this section we point out the problems emerging when

building a single RCA tool handling different input lan-

guages, and explain why MDE solves the problems.

When applying a formal method on software artifacts, a

problem often emerges: software artifacts have to be trans-

lated into a format from which it is possible to apply the

formal method. With RCA for instance, the class models

have to be encoded into formal contexts. To build an FCA-

or RCA-based tool able to deal with a large range of input

data formats, it is often necessary to develop as well a great

number of encoders (see Figure 6). To apply RCA on Java

programs, it is necessary to dispose of a Java grammar and

parser, and to implement a program that encodes Java ab-

stract syntactic trees into formal contexts. To apply RCA

on a UML model, an XML or XMI parser is required, and

again, a translator between XMI and formal contexts has to

be created.

Figure 6. A naive tool approach

It is easy to see that to deal with n different languages,

n+1 programs are required (the last one to apply the formal

method). Worse, if we consider that the output of the formal

method has to be converted back into the initial format, like

in RCA, 2n + 1 programs are required. For technological

reasons, these programs are likely not to be coded with the

same language (because of parsers availability). This archi-

tecture raises many problems. If the formal method input

data format is modified, n programs have to be modified. If

a different configuration of the translation has to be tested,

the n programs have to be modified again. Therefore, this

architecture requires too much coding effort to cope with a

large range of input data. The solution we propose to tackle

this issue is based on Model-Driven Engineering.

Figure 7. The meta-modeling hierarchy

Model Driven Engineering [21] is a recent software de-

velopment paradigm. It was introduced to deal more with

abstractions rather than code. In a MDE-based develop-

ment, every produced or used artifact (including code) is

a model, whose structure is defined by a meta-model (a

model is said to conform to a meta-model). To pragmati-

cally handle two models that conform to two different meta-

models (for example to transform a UML model into a Rela-

tional Database model), a program has to be written, dealing

with both meta-models. For that purpose, MDE assumes

the existence of a unique meta-metamodel. Such a meta-

metamodel allows to define how a meta-model is structured.

Mainly, two meta-metamodels are used: EMOF [24] (de-

fined by the OMG) and Ecore [11] (defined by Eclipse).

Since we have built our tool with the Eclipse platform, we

have chosen the meta-metamodel Ecore. However, Ecore

and EMOF have no significant differences. In the follow-

ing, we will use Ecore. The meta-metamodel is the last

level in the modeling hierarchy (shown in Figure 7), and

is expressive enough to describe itself. Therefore a meta-

meta-metamodel is not necessary.

In the introduction, we explained that the goal of this pa-

per is to provide a generic approach with a tool allowing

to deal with several different languages. Such a tool must

be able to translate class models (either UML or Java mod-

els for example) to RCA contexts. Yet, Ecore can describe

either a UML model or Java code. Therefore, such a trans-

lator can be considered as a model transformation taking

as input a model described by a meta-model written with

Ecore, and producing as output RCA contexts. The oppo-

site translator, that takes as input RCA lattices and produces

a model in the same format as the inital one, is also a model

transformation.

All the information from a UML model or Java code is

not relevant for an RCA process. For example, the fact that

two classes are abstract does not imply to build an abstrac-

tion of those two classes: this fact has not to be taken as

a reason to build abstractions, and thus has not to be en-

coded. The translators thus need to know what parts of the

models have to be encoded for the RCA process, and also

the specialization links that can exist in the model (method

redefinition or class inheritance for example). We propose

to give the translators this configuration information by the

way of a configuration model, specifying all this informa-

tion in terms of elements of the input or output metamodel.

The next section details our MDE-based approach and

tool, that allows an easy definition of RCA translators.

4. Generic class model normalization

In this section, we describe our approach, summurized

in Figure 8, that integrates RCA and MDE to perform class

model normalization. Three successive model transforma-

tions are defined:

1. encoding: transforms the input class model (which can

be Java code, a UML class model, . . .) into a Rela-

tional Context Family representing this class model,

2. RCA: apply the RCA process on the previously gener-

ated RCF to build a Concept Lattice Family,

3. decoding: transforms the previously built CLF into a

class model conform to the same meta-model as the

input model.

Figure 8. Process overview

In our process, the first (encoding) and the third (decod-

ing) transformations have to be generic. By generic, we

mean that they are written independently from the meta-

model to which the input/output models conform. Yet, a

Java class model cannot be transformed into a RCF like a

UML model, at least because names of meta-classes and

meta-references in both underlying metamodels are not the

same. Since it is not possible to automatically detect in

a meta-model the elements that are interesting and worth

injecting in the RCA process, configuration data have to

be furnished to the encoding and decoding transformations.

This configuration is based on the meta-model of the class

model to analyse or to produce, and dynamically tunes the

behaviour of the generic transformations.

Figure 9. The sample models

We use two sample models to show how the encoding

transformation works. The first one (at the bottom and lhs

of Figure 9) is a simple UML model, the second one (at the

bottom and rhs of Figure 9) is a tiny piece of Java code.

Figure 9 places the two examples in the meta-modeling hi-

erarchy: meta-models of the models are represented, and

the meta-metamodel (Ecore in this example) of the meta-

models as well. The Java, UML and Ecore meta-models are

presented in a reduced form that only contains information

relevant to illustrate our process. The dotted arrows show

the conforms to links between elements and meta-elements.

Information that will tune the encoding and decoding trans-

formations will come from the M2 level. In the rest of the

section, we will show how we use those models and meta-

models through the encoding transformation.

Let us suppose that we want to apply the same RCA con-

figuration as in Figure 4 to the sample UML model. To do

that, we want to create two formal contexts, one describing

the classes and one describing the properties. In order to

merge properties, the name of the properties has to be used

as an attribute in the properties context. Two relational con-

Figure 10. The Relational Context Family

metamodel

texts are also required: one describing the ownedAttribute

relation between classes and properties, and one describ-

ing the type relation between the properties and the classes.

For the Java model, the configuration has to be different.

Indeed, the Java model does not contains properties, only

methods. Therefore we want to merge methods based on

their names to create super-classes. So for this example,

we will have two formal contexts: one for the classes and

the other for the methods. The methods context will use

the name of the methods as an attribute, and a relational

context will describe the methods relation between classes

and methods (methods introduced by a class). In order to

give that kind of information to the encoding and decoding

transformations, we have introduced a configuration meta-

model, shown in Figure 11.

FormalContextCreation

+ metaClass: EClass
+ metaAttributes: EAttributes[0..*]
+ metaSpecializationLink: EReference

RelationalContextCreation

+ metaReference: EReference

RcaConf

+ metaModel: EPackage

+ formalContextCreations 0..*
+ relationalContextCreations 0..*

+ source

1..1

+ target
1..1

Figure 11. The encoding/decoding configura-

tion metamodel

The encoding transformation uses two models to fulfill

its goal: a class model (UML, Java, . . .) and a configura-

tion model conform to the configuration meta-model previ-

ously shown. To remain in the MDE paradigm, we created

a meta-model for the RCF that will be produced by this

transformation (Figure 10). This transformation works as

follows. First, a formal context is created for each Formal-

ContextCreation element in the configuration model. Enti-

ties of this formal context are the elements coming from the

class model which are conform to the meta-class defined in

the metaClass attribute of the FormalContextCreation ele-

ment. The attributes of this formal context will be created

according to the values of the metaAttributes attribute of the

FormalContextCreation element.

Figure 12 shows in a textual format the configuration

model used to encode the sample UML model. Accord-

ing to this configuration model, two formal contexts will be

created: one for the classes (MetaClass class) and one for

the properties (MetaClass Property). No attributes will be

created in the classes formal context. The value of the name

attribute from the properties will be used in the properties

formal context. Figure 13 shows the two formal contexts

Kproperty and Kclass created using both the sample UML

model and the sample configuration model.

RCA Config. for UML Class Models:

Formal Context Creations:

- MetaClass Class: metaAttributes = [],

metaSpecializationLink = "generalization.general"

- MetaClass Property: metaAttributes = ["name"],

metaSpecializationLink = "redefinedProperty"

Relational Context Creations:

- MetaReference ownedAttribute: source = Class,

target = Property

- MetaReference type: source = Property,

target = Class

Figure 12. UML configuration model

Figure 13. The generated UML contexts

After having created the formal contexts, the encod-

ing transformation creates the relational contexts. One re-

lational context will be created for each RelationalCon-

textCreation element from the configuration model. The

source and target attributes from the RelationalContextCre-

ation element will define which are the entities involved in

this relational context. The source entities are the entities

of the FormalContextCreation defined as source of the Re-

lationalContextCreation element, and so on for the target

entities. Then, for each source entity, the encoding trans-

formation will search if relations with the target entities of

the type defined in the metaReference attribute of the Rela-

tionContextCreation element exist in the input class model.

Those relations will be reported into the relational context.

In the UML configuration model of Figure 12, we can see

that two relational contexts will be created (they are shown

in Figure 13):

• RownedAttribute stems from the MetaReference owne-

dAttribute in the configuration model. It links the the

classes and the properties: a pair will be added in the

relation each time a class owns an attribute.

• Rtype stems from the MetaReference type in the con-

figuration model. It links the properties and the

classes: a pair will be added in the relation each time a

property is typed by a class.

Similarly, Figure 14 shows the configuration model used

to apply the RCA process on the sample Java code. Fig-

ure 15 shows the context produced by the encoding trans-

formation, using the sample Java code and the sample Java

configuration model.

RCA Config. for Java Class Models:

Formal Context Creations:

- MetaClass Class: metaAttributes = [],

metaSpecializationLink = "generalization.general"

- MetaClass Method: metaAttributes = ["name"]

Relational Context Creations:

- MetaReference methods: source = Class, target = Method

Figure 14. Java configuration model

Figure 15. The generated Java contexts

Since we have not detailed how is structured a Concept

Lattice Family in Section 2, we will not explain in details

how works the decoding transformation. But the principle

of this transformations is the same as the one of the en-

coding transformation, and the same configuration model is

used to perform this transformation.

The whole RCA process is very complex, and involves

lots of details that have not been introduced here for the

sake of clarity. Having implemented the whole process

with model transformations allowed us to clearly identify

the variation points in the involved algorithms and add them

in the configuration metamodel. In that way, a RCA expert

can easily fine-tune the process, without modifying a single

line of code of the tool.

5. Case study

To evaluate our class model normalization approach, we

carried out an experiment on four actual class models. Two

of them, UML [12] and Docbook [27], are design mod-

els written in Ecore. The two others, Apache Commons

Collections (ACC) [15] and Minjava [13], are implementa-

tion models, obtained by reverse-engineering on Java code.

UML stands for the UML 2.0 meta-model. Docbook is a

meta-model of the Docbook language. Apache Commons

Collections is a Java library that extends the Java collec-

tions. Minjava is a Java reverse engineering tool that analy-

ses Java byte-code and produces an Ecore compliant Java

model conform to a simple Java meta-model. This tool

can restrict the extraction of Java code to some packages.

When building our sample models, we chose to restrict

the extraction of Java entities to the program itself, and

blocked the extraction of the Java standard library (except

base types). So when a Java class introduces an attribute

typed by a class included in the standard Java API (for in-

stance a LinkedList), the attribute appears as not typed in the

resulting model. We tested three different configurations of

our approach on these models:

1. Basic FCA configuration (FCA1): it corresponds to

the one in [18], that generates a class and a property

context and analyses the attribute possession to dis-

cover super-classes, based on attribute names. Fig-

ure 16 shows this configuration applied to the Ecore

meta-model.

2. Enhanced FCA configuration (FCA2): same as the pre-

vious configuration, but using information specific to

the input language (static keyword in Java, cardinal-

ity in Ecore) to avoid incorrect generalizations. Fig-

ure 17 shows this configuration applied to the Ecore

meta-model.

3. Enhanced Properties configuration (RCA): a RCA con-

figuration that generates a class and a property con-

text and analyses the attribute possession and type to

discover super-classes and redefined properties. Fig-

ure 18 shows this configuration applied to the Ecore

meta-model.

Since we used two different kinds of models (Ecore and

Java) in our experiments, these three configurations has

been defined for the two languages. Therefore, six configu-

ration models have been designed.

Basic FCA Config for Ecore

Formal Context Creations:

- MetaClass EClass: metaAttributes = [],

metaSpecializationLink = "generalization.general"

- MetaClass EAttribute: metaAttributes = ["name"]

- MetaClass EReference: metaAttributes = ["name"]

Relational Context Creations:

- MetaReference eStructuralFeatures: source = EClass,

target = EAttribute

- MetaReference eStructuralFeatures: source = EClass,

target = EReference

Figure 16. FCA1 configuration for Ecore

Enhanced FCA Config for Ecore

Formal Context Creations:

- MetaClass EClass: metaAttributes = [],

metaSpecializationLink = "generalization.general"

- MetaClass EAttribute: metaAttributes = ["name",

"upperBound","lowerBound","derived"]

- MetaClass EReference: metaAttributes = ["name",

"upperBound","lowerBound","derived"]

Relational Context Creations:

- MetaReference eStructuralFeatures: source = EClass,

target = EAttribute

- MetaReference eStructuralFeatures: source = EClass,

target = EReference

Figure 17. FCA2 configuration for Ecore

Enhanced RCA Properties Config for Ecore

Formal Context Creations:

- MetaClass EClass: metaAttributes = [],

metaSpecializationLink = "generalization.general"

- MetaClass EAttribute: metaAttributes = ["name",

"upperBound","lowerBound","derived"]

- MetaClass EReference: metaAttributes = ["name",

"upperBound","lowerBound","derived"]

Relational Context Creations:

- MetaReference eStructuralFeatures: source = EClass,

target = EAttribute

- MetaReference eStructuralFeatures: source = EClass,

target = EReference

- MetaReference eType: source=EReference, target=EClass

Figure 18. RCA configuration for Ecore

To present the results of the application of RCA to our

sample models, we use the produced Concept Lattices Fam-

ily. We classify the concepts of these lattices into three dis-

joint categories:

• ExistingConcepts: these concepts represent ele-

ments that were already present in the input class

model,

• NewConcepts: these concepts represent elements

created during the RCA process,

• MergeConcepts: these concepts represent the merge

of existing elements from the input model.

The ExistingConcepts set is not really interesting

since it contains only concepts representing the input en-

tities. The NewConcepts set is very interesting. It con-

tains the concepts that may introduce new useful elements

(abstractions of existing ones) in the class model. The

MergeConcepts set is also interesting, since it contains

the elements from the source model that have been consid-

ered as similar and therefore have led to the creation of the

new elements. To present the result of our case study, we

choose to use the two following quantities:

• N , the number of new elements i.e. |NewConcepts|,

• M , the number of merges i.e. |MergeConcepts|.

Figure 19. Results for Minjava class model

Figure 20. Results for ACC class model

Figure 21. Results for Docbook class model

Figure 22. Results for UML class model

Figures 19-22 show the results of the application of the

different RCA processes to our sample class models. It is

clear the FCA1 configuration produces more merge than

the two other configurations. This is the expected result

because the two other configurations use information spe-

cific to the class model language in order to avoid incorrect

merges. The RCA configuration is the one that produces

the greatest number of new elements. This is also the ex-

pected result, because it uses the type of the properties to

create more abstract new properties that led to the creation

of more new super-classes.

The previous results show how the different configura-

tions of the RCA process behave, but are unable to show

the quality of these results. Metrics are a way of assessing

quality, but they are not so easy to use: based on current

inheritance metrics from [5, 23], it has been shown in [10]

that inheritance metrics (associated with size metrics) are

useful in measuring software stability, but don’t really help

in detecting concrete design problems.

In [17], the case study uses a structural metric to ana-

lyze the result of FCA application on real world class hi-

erarchies. The chosen metric, called M2 is derived of the

M1 metric introduced in [22]. This metric measures redun-

dancy and inheritance quality. Basically, M2 is a weighted

sum of the number of attributes and the number of inheri-

tance links. To defavor the use of multiple inheritance, for

a given class the inheritance links count as double after the

first one. The lower metric M2 is, the better the class model

is designed.

Unfortunately, this metric can lead to wrong analysis of

the class model. If we imagine an output class model where

a super-class has been found but is not correct (for instance

because of homographs), the M2 metric will still consider

this output model as better than the input one. Moreover,

this metric is not compatible with the use of redefined prop-

erties or methods. If we use the class model shown in Fig-

ure 3, the metric M2 will be 24 for the input model, 22
for the output model without attribute redefinition and 26
for the output class model with attribute redefinition. This

clearly shows that this metric is unable to correctly measure

the quality of a class model design when attribute redefini-

tion is used.

Two research directions are now open. Firstly, results

from FCA/RCA on class model can be assessed using recent

proposals and results on specialization quality measurement

[9, 4]. Secondly, specific metrics can be introduced for FCA

and RCA based on human judgement. To compute our met-

rics, a human analysis of the concepts of the NewConcepts
and the MergeConcepts sets is required. An architect,

preferably with a good knowledge of the input class model,

counts the number of concepts in these two sets that are

considered as correct. Our four metrics are:

• cn: number of concepts included in the NewConcepts

set that are considered as correct; a rate is obtained

with cnr = cn/|NewConcepts|;

• cm: number of concepts included in the MergeCon-

cepts set that are considered as correct; a rate is ob-

tained with cmr = cm/|MergeConcepts|.

Results of these metrics on Minjava are shown in Tables

2 and 3. Concept correction has been assessed by the de-

signer of Minjava. These results confirm what was expected

from the quantitative results. FCA1 is the configuration that

produces the most of incorrect merges and RCA produces

the most incorrect new concepts. On the other hand, new

concepts produced by RCA could not have been created us-

ing a FCA configuration and can contains useful concepts.

However it is necessary to find a way to analyse those new

concepts in a semi automatic way, because they are too nu-

merous to be analysed by hand.

6. Related work and conclusion

Our previous works ([20], [7], [2]) were the origins of

the presented generic approach in model transformations

using RCA. [8] showed an implementation using Objecteer-

ing and Galicia [28], and there also exists an implementa-

tion using Galicia with specific modules translating XMI

files into RCF, and CLF into XMI files. In [2], we have

shown our approach specifically using UML metamodel.

FCA1 FCA2 RCA

|MergeConcepts| 12 10 10

cm 10 10 10

cmr 0.83 1 1

|NewConcepts| 2 2 6

cn 0 0 0

cnr 0 0 0

Table 2. Results on attributes for Minjava

FCA1 FCA2 RCA

|MergeConcepts| 4 4 4

cm 3 3 3

cmr 0.75 0.75 0.75

|NewConcepts| 9 8 12

cn 5 5 5

cnr 0.56 0.63 0.42

Table 3. Results on classes for Minjava

In all the approaches, the implementation of RCA-building

algorithms were crucial in the computation time. To our

knowledge, these were the only RCA-based approaches in

the context of Model Driven Engineering. Related to model

refactoring, the majority of the contributions on refactoring

addresses the code level, but the recent interest for model-

driven approaches led to several works on model refactor-

ing, in particular UML refactoring [25]. Most of the re-

search focuses on small and atomic model transformations

(adding a class, adding an association), except the commu-

nity working on design pattern application by model refac-

toring (for example [26]). Our main claim is to show the

evolution of our approach to be generic and independent of

the implied models. Works, such as shown in [3], confirm

our hypothesis about the degree of complexity that implies

the model transformations.

We have presented in this paper a theory and a tool allow-

ing to normalize class models based on different metamod-

els. The normalization process is based on Relational Con-

cept Analysis. A case study has been conducted to demon-

strate that the FCA and RCA process can be adapted just

modifying the configuration model of the underlying model

transformations. A quantitative analysis has been given in

terms of dedicated metrics on the obtained results. The ex-

periments conducted with the tool confirmed us in the in-

tuitive idea that some FCA and RCA configurations allow

to discover lots of abstractions, among them a small num-

ber of very relevant ones (that cannot be found with simpler

configurations), and a large number of a poorly-interesting

ones. We thus plan to work in two main directions. First,

we plan to make a large qualitative analysis with domain

experts on several case studies, to determine if a trade-off

can be found in the configurations to detect a maximum

number of relevant abstractions, with a minimum number

of low value-added generated abstractions. Second, we will

continue current work on natural language analysis based

on lexical nets to detect on the fly or afterward the inter-

esting abstractions, to name discovered abstractions, and to

measure the relevancy of an abstraction.

References

[1] Formal Concept Analysis, Foundations and Applications,

volume 3626 of Lecture Notes in Computer Science.

Springer, 2005.

[2] G. Arévalo, J.-R. Falleri, M. Huchard, and C. Nebut. Build-

ing abstractions in class models: Formal concept analysis

in a model-driven approach. In O. Nierstrasz, J. Whit-

tle, D. Harel, and G. Reggio, editors, MoDELS, volume

4199 of Lecture Notes in Computer Science, pages 513–527.

Springer, 2006.

[3] J. Bézivin, B. Rumpe, A. Schuerr, and L. Tratt. Model trans-

formations in practice workshop. In J.-M. Bruel, editor,

MoDELS 2005 Workshops, pages 120–127. Springer-Verlag

Berlin Heidelberg, 2006.

[4] K. M. Breesam. Metrics for object-oriented design focus-

ing on class inheritance metrics. In DepCoS-RELCOMEX,

pages 231–237. IEEE Computer Society, 2007.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-

ject oriented design. IEEE Trans. Software Eng., 20(6):476–

493, 1994.

[6] M. Dao, M. Huchard, M. R. Hacene, C. Roume, and

P. Valtchev. Improving generalization level in uml models

iterative cross generalization in practice. In Wolff et al. [29],

pages 346–360.

[7] M. Dao, M. Huchard, M. R. Hacene, C. Roume, and

P. Valtchev. Improving Generalization Level in UML Mod-

els Iterative Cross Generalization in Practice. In Wolff et al.

[29].

[8] M. Dao, M. Huchard, M. R. Hacène, C. Roume, and

P. Valtchev. Towards practical tools for mining abstractions

in uml models. In Proc. of the ICEIS 2006 conference, pages

276–283, 2006.

[9] M. Dao, M. Huchard, T. Libourel, C. Roume, and

H. Leblanc. A new approach to factorization - introducing

metrics. In IEEE METRICS, pages 227–236. IEEE Com-

puter Society, 2002.

[10] S. Demeyer and S. Ducasse. Metrics, do they really help? In

J. Malenfant and R. Rousseau, editors, LMO, pages 69–82.

Hermès, 1999.

[11] Eclipse. The Eclipse Modeling Framework. http:

//www.eclipse.org/emf, 2005.

[12] Eclipse. UML2 EMF Plugin.

http://www.eclipse.org/modeling/mdt/?project=uml2,

2008.

[13] J.-R. Falleri. Minjava. http://code.google.com/p/minjava/,

2008.

[14] J.-R. Falleri, M. Huchard, C. Nebut, and G. Arévalo. A

model driven engineering approach for making generic

fca/rca tools. In J. Diatta, P. Eklund, and M. Liquière, ed-

itors, Proceedings of the Fifth International Conference on

Concept Lattices and Their Applications (CLA’07), pages

229–252, 2007.

[15] A. Foundation. Apache Commons Collections.

http://commons.apache.org/collections, 2008.

[16] B. Ganter and R. Wille. Formal Concept Analysis: Math-

ematical Foundations. Springer-Verlag New York, Inc. Se-

caucus, NJ, USA, 1997.

[17] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi,

and T. Chau. Design of class hierarchies based on con-

cept,(Galois) lattices. Theory and Practice of Object Sys-

tems, 4(2):117–134, 1998.

[18] R. Godin and P. Valtchev. Formal concept analysis-based

class hierarchy design in object-oriented software develop-

ment. In Formal Concept Analysis [1], pages 304–323.

[19] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev. Re-

lational concept discovery in structured datasets. Ann. Math.

Artif. Intell., 49(1-4):39–76, 2007.

[20] M. Huchard, C. Roume, and P. Valtchev. When concepts

point at other concepts: the case of UML diagram recon-

struction. In FCAKDD 2002, Advances in Formal Concept

Analysis for Knowledge Discovery in Databases, Int. work-

shop ECAI 2002, pages 32–43, Lyon, juillet 2002.

[21] S. Kent. Model Driven Engineering. In M. J. Butler, L. Petre,

and K. Sere, editors, IFM, volume 2335 of Lecture Notes in

Computer Science, pages 286–298. Springer, 2002.

[22] K. Lieberherr, P. Bergstein, and I. Silva-Lepe. From objects

to classes: algorithms for optimal object-orienteddesign.

Software Engineering Journal, 6(4):205–228, 1991.

[23] M. Lorenz and J. Kidd. Object-Oriented Software Metrics:

A Practical Guide. Prentice-Hall, 1994.

[24] OMG. MOF 2.0 core specification.

http://www.omg.org/cgi-bin/doc?ptc/2004-10-15, 2004.

[25] G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel. Refac-

toring UML models. In Proc. Unified Modeling Language

Conf., 2001.

[26] L. Tokuda and D. Batory. Automated software evolution via

design pattern transformations. In Proc. of the Int’l Symp.

on Applied Corporate Computing, 1995.

[27] Triskell. Docbook metamodel. http://www.kermeta.org,

2008.

[28] P. Valtchev, D. Grosser, C. Roume, and M. R. Hacene.

GALICIA: an open platform for lattices. In A. d. M. B. Gan-

ter, editor, Using Conceptual Structures: Contributions to

ICCS’03, pages 241–254, Aachen (DE), 2003. Shaker Ver-

lag.

[29] K. E. Wolff, H. D. Pfeiffer, and H. S. Delugach, editors.

Conceptual Structures at Work: 12th International Confer-

ence on Conceptual Structures, ICCS 2004, Huntsville, AL,

USA, July 19-23, 2004. Proceedings, volume 3127 of Lec-

ture Notes in Computer Science. Springer, 2004.

