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Abstract

Pairings permit several protocol simplifications and original scheme
creation, for example Identity Based Cryptography protocols. Initially,
the use of pairings did not involve any secret entry, consequently, side
channel attacks were not a threat for pairing based cryptography. On
the contrary, in an Identity Based Cryptographic protocol, one of the two
entries to the pairing is secret. Side Channel Attacks can be therefore
applied to find this secret. We realize a Differential Power Analysis(DPA)
against the Miller algorithm, the central step to compute the Weil, Tate
and Ate pairing.

Keywords: Pairing, Miller Algorithm, Pairing Based Cryptography, SCA,
DPA.

1 Introduction

Originally, the cryptographic use of pairings was in a destructive way.
Pairings convert the discrete logarithm problem from an elliptic curve subgroup
to the discrete logarithm problem in a finite field, this property was used for
particular elliptic curves in the MOV [18] and Frey Ruck [9] attack. This pairing
property allows constructing new protocols. The first constructive use of
pairings was the tripartite key exchange of Joux A. [11]. It was followed by
original protocols like Identity Based Cryptography (IBC), introduced by Boneh
D. and Franklin M. in 2003 [3], or short signature schemes [10].

The use of pairings in IBC involves a secret entry during the pairing
calculation. Several pairing implementations exist, for example [20] and [2]. Side
Channel Attacks (SCA) against pairing based cryptography were first developed
three years ago ([19], [21] and [12]). Page D. and Vercauteren F. suggested a
Messerges style Differential Power Analysis (DPA) attack against the Duursma
and Lee algorithm in affine coordinates [19]; but they did not developed it. In
[21], Whelan C. and Scott M. concluded that if the secret is used as the first
argument of a pairing calculation, then it is impossible to find it. We show
that if P is secret during the calculation of the pairing between points P and @
(denoted e(P,Q)), then we can find it out.



We propose a general DPA attack against the Miller algorithm [16]. Most
of the pairings calculations use the Miller algorithm as a computation central
step. It is the case for the Weil [6, chap. 16], Tate [20] and Ate [17] pairings.
We will show how the attack can be carried out when Jacobian coordinates are
used. At our best knowledge, it is the first time that an algorithm in Jacobian
coordinates is attacked and clearly depicted by means of DPA.

The paper is organised as follow, Section 2 recalls the Miller algorithm and
the main pairing properties. Section 3 describes a general DPA attack, Section
4 presents the circuit that has been designed in order to perform the calculation
and the attack, whereas Section 5 presents the results of the attack. Eventually,
Section 6 concludes the paper and provides some perspectives for further works.

2 Pairings and the Miller algorithm

2.1 Short introduction to the pairing

Let G; and G4 be two abelian groups of order [, and G5 a multiplicative abelian
group of the same order. A pairing is an application satisfying this definition:

DEFINITION 2.1:
A pairing is a function: e : Gy X Go — G3 with the following properties :

o Bilinearity :
VP, P’ € G1,YQ € Go,e(P+ P',Q) = e(P,Q).e(P',Q)

VP e G1,YQ,Q € Ga,e(P,Q + Q') = e(P,Q) (P, Q)

e Non-degeneracy :
VP € G1 —{0},3Q € Ga, such that: e(P,Q) # 1

VQ € G2 — {0},3P € Gy, such that: e(P,Q) #1

We will consider pairings defined over an elliptic curve E over a finite field F,,
for ¢ a prime number, or a power of a prime number different from 2 and 3. In
characteristic 2 [12] and 3, the same scheme can be applied, but the equations are
a little different. The equation of the elliptic curve E is Y? = X3 +aX Z* + 526
in Jacobian coordinates, with a and b € F,. The integer a can be considered
to be (—3) as Brier and Joye have shown in [4]. Let | € N*, and G; C E(F,),
Gy CE(Fp), Gz C F;k be three groups of order [, and k be the smallest integer
such that [ divides (¢* — 1), k is called the embedding degree.

The most useful property in pairing based cryptography is bilinearity:
e([n]P,[m]Q) = e(P,Q)™™. A. Menezes gives a very good introduction to the
pairing based cryptography [15]. Among all the pairings used in cryptography,



three of them are constructed in the same way. The Miller algorithm [16] is an
important step for Weil, Tate and Ate pairings computation. These pairings are
described in the appendix A.

2.2 Miller algorithm

The following description of the Miller algorithm is referenced in chap. 16
of [6]. The Miller algorithm is the central step for the Weil, Tate and Ate
pairings computation. It is constructed like a double and add scheme using the
construction of [I]P and based on the notion of divisor, here we will only give
the indispensable elements for the pairing computation.

The Miller algorithm constructs the rational function Fp associated to the
point P, P is a generator of G; C E(Fy); and at the same time, it evaluates
Fp(Q) for a point Q € Go C E(F,+). P is a I'" root of the function Fp ( if we
use the divisor notion: Div(Fp) = IDiv(P) — IDiv(Px) ).

The algorithm is such that the construction and the evaluation of the function
Fp at point @ are done simultaneously.

Figure 1: Miller algorithm
Algorithm 1: Miller(P, Q,1)

Data: [ = (I,,...ly)(radix 2 representation), P € Gy and @ € Gba;
Result: Fp(Q) € Gs;
1: TP, fi—1 fl1—1,fs1, fy«1
fori=n—1to 0do
2: T« [2]T
3: f1— fi2 x h(Q)
4 flye— 17X W(Q)
if [; =1 then
5: T«—T+P
6: fo— foxha(Q)
T flae— flax W2(Q)

end
end
f1 f2 *
return 7 X IS IFqk

In algorithm 1, the function h; is the equation hj(x,y) = 0 of the tangent
line to the curve E at point T (that corresponds to the doubling [2]T) and h'y
corresponds to the vertical line at point [2]T. The second part is executed only
if the digit i*" of I considered is equal to one, and hy corresponds to the straight
line defined by T and P, h’s corresponds to the vertical line at point (T + P).
The Miller algorithm is used to compute the Weil, Tate and Ate pairings (see A).



2.3 Jacobian coordinates

We consider that the elliptic curve over I, is given in Jacobian coordinates:
E:Y? = X34 aXZ*+ 025 with a and b € F,. In Jacobian coordinates,
the point P is P = (Xp,Yp,Zp). To write P in affine coordinates we use the
relation P = (%7%71) for Zp # 0. As described in [13] and [1], for
optimisation reasons point @ is in affine coordinates. We need at least two
coordinates to find the point P, the third can be found using the elliptic curve

equation.
The equation of hq is:

hi(z,y) = Z3 2%y — 2Y?% - 3(X — Z*)(X + Z*)(Z%x — X)

where, T = (X,Y, Z) and [2]T = (X3,Y3, Z3) with Z5 = 2Y Z.
Capital letters are elements of F,, while lower case letters are elements of FF .

3 DPA attack

The basic idea of DPA in the context of the cryptanalysis is to correlate the
power consumed by the device with the processed data in order to retrieve the
secret, cipher key. In practice, the supply current measurements during a large
number of encryptions are recorded then divided over two sets by means of
a selection function and guesses on the secret key. The correct secret key is
identified among all the guesses thanks to a statistical analysis.

The transition on the output of a CMOS gate leads to a charge or a discharge
of the parasite capacitance C on inputs of downstream gates. In particular,
when the output switches from 0 to 1, the supply line sources a current and C is
charged (Figure 2 arrow (a)). Conversely, when the output switches from 1 to
0, the current coming from the capacitance is discharged to the ground (Figure
2 arrow (b)). Transitions from 0 to 0 and from 1 to 1 do not participate in the
overall power consumption of the circuit.

Figure 2: Power consumption in a CMOS circuit

Power dissipated by the circuit can be monitored by using a small resistor in
series between Vdd and the power supply. The current measured on this resistor



is the sum of all the currents due to gates that switch from 0 to 1. We now
introduce some theoretical issues that allow the reader to understand the
principle underlying the DPA attack. We consider the output of a gate whose
state depends on both the plain text under ciphering (primary inputs) and the
secret key. It is called target node.

We consider now a sequence of input patterns Py, Py, ..., P, that generate the
transitions T4 (Py — P1), T (P, — P),..., T, (Py—1 — P,) on the circuit pri-
mary inputs. A logic simulation of the circuit while monitoring the target node
allows classifying these input transitions in two sets, according to a guess on the
key:

e PA, composed by the transitions that make the target node to commute
from 0 to 1 and therefore that make the target gate to consume;

e PB, composed by the transitions that do not lead the target gate to
participate to the power consumed by the circuit (i.e., transitions from 0
to 0, from 1 to 1, and from 1 to 0 on the target node).

Figure 3 represents the power consumption of the device when stimulated by
numerous input vectors.We assume here that the guess on the secret key is cor-
rect. In other word, the simulation is performed with the key
actually used in the circuit from which power consumptions are collected. Each
rectangle represents the total power consumed by the circuit when a new vector
is applied to the inputs. In this figure, and just for clarity of explanation, the
power consumption is represented by a rectangle corresponding to the average
of the consumption over the transition time. In the following, this issue will be
re-defined in a more precise way.

Dﬂma‘ DHmDH

T )
Vectors belonging to PA Vectors belonging to PB

Nppe

Figure 3: Classification of sets PA and PB

The set of transitions on the circuit inputs is split in the two sets: in the
left part there are the PA transitions and the related consumptions while in the
right part there are the PB transitions and their corresponding consumptions.
A part of the power consumption related to the transitions belonging to PA is
due to the power consumed by the target gate (shaded rectangles). Obviously,
the commutation from 0 to 1 of non-target nodes also contribute to the power
consumption of the circuit but input transitions that leads to such commutations



are assumed to be evenly distributed to sets PA and PB. If a large number of
transitions are considered, mean consumptions related to sets PA and PB are
almost equal, except for the contribution of the target node.

In other words, since we classified the two sets in such a way that the set
PA always leads to a component of power consumption that is not present in
the set PB, the difference between the two mean powers computed from set PA
and set PB must show a noticeable difference.

During a DPA attack, the target node is chosen in such a way that it depends
on a small part of the key only, so that all the key suppositions can be considered.
For example, when DPA is conducted against Data Encryption Standard (for
which this type of attack has first introduced and it has shown its efficiency [14]),
the target node is chosen as the output of an SBox that depends on 6 input bits
and on 6 (of 54) secret key bits. Thus, only 64 key guesses are needed, instead
of 254,

For each key guess, the two sets PA and PB are created according to the
results of the logic simulation and the key guess under evaluation. The power
mean values are calculated for each set using the power traces measured on the
circuit under attack for each transition. Finally, the differences of the mean
values of the two sets are calculated. When the key guess is correct (and only in
this case), PA actually includes the input transitions that lead to a transition
0 to 1 on the target node while PB does not include any of these transitions.
The difference between the mean power obtained from PA and PB can be
observed in this case. On the contrary, when the curves are classed in PA
or PB independently from the actual value of the secret key, the two average
curves do not present any noticeable difference.

It is important to note that the actual attack is performed by measuring
and analyzing the instantaneous power consumptions over the whole transition
period, and not using the time-averaged value as shown in Figure 3. A real
attacker (without any knowledge about the hardware implementation of the
circuit) cannot know the exact instant when the target node commutes. So the
attacker needs to analyze the evolution of the power consumption in function
of the time. Figure 4 shows the appearance of the result of an attack over a
period of 1ns and 8 key guesses. Each of the 8 curves represents the difference
between the mean powers issued from the transitions classified in sets PA and
PB, in function of time. The curve that shows the higher peak (bold line in
Figure 4) corresponds to the correct key guess (if the attack has been successfully
conducted).

4 Description of the circuit

In order to validate the DPA attack on the Miller algorithm, we implemented
a circuit able to calculate the hi function. We focused on an 8-bit architecture
that performs all the calculations in modulo-251. Even if it is smaller than
an actual circuit for pairing calculation, it allows anyway validating the attack
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Figure 4: Appearance of the result of the DPA attack

principle. Indeed, DPA is performed focusing on a target node that depends
on a small part of the key only (usually no more than 8 bits so that exhaustive
analysis can be done). Therefore, also for a bigger architecture the DPA will
concentrate on a sub-part of the circuit that operates on 8-bit only.
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Figure 5: Circuit and algorithm for the calculation of h1(zg,yg)

The circuit is sketched in the left of Figure 5. The datapath includes 3
registers for the 3 components of the secret key (X,Y,Z), 3 working registers
(R1, R2, R3) and an ALU that implements a multiplication and a subtraction
between two input variables X and Y, and the multiplications by 2 and by 3
of the result of the multiplication. The control unit (CU) drives all the signals
to perform the calculation of the function hy. In particular, the CU processes



the input data (z¢g,yq) and computes the final result in 15 clock cycles. The
algorithm implemented by the CU is described in the right of Figure 5.

The circuit has been described in VHDL then synthesised using a 130nm
technology provided by STm [22]. The overall area is equal to 79059 equivalent
gates and the circuit can operate at 120 MHz.

5 DPA attack against Miller algorithm

5.1 Context of the attack

The aim of identity based encryption is that anyone is able to receive and more
importantly to read an encrypted message with almost no help, even if this
person is not a cryptographer. The user’s public key is equal to his identity,
and a trusted authority (74) sends him his private key. This trusted authority
creates all the private keys related to an Identity Based (IB) protocol. The
general scheme of identity based encryption is described in [5].

The important point during an IB protocol is that the decryption involves a
pairing computation between the private key of the user and a public key. We
call the public key the part of the message used during the pairing calculation
involving the secret key.

A potential attacker can know the algorithm used, the number of iterations
and the exponent. The secret is only one of the argument of the pairing. The
secret key influences neither the time execution nor the number of iterations of
the algorithm, which is different from RSA or AES protocols.

From here on, the secret will be denoted P and the public parameter (or the
point used by the attacker) ). We are going to describe a DPA attack against
the Miller algorithm. We restrict this study to the case where the secret is used
as the first argument of the pairing. If the secret is used as the second argument,
the same attack can be applied. We assume that the algorithm is implemented
on an electronic device like a smart card and used in a protocol involving IBC.
The attacker can send as many known entry () for the decryption operation of
IBC as he wants, and he can collect the power consumption curves.

5.2 Convention
5.2.1 Multiplication in F,

We describe the attacks as if we have k£ = 1, and then @) coordinates are element
of F,. This way, the multiplication Z%z¢ is a multiplication in F,. The DPA
attack works also when k > 1. Even if the multiplication Z%x¢ becomes a
multiplication between an element of F; and an element of IF », we can consider
a multiplication between two F, elements.

Indeed, zg € F,u is written : zg = f;oleifi, with (1,£,¢2,..., ¢ 1) a
basis of F,x, and; there exists a polynomial R such that deg(R) = k with
root of R, (R(€) = 0). Then Z3zo = Y. ¥} (Z% x 2q,) &, is composed of k



products in F,;. So we can focus on one of these k products in F, to apply the
DPA attack as described.

By the same way, to compute the difference (Z3zg — X), we compute a
difference between elements of I, as in the affine case.
Indeed, if Z3zq =317 (Z32q),£ then

Zprg — X = (Zpaq)y — X) + > _ 15 (Zhaq)i&

5.2.2 First iteration

We describe the attack for the first iteration. It is the simplest case, because
we know that for this iteration T'= P. We can provide the attack for the j**
iteration. For this iteration we find T = [j]P, where [j]P represents the scalar
multiplication of point P by the integer j.

We know [, the order of the point @,( as P and @ have the same order). By
counting the number of clock cycles we can find the number d of iterations we
have made before the DPA attack. Then reading the binary decomposition of [
gives us directly j. We consider that at the beginning j = 1, if [,,_; = 0 then
j « 2], else j « 25 + 1, and we go on, until we arrive to the (n — 1 — d)*" bit
of I.

If the attack is done during the j** iteration of the Miller algorithm, we find
the coordinates of [j]P. In order to find P, we just have to compute j the
inverse of j modulo [, and then P = [j']|[j]P.

Furthermore, we present the attack against the basic Miller algorithm. The
attack can be straightforwardly generalised to the optimised Miller algorithm
given in [13].

5.3 Description of the attack and results

In order to retrieve the secret key P = (Xp,Yp,Zp), the circuit has to be
used to perform some calculations while the power consumption of the physical
device is monitored. In particular, the measure of the consumed power must
be done during a time slot when the circuit calculates a result that depends on
both the secret key and some controllable input data. We decided to observe
the power consumption when the circuit performs the multiplication between
Z?% (a part of the secret key) and x¢ (the input data). This operation is done
during the second control step (see Figure 5). To retrieve the second part of the
key (Xp) we focused on the subtraction between the previously
performed multiplication and the key (third control step in Figure 5). The
last part of the key (Yp) can be mathematically inferred from Xp and Z3.
Indeed, the elliptic curve equation E : Y2 = X3 + X Z* + b2 is a quadratic
equation in Yp. The square root of /X3 +aXpZp +bZ% gives us two
possibilities for the value of Yp, testing them by an execution of the Miller




algorithm will give the correct coordinates for P.

To avoid the cost of the circuit manufacturing and the drawbacks of the real
experiments like experiment setup or noise management, we used an
integrated simulation environment for the Differential Power Analysis [8] that
returns power consumption traces from transistor level simulations. This DPA
suite also executes the statistical analysis as described in Section 3.
Historically the transistor level simulation of a big circuit was a very time
consuming process. Nowadays, thanks to new algorithms and higher
computation power of computers, it is possible to simulate circuits with
hundreds of thousands transistors in a reasonable time, typically in the
order of minutes. We used the Synopsys NanoSim [23] simulator that is an
advanced circuit simulator for analog, high-performance digital and mixed-signal
circuits. As proven in [8], the error obtained by electrical simulation is worthless
with respect to the purpose of the validation.

Figure 6: DPA attack against multiplication

The attack of the first part of the key (Z component) has been carried
out using 256 input vectors (256 transitions). As target node we considered
the output of the multiplication, before the Modulo-251 operation. Since Z is
coded over 8 bits, 256 = 2% key guesses must be evaluated. Figure 6 shows
the result of the attack. The curve corresponding to the correct key is clearly
identifiable among the 256 curves issued from the 256 key guesses since it has
the most noticeable pick among all the curves. This curve, and more generally
the curve corresponding to the highest integral value, corresponds to the biggest
difference between power measures issued from sets PA and PB and thus means
that transitions have been correctly assigned to the set PA (the target node
effectively switches from 0 to 1). On the time axis, the instant 0 corresponds to
beginning of the second control step.
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Concerning the second part of the key (control step 3), the experiment
disclosed that a higher number of input vectors must be used in order to
retrieve the correct key. It depends on the fact that the circuit that
implements the difference is much smaller than the multiplier, so its power
consumption is drowned in the global power consumption of the device and thus
less relevant. However, increasing the number of power traces allows generally
to show up even very small power consumptions. We used all the combinations
of input transitions for the variable xzg, thus 65280 input vectors. Figure 7
shows the result of attack. Also in this case the curve corresponding to the
correct key is identifiable but the confidence with which the decision is taken
is less significant. In particular, by just showing the curve that presents the
highest peak, the correct key guess cannot be found. The secret can be found
if the method used to search the right curve is based on a more sophisticated
analysis that calculates the integral of the curve. More details on search methods
for DPA can be found in [8].

Figure 7: DPA attack against difference
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6 Conclusion and further work

We have given the definition of pairings and highlight that a secret is used
in Identity Based Cryptography. In the past, pairing based cryptography did
not involve any secret, which is not the case for Identity Based Cryptography.
We presented and realised the first DPA attack against the Miller algorithm in
Jacobian coordinates.

Experimental results performed using electrical level simulation proved that
without any countermeasure the secret key can be discovered. As future work,
we will study some countermeasure techniques based on the three Coron
countermeasures [7]. The third Coron Countermeasure is the more efficient
against the attack we described. This countermeasure uses the Jacobian
homogeneity property:

(VAEF,, (XY, Z) = (NX,\°Y,\Z)) .

A spin off to the first Coron countermeasure was proposed by Page D. and
Vercauteren F. [19], it uses the pairing bilinearity property.  Indeed,
e«([s]P,[r]Q) = e« (P,Q)*" ( e.(P,Q) represents a pairing, no matter which),
thus for a couple (r, s) such that rs = 1 mod(l), this countermeasure involves
only two scalar multiplications on the curve before the pairing computation.
This countermeasure is efficient against the DPA attack, but it can be passed
by by increasing the number of curve traces. More theoretical countermeasure
to DPA attacks can be found in [6, chap. 27].
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A Pairing algorithm

A.1 Definition of Weil pairing

The Weil pairing is defined for P € G1, and @ € G3. We denote it ey, such
that:

ele1XG2 — Gg

(P.Q) — ew(P.Q) =P

Fo(P)

To calculate this pairing, The Miller algorithm is applied twice. The Miller Lite
is the calculation of Fp(Q), and the calculation of F(P) is the Full Miller part.

A.2 Definition of Tate pairing
By the same way, we define the Tate pairing, denoted ep:
er: Gy x Gy — Gs
(P.Q) =~ er(PQ)=Fp(@" T

Here, Fp(Q) is evaluated with the Miller Lite algorithm. Then, this value is

k
raised to the power - L by a classical exponentiation algorithm which can use

a sliding window approach.

A.3 Definition of the Ate pairing

Let ¢ be the trace of the Frobenius endomorphism on E see [6, chap. 5| for more
details. Let T =t —1, and N = ged(T* —1,¢* —1). P € Gy and Q € Gy, then
the Ate pairing between P and Q) is e4 :

GQ X G1 — G3
(QaP) = eA(Qap):FT,Q(P)
with cp = Y M0 TF 171t = kg" ! mod(l)

er@®-1)
N
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