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What about vulnerability to a fault attack

of the Miller algorithm during an

Identity Based Protocol?

September 20, 2008

Abstract

We complete the study of [16] and [20] about the Miller algorithm.
The Miller algorithm is a central step to compute the Weil, Tate and Ate
pairings. The aim of this article is to analyse the weakness of the Miller
algorithm when it undergoes a fault attack. We prove that the Miller
algorithm is vulnerable to a fault attack which is valid in all coordinate
systems, through the resolution of a nonlinear system. We show that the
�nal exponentiation is no longer a counter measure to this attack for the
Tate and Ate pairings.

Key words: Miller algorithm, Identity Based Cryptography, Fault
Attack.

1 Introduction

In 1984, A. Shamir challenged the cryptographer community to �nd a protocol
based on the user's identity [18]. This challenge was issued almost ten years
later by D. Boneh and M. Franklin. In 2003, D. Boneh and M. Franklin created
an identity-based encryption scheme based on pairings [4]. The aim of identity
based encryption is that anyone is able to receive and more importantly to read
an encrypted message with almost no help. The originality of such protocols
is that the user's public key is his identity, and a trusted authority sends him
his private key. This trusted authority creates all the private keys related to an
identity based protocol. The general scheme of an identity based encryption is
described in [4]. The important point is that to decipher a message using an
Identity Based Protocol, a computation of a pairing involving the private key
and the message is done. The particularity of Identity Based Cryptography is
that an attacker can know the algorithm used, the number of iterations and
the exponent. The secret is only one of the arguments of the pairing. The
secret key in�uences neither the execution time nor the number of iterations
of the algorithm. Fault attack against pairing based cryptography were �rst
developed three years ago ([16], [19] and [20]).
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In [16], D. Page and F. Vercauteren introduce a fault attack against the
Duursma and Lee algorithm. The fault attack consists in modifying the number
of iterations of the algorithm. We complete this idea in order to apply it to the
Miller algorithm, and we describe a way to realise this fault injection.

In [20], C. Whelan and M. Scott present a fault attack against the Weil
and Eta pairings. They consider the case when exactly the last iteration is
modi�ed by a fault injection. They deduce that the Miller algorithm is not
vulnerable to a fault attack, because the system obtained after the fault attack
is nonlinear and then impossible to solve. In [19] they conclude that if the
secret is used as the �rst argument of the pairing computation, then it cannot
be found. Contrary to their conclusion, we show that even if the secret is the
�rst argument of the pairing, we can discover it with a fault attack, and solve
the nonlinear system obtained after the fault attack on the Miller algorithm.
Moreover, we generalise the fault attack to every iteration of the algorithm, not
only the last one. Both articles considered a�ne coordinates. We show that in
every coordinate systems, our attack will give us the result.

Our contribution is to generalise the fault attack to the Miller algorithm, not
only for the last iteration, but for every possible iterations; and to demonstrate
that for all the coordinate systems (a�ne, projective, Jacobian, and Edwards
coordinates) a fault attack against the Miller algorithm can be done through
the resolution of a nonlinear system. This demonstration will be followed by
discussion about the weakness to this fault attack of pairings based on the
Miller algorithm. We show that the Weil pairing is directly sensitive to the
fault attack described. Some methods to override the �nal exponentiation are
given, and then, for a motivated attacker, the �nal exponentiation will no longer
be a natural counter measure for the Tate and Ate pairings [6].

The outline of this article is as follow. First we will give a short introduction
to pairing and to the Miller algorithm in Section 2. Section 3 presents our
fault attack against the Miller algorithm, Section 4 analyses the vulnerability
of pairings using the Miller algorithm as a central step, �nally, we give our
conclusion in Section 5.

2 Pairings and the Miller algorithm

2.1 Short introduction to the pairing

We will consider pairings de�ned over an elliptic curve E over a �nite �eld Fq, for
q a prime number. In the case where q is a power of a prime number, while the
equations are a slightly di�erent the same scheme can be applied. We describe
the attack for calculations in Jacobian coordinates. The a�ne, projective and
Edwards coordinates cases are considered in Section 3.3.4.

We will consider the Weierstrass elliptic curve in Jacobian coordinates :
Y 2 = X3 + aXZ4 + bZ6, with a and b ∈ Fq. The integer a can be considered
to be (−3) as Brier and Joye have shown in [5]. Let l ∈ N∗, and k be the
smallest integer such that l divides (qk − 1), k is called the embedding degree.
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Let G1 ⊂ E(Fq), G2 ⊂ E(Fqk), G3 ⊂ F∗qk , be three groups of order l.

Definition 2.1:

A pairing is a bilinear and non degenerate function: e : G1 ×G2 → G3.

The most useful property in pairing based cryptography is bilinearity:
e([n]P, [m]Q) = e(P,Q)nm. A very good introduction to the pairing based
cryptography is guven by A. Menezes in [14]. Four di�erent pairings are used in
cryptography, and three of them are constructed in the same way. The Miller
algorithm [15] is the central step for Weil, Tate and Ate pairings computations.

2.2 Miller algorithm

The following description of the Miller algorithm is referenced in [7, chapter 16].
The Miller algorithm is the most important step for the Weil, Tate and Ate

pairings computation. It is constructed like a double and add scheme using the
construction of [l]P . The Miller algorithm is based on the notion of divisors.
We only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function FP associated to the
point P , where P is a generator of G1 ⊂ E(Fq); and at the same time, it
evaluates FP (Q) for a point Q ∈ G2 ⊂ E(Fqk).

Algorithm 1: Miller(P,Q, l)
Data: l = (ln . . . l0)(radix 2 representation), P ∈ G1(⊂ E(Fq)) and

Q ∈ G2(⊂ E(Fqk));
Result: FP (Q) ∈ G3(⊂ F∗qk);
1 : T ← P
2 : f1 ← 1
3 : f2 ← 1
for i = n− 1 to 0 do

4 : T ← [2]T , where T = (X, Y, Z) and [2]T = (X2, Y2, Z2)
5 : f1 ←− f1

2 × h1(Q)
if li = 1 then

6 : T ← T + P
7 : f1 ←− f1 × h2(Q)

end

end

return f1

Algorithm 1 is a simpli�ed version of the Miller algorithm (see [14] or [3]).
The original algorithm is given in Section A.1. Without loss of generality we
can consider this simpli�ed Miller algorithm. We will see in Section 4.1 that the
conclusions for the original algorithm are the same.

In algorithm 1, the function h1 is the equation h1(x, y) = 0 of the tangent to
the curve E at the point T (that corresponds to the doubling [2]T ), the second
function is done only if the digit of l considered is equal to one, and h2 is the
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equation of the straight line de�ned by T and P . The equations are given in
Section 3.3.

3 Fault Attack against the Miller algorithm

From here on, the secret key will be denoted P and the public parameter Q. We
are going to describe a fault attack against the Miller algorithm. We assume
that the algorithm is implemented on an electronic device (like a smart card).
We restrict this study to the case where the secret is used as the �rst argument
of the pairing. If the secret is used as the second argument, the same attack can
easily be applied as it is explained in Section 3.3.5. Thus whatever the position
of the secret point, we can recover it.

The goal of a fault injection attack is to provoke mistakes during the
calculation of an algorithm, for example by modifying the internal memory,
in order to reveal sensitive data. This attack needs a very precise positioning
and an expensive apparatus to be performed. Nevertheless, new technologies
could allow for this attack [10].

3.1 Description of the fault attack

We complete the scheme of attack described in [16] to use it against the Miller
algorithm. In [16] the attack consists in modifying the number of iterations.
We complete the idea of [16] by giving a precise description of the attack, by
computing the probability of �nding suitable number of iterations and by
adapting it to the Miller algorithm case.

We assume that the pairing is used during an Identity Based Protocol, that
the secret point P is introduced in a smart card or an electronic device as the
�rst argument of the pairing. If the secret key is the second argument, then it
is easier to �nd it, as it is explained in Section 3.3.5. The aim of the attack is to
�nd P in the computation of e(P,Q). We assume that we have as many public
point Q as we want, and for each of them we can compute the pairing between
the secret point P and the point Q. In order to �nd the secret P , we modify
the number of iterations in the Miller algorithm by the following way.

First of all, we have to �nd the �ip-�ops belonging to the counter of the
number of iterations (i.e. l) in the Miller algorithm. This step can be done by
using reverse engineering procedures. In classical architecture, the counter is
divided into small piece of 8 bits. We want to �nd the piece corresponding with
the less signi�cant bits of the counter. To �nd it, we make one normal execution
of the algorithm, without any fault. Then we choose one piece of the counter,
and provoke disturbances in order to modify it and consequently the number of
iterations of the Miller algorithm. For example the disturbance can be induced
by a laser [2]. Lasers are today thin enough to make this attack realistic [10].
Counting the clock cycles, we are able to know how many iterations the Miller
loop has done. If the di�erence between the new number of iterations and the
number of non modi�ed iterations is smaller than 28, then we �nd the correct
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piece. If not, we repeat this manipulation until we �nd the piece of the counter
corresponding to the less signi�cant bits.

Once the less signi�cant bits are found, we make several pairing
computations and for each of them we modify the value of the counter. Each
time, we record the value of the Miller loop and the number of iterations we
made. The aim is to obtain a couple (d, d + 1) of two consecutive values,
corresponding to d and d + 1 iterations during the Miller algorithm, we give
the probability to obtain such couple in Section 3.2.1.

3.2 The dth step

We execute the Miller algorithm several times. For each execution we provoke
a disturbance in order to modify the value of l, until we �nd the result of the dth

and (d + 1)th iterations of algorithm 1. We denote the two results by Fd,P (Q)
and Fd+1,P (Q). To conclude the attack, we consider the ratio

Fd+1,P (Q)
Fd,P (Q)2 . By

identi�cation in the basis of Fqk , we are lead to a system which can reveal the
secret point P , which is described in Section 3.3.

3.2.1 The probability

The important point of this fault attack is that we can obtain two
consecutive couples of iterations, after a realistic number of tests. The number
of picks with two consecutive number is the complementary of the number of
picks with no consecutive numbers. The number B(n, N) of possible picks of n
numbers among N integers with no consecutive number is given by the following
recurrence formula:

N ≤ 0, n > 0, B(n, N) = 0,
∀N,n = 0B(n, N) = 1

B(n, N) =
∑N

j=1

∑n
k=1 B(n− k, j − 2).

With this formula, we can compute the probability to obtain two consecutive
numbers after n picks among N integers. This probability P (n, N) is

P (n, N) = 1− B(n, N)
Cn

n+N

The probability for obtaining two consecutive numbers is su�ciently large
to make the attack possible. In fact, for an 8-bits architecture only 15 tests are
needed to obtain a probability larger than one half, P (15, 28) = 0.56.

3.2.2 Finding j

After d iterations, if we consider that the algorithm 1 has calculated [j]P then
during the (d+1)th iteration, it calculates [2j]P and considering the value of the
(d + 1)th bit of l, it either stops, or it calculates [2j + 1]P . Q has order l,( as P
and Q have the same order). By counting the number of clock cycles during the
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pairing calculation, we can �nd the number d of iterations. Then reading the
binary decomposition of l gives us directly j. We consider that at the beginning
j = 1, if ln−1 = 0 then j ← 2j, otherwise j ← 2j + 1, and we continue, until we
arrive at the (n− 1− d)th bit of l. For example, let l = 1000010000101 in basis
2, and d = 5. At the �fth iteration j = 65.

3.3 Curve and equations

In [16] and [20], only the a�ne coordinates case is treated. In this case, a simple
identi�cation of the element in the basis of Fqk gives the result. We demonstrate
that for every coordinate systems, the fault attack against the Miller algorithm
is e�cient. We describe it for example in Jacobian coordinates. The di�erence
between with the cases described in [16] and [20] is that we solve a nonlinear
system.

3.3.1 The embedding degree

In order to simplify the equations, we consider case k = 4. As the important
point of the method is the identi�cation of the decomposition in the basis of
Fqk , it is easily applicable when k is larger than 3. k = 3 is the minimal value
of the embedding degree for which the system we obtain in Section 3.3.2 can be
solve "by hand", without the resultant method described in Section 3.3.3. We
use k = 4 in order to make the demonstration easier.

We denote B = {1, ξ,
√

ν, ξ
√

ν} the basis of Fqk , this basis is constructed by a
tower extensions. P ∈ E(Fq) is given in Jacobian coordinates,
P = (XP , YP , ZP ) and the point Q ∈ E(Fqk) is in a�ne coordinates. As k
is even, we can use a classical optimisation in pairing based cryptography which
consists in using the twisted elliptic curve to write Q = (x, y

√
ν), with x, y and

ν ∈ Fqk/2 and
√

ν ∈ Fqk , for more details we refer the reader to [3].
The equations of the function h1 and h2 in the Miller algorithm are the

following:



P = (XP , YP , ZP ),
Q = (x, y

√
ν)

T = (X, Y, Z)
h1(x, y

√
ν) = Z3Z

2y
√

ν − 2Y 2 − 3(X − Z2)(X + Z2)(xZ2 −X),
with Z3 = 2Y Z in step 5,

h2(x, y
√

ν) = Z3y
√

ν − (YP Z3 − Y Z3
P )x− (XpY Zp −XYP Z),

with Z3 = ZZP (XP Z2 −XZ2
P ) in step 7.

As we make random modi�cations of l during the fault attack, we suppose
that we stop the Miller algorithm at its dth step. Moreover, as the point P is
of order l, it is su�cient to observe what happens for d < l, because:
[j + ρl]P = [j]P for ρ ∈ N, so we consider 1 ≤ d < l.
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3.3.2 Case 1: ld+1 = 0

We know the results of the dth and (d + 1)th iterations of the Miller
algorithm, Fd,P (Q) and Fd+1,P (Q). We examine what happens during the
(d + 1)th iteration.

At the step 4 of the Miller algorithm we calculate [2j]P = (X2j , Y2j , Z2j)
and store the result in the variable T . The coordinates of [2j]P are given by
the following formula:

X2j = −8XjY
2
j + 9(Xj − Z2

j )2(Xj + Z2
j )2,

Y2j = 3(Xj − Z2
j )(Xj + Z2

j )(4XjY
2
j −X2)− 8Y 4

j ,
Z2j = 2YjZj .

where we denote [j]P = (Xj , Yj , Zj).
Step 5 then gives:

Fd+1,P (Q) = (Fd,P (Q))2×
(
Z2jZ

2
j y
√

ν − 2Y 2
j − 3(Xj − Z2

j )(Xj + Z2
j )(xZ2

j −Xj)
)
.

As we suppose that ld+1 = 0, the additional step is not done. The return result
of the Miller algorithm is Fd+1,P (Q). We dispose of Fd,P (Q), Fd+1,P (Q) and
the point Q = (x, y

√
ν), with x and y ∈ Fq2 . Recall that the coordinates of Q

can be freely chosen.

We can calculate the value R ∈ F∗qk of the ratio
Fd+1,P (Q)

(Fd,P (Q))2
,

R = R3ξ
√

ν + R2

√
ν + R1ξ + R0,

where R3, R2, R1, R0 ∈ Fq.
Moreover, we know the theoretical form of R in the basis B = {1, ξ,

√
ν, ξ
√

ν}
which depends of coordinates of [j]P and Q:

R = 2YjZ
3
j y
√

ν − 3Z2
j (X2

j − Z4
j )x− 3Xj(X2

j − Z4
j )− 2Y 2

j .

As the point Q = (x, y
√

nu) is known, we know the decomposition of
x, y ∈ Fqk/2 , x = x0 + x1ξ, y = y0 + y1ξ, where (1, ξ) de�nes the basis of
Fqk/2 , and the value of x0, x1, y0, y1. Furthermore, Xj , Yj , and Zj are in Fq.

Consequently, with the exact value of R in Fqk , the coordinates of point Q
and the theoretical expression of R depending on the coordinates of P and Q,
we obtain the following system of equations in Fq, by identi�cation in the basis
of Fqk . 

2YjZ
3
j y1 = R3,

2YjZ
3
j y0 = R2,

(−3Z2
j (X2

j − Z4
j ))x1 = R1,

(−3Z2
j (X2

j − Z4
j ))x0 − 3Xj(X2

j − Z4
j )− 2Y 2

j = R0.
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This system can be simpli�ed to the following (where we know value of λ0,1,2):

YjZ
3
j = λ2 (1)

Z2
j (X2

j − Z4
j ) = λ1 (2)

3Xj(X2
j − Z4

j ) + 2Y 2
j = λ0 (3)


This nonlinear system can be solve by the following way. Equation (1) gives

Yj as a function of Zj , then equation (2) gives 3(X2
j − Z4

j ) as a function of
Zj . Substituting this expression in equation (3) gives Xj as a function of Zj ,
substituting this expression of Xj in equation (2), we obtain a degree 12 equation
in Zj :

(λ2
0 − 9λ2

1)Z
12 − (4λ0λ

2
2 + 9λ3

1)Z
6 + 4λ4

1 = 0

This equation in Zj admits by construction the point P as a solution. As the
degree is even, this equation admits automatically at least an other solution,
and at worst 12 solutions. We can use the function factorff in PariGP, a
software for mathematical computation [17], to obtain the factorization of the
equation in Zj in Fq, and consequently the solutions of this equation. Using
equation (2) we can express Xj in Zj , and the �rst equation gives Yj . Solving
the equation in Zj , we �nd at most 24 = 12× 2× 1 possible triplets (Xj , Yj , Zj)
for the coordinates of the point [j]P . In practice we �nd at most eight possible
solutions for Zj , one example is given in annex B. Once we have the coordinates
of [j]P , to �nd the possible points P , we have to �nd j′ the inverse of j modulo
l, and then calculate [j′][j]P = [j′j]P = P . Using the elliptic curve equation,
we eliminate triplets that do not lie on E. Then we just have to perform Miller
algorithm with the remaining points and compare with the result obtained with
the secret point P . So we recover the secret point P , in the case where ld+1 = 0.

3.3.3 Case 2: ld+1 = 1

In this case, the (d + 1)th iteration involves the addition in the Miller
algorithm. The doubling step is exactly the same, for the addition step, we have
to consider [2j + 1]P = (X2j+1, Y2j+1, Z2j+1) knowing that [j]P = (Xj , Yj , Zj),
[2j]P = (X2j , Y2j , Z2j) and P = (XP , YP , ZP ).

As we have that

h2(X, Y ) = Z2j+1y
√

ν − (YP Z3
2j − Y2jZ

3
P )x− (XP Y2jZP −X2jYP Z2j),

only the coordinate Z2j+1 appears in Step 7 of algorithm 1, and
Z2j+1 = ZP Z2j(XP Z2

2j −X2jZ
2
P ).

At the (d + 1)th iteration we have to calculate:

Fd+1,P (Q) = (Fd,P (Q))2 × h1(Q)h2(Q).
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This time, the unknown values are Xj , Yj , Zj and XP , YP , ZP in the ratio
R = h1(Q)h2(Q). With the value of R and Q, and the theoretical expression
of R, by identi�cation we obtain four equations in the six unknown value. The
elliptic curve equation will give us two others equation, as P and [j]P ∈ E(Fq).

W1(XP , YP , ZP , Xj , Yj , Zj) = λ1,
W2(XP , YP , ZP , Xj , Yj , Zj) = λ2,
W3(XP , YP , ZP , Xj , Yj , Zj) = λ3,
W4(XP , YP , ZP , Xj , Yj , Zj) = λ4,

Y 2
P −X3

P + 3XP Z4
P − bZ6

P = 0
Y 2

j −X3
j + 3XjZ

4
j − bZ6

j = 0

Where, W1,2,3,4() is a polynomial and λ1,2,3,4 ∈ Fq. We get then a slightly
more di�cult system to solve, but giving us the coordinates of P directly, as
coordinates of P are solution of the system. We can use the resultant method
to �nd the coordinates of the point P . Considering two polynomials S1(X, Y )
and S2(X, Y ), if they are seen as polynomials in X with coe�cients in Fq[Y ],
then the resultant of S1 and S1 is a polynomial in Y whose roots are solution
of the system composed with S1(X, Y ) and S2(X, Y ). A succession of resultant
will give an equation in only one unknown value. Experiments show that this
equation is of degree 48, but this equation have at most 8 solutions. We can
use the function polresultant in PariGP to compute the resultant.

3.3.4 Other coordinates

To not overload the explanation, we consider only the case ld+1 = 0, the other
case can be done exactly the same way.

A�ne coordinates system has been studied in [16] and in [20]. The authors
consider the case k = 2. With our method, we can �nd the secret point even if
k = 1. The ratio of two consecutive iterations in the Miller algorithm will be as
following: R = αxj + βyj + γ, considering the elliptic curve equation we obtain
a system:

αxj + βyj + γ = R (4)
y2

j = x3
j + axP + b (5)


Where, α, β and γ are known constants, and a, b de�ne the elliptic curve
equation. The �rst equation gives yj in fonction of xj . Injecting this equality
in equation (5) gives a degree 4 equation in xj . We know that this equation
admits at least one solution, namely the value xj . Consequently as it is an even
equation, two solutions, and at worst 4 solutions. Once we have the possible
values for xj , we can �nd yj . We obtain at most 8 couple of possible solutions,
trying each one in a Miller computation will give the correct one. So for all the
value of k, the fault attack can recover the secret point P .

The projective coordinates system has not been studied in literature. We
just apply the same method as in the Jacobian case, we need k to be larger than
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3 to �nd 3 equations in the 3 unknown coordinates. Considering the ratio R, we
obtain a nonlinear system in coordinates of [j]P . The system is the following:

Z2
j = λ0 (6)

Zj(3Xj + aZ2) = λ1 (7)
X(3Xj + aZ2) + Y Z = λ3 (8)


This system is quite easy to solve, we �nd Zj from the �rst equation, two possible
values. Then equation (7) give 2 possible values for Xj . Finally equation (8)
gives 4 possible values for Yj . As a result we obtain at most 16 triplets of
possible solutions. We can also �nd the secret P , if k = 2, but we have to use
the resultant method with the two equations obtained by identi�cation in the
base of Fq2 , and the elliptic curve equation.

The Edwards coordinates are new equations for elliptic curve introduced by
H. Edwards one year ago [9]. Using the equation of the pairing calculation
proposed in [11], we �nd a nonlinear system of k equations using the equality
l(x,y)
v(x,y) = R, where l(x, y) de�nes the equation of the line for the doubling or

the addition of point, and v(x, y) the vertical line at the current point of the
Miller algorithm. This system is solvable with the resultant method. To solve
the system in Edwards coordinates we need k to be greater than 2.

3.3.5 When the secret is the second argument of the pairing

If the point Q is secret during the pairing computation, all the system
written above are linear in Q coordinates, so it can be recover very easily, by
identi�cation in the base of Fqk .

4 Vulnerability of pairings based on the Miller

algorithm

4.1 Weil pairing

The Weil pairing is directly sensitive to the attack, as it is composed of two
Miller algorithm executions.

Indeed, the Weil pairing is de�ned as eW (P,Q) = FP (Q)
FQ(P ) .

We consider that the same modi�ed l is used for the Miller Lite and the Full
Miller part. We can apply the attack described above, we describe it with the
simpli�ed version of the Miller algorithm, the equations with the original Miller
algorithm A.1 are similar.

Let H1 and H2 be the equations used in the steps 5 and 7, in the Full Miller
part. For example, H1(P ) is the equation of the tangent at point T in the Full
Miller algorithm, and at this moment T = [2j]Q.

The ratio R between the result of two consecutive iterations is then h1(Q)
H1(P ) = R,

the system obtained after the identi�cation of the element in the basis of Fqk
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is composed of 4 equations with 6 unknown values. Using the elliptic curve
equation it can be solved with the resultant method exactly as in 3.3.3. If the

original algorithm is employed, the ratio R becomes: h1(Q)H2(P )
h2(Q)H1(P ) , and the same

method can be applied.

4.2 Tate and Ate pairings

The Tate and Ate pairings are constructed on the same model, one
execution of the Miller algorithm plus a �nal exponentiation, for example the

Tate pairing is eT (P,Q) = (FP (Q))
qk−1

l . The �rst di�culty in attacking these

two pairings with our scheme is to �nd a ( qk−1
l )th root of the result.

The conclusion in [20] was that the �nal exponentiation is a natural
countermeasure to the fault attacks. However, several method exist in
literature in the microelectronic community to read the intermediary result
during a computation on a smart card, or to override the �nal exponentiation.

We describe one of them, the scan attack against smart card, presented by
D. Ellie and R. Karri in [8]. This scan attack consists of reading the intermediary
state in the smart card. All smart cards contains an access, the scan chains,
for testing the chip, which allows for this scan attack. The method of a scan
attack is to scan out the internal state in test mode. This scanning gives us all
the intermediary states of the smart card. So if the computation are stopped
exactly before the exponentiation, a scan attack can give the result of the Miller
algorithm.

Other attacks to override the �nal exponentiation exist, they are quitte
di�cult to realise but not unrealistic. For exemple, the under voltage
technique [2] or the combination of the cipher instruction search attack
realised by M. Khun and described in [2] which consists in recognizing enciphered
instructions from their e�ect and the use of a focused ion beam workstation to
access the EEPROM. A taxonomy of attackers has been done in [1], to realise
the fault attack describe above, we consider that we were a class II attacker
(knowledge insider). In order to perform the scan, under voltage and cipher
instruction search, the attacker must be a class III, i.e. a funded organisation.
Some material counter measures exist to prevent the modi�cation of the memory
by light or electromagnetic emissions, for example a shield. It is also possible
to add a Hamming code at the end of the register to detect the fault [13], or to
use an asynchrone clock.

5 Conclusion

We have presented in this paper the vulnerability to a fault attack of the Miller
algorithm when it is used in an Identity Based Protocol. The attack consists
in modifying the internal counter of an electronic device to provoke shorter
iterations of the algorithm, we consider all the possible iterations. We describe
precisely the way to realise this fault attack. We give the probability of obtaining
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two consecutive iterations, and we �nd out that a small number of tests are
needed to �nd two consecutive results.

We consider the case when the point P , the �rst argument of the Miller
algorithm, is secret. The result of the fault attack is a nonlinear system, whose
variables are coordinates of P and Q. We describe the method to solve this
nonlinear system. If the secret is the second point Q, our scheme is also
applicable and the nonlinear system becomes a linear system, which is easier
to solve. Thus, whatever the position of the secret point, our fault attack will
recover it. Moreover, we have described the resolution in Jacobian coordinates,
but the scheme is the same in a�ne, projective and Edwards coordinates and
we explain how to solve it.

Then, we have analised the weakness to this fault attack of pairing based
on the Miller algorithm. The Weil pairing is directly sensitive to this attack.
The Tate and Ate pairings present a �nal exponentiation which previously
protect them against this fault attack. We introduce attacks used for a while in
the microelectronic community to override the �nal exponentiation in the Tate
and Ate pairings. The scan attack, the under voltage attack and the cipher
instruction search are three di�erent attacks which allow the attacker to get the
result of the Miller iteration before the �nal exponentiation.

As a conclusion, we can say that the fault attack is a threat against the
Miller algorithm, and consequently to pairings based on the Miller algorithm.
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A Pairing algorithm

A.1 Original Miller algorithm

Algorithm 2: Miller(P,Q, n)
Data: n = (nl . . . n0)(radix 2 representation), P ∈ G1(⊂ E(Fp)) and

Q ∈ G2(⊂ E(Fpk));
Result: FP (Q) ∈ G3(⊂ F∗pk);
T ← P
f1 ← 1
f2 ← 1
for i = l − 1 to 0 do

T ← [2]T1

f1 ←− f1
2 × h1(Q)

f2 ←− f2
2 × h2(Q) (where Div(h1

h2
) = 2(T )− ([2]T )− P∞)

if ni = 1 then2

T ← T ⊕ P
f1 ←− f1 × h1(Q)
f2 ←− f2×h2(Q) (where Div(h1

h2
) = (T )+DP − ((T )⊕DP )−P∞)

end

end

return f1
f2

B Example

We compute this exemple using PariGP.
k = 4

p = 6802412203485154774779492598941919023699396553915
04568151207016994661689050587617052536187229749 (319 bit)

E : Y 2 = X3 + 3XZ4

card(E(Fp)) = 6802412203485154774779492598941919023699
39655390338170945836123217606411022317222264735061564936 (319 bit)

l = 1166397205370893777055276948271688598347500051217 (160 bit)

P = [12, 48, 2]

To construct Fqk , we use the element a ∈ Fqk such that a4 = 2

Q = [a2, 1005129166299994575340835479325419003672947435826922
06264363320753064855041994266311971573488636 ∗ a]

14



We stop the Miller algorithm at the 46th iteration.

The ratio R is:
3372595864680806834883995390462298747959732423223390945776724853
34431934756557508827480079490557× a2 +
62475206273985700946754583669539512707198332150718817432154315377022
8940196002139337802972603156× a +
29046629501491569856015677439404648180692847487351663167681069205667
4915620683567856541417846103

Written down the equations we obtain the following system:



YjZ
3
j = λ2 =

52642153715028659889670329848
314998596758020739854459013317177628507
9049014186714839235255813297

3Z2
j (X2

j − Z4
j ) = λ1 =

47514830941754363936962131134
61360138334603914008912641271
60029381884835668719747434801612007813

3Xj(X2
j − Z4

j )− 2Y 2
j = λ0 =

389774925333599778917792485
500145420563011180517987936
474396324937986773429904049195994769383646

(λ2
0 − 9λ2

1)Z
12 − (4λ0λ

2
2 + 9λ3

1)Z
6 + 4λ4

1 = 0

The function factorff(f(Z),p) in PariGP gives six di�erent solutions in
Z.

[Mod(1660728175872055618509152840075099142307465465155823285225045179343
59493296306626253218820537301, p),Mod(1861294396239523882904990499017
50065782778388777506228654648579224687036546331407445908022796608, p),
Mod(32803896313735752733653492598493192235641472009841601097405391983561
5159207949583353409343895840, p),Mod(35220225721115795014141433390
9259980013524935293088557177153097159046529842638033699126843333909, p),
Mod(49411178072456308918745020999244183658716126661399833949655843776997
4652504256209606628164433141, p),Mod(514168402761309915627033975
886681988139193108875922239628702499060302195754280990799317366692448, p)]

Among all the possible triplet the six are on the elliptic curve

We �nd the inverse modulo p of 46 and compute the six possibilities for P .
Then we just have to perform six Miller algorithms and compare with the result
obtained with the secret point P .
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