What about vulnerability to a fault attack of the Miller algorithm during an Identity Based

Keywords: Miller algorithm, Identity Based Cryptography, Fault Attack. Let

Protocol?

Introduction

In 1984, A. Shamir challenged the cryptographer community to nd a protocol based on the user's identity [START_REF] Shamir | Identity Based Cryptosystems and Signature Schemes, Advances in Cryptology Crypto[END_REF]. This challenge was issued almost ten years later by D. Boneh and M. Franklin. In 2003, D. Boneh and M. Franklin created an identity-based encryption scheme based on pairings [START_REF] Boneh | Identity-based encryption from the Weil pairing[END_REF]. The aim of identity based encryption is that anyone is able to receive and more importantly to read an encrypted message with almost no help. The originality of such protocols is that the user's public key is his identity, and a trusted authority sends him his private key. This trusted authority creates all the private keys related to an identity based protocol. The general scheme of an identity based encryption is described in [START_REF] Boneh | Identity-based encryption from the Weil pairing[END_REF]. The important point is that to decipher a message using an Identity Based Protocol, a computation of a pairing involving the private key and the message is done. The particularity of Identity Based Cryptography is that an attacker can know the algorithm used, the number of iterations and the exponent. The secret is only one of the arguments of the pairing. The secret key inuences neither the execution time nor the number of iterations of the algorithm. Fault attack against pairing based cryptography were rst developed three years ago ( [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF], [START_REF] Whelan | Side Channel Analysis of Practical Pairing Implementation: Which Path is More Secure ?[END_REF] and [START_REF] Whelan | The Importance of the Final exponentiation in Pairings when considering Fault Attacks Lecture Notes in Computer Science[END_REF]).

In [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF], D. Page and F. Vercauteren introduce a fault attack against the Duursma and Lee algorithm. The fault attack consists in modifying the number of iterations of the algorithm. We complete this idea in order to apply it to the Miller algorithm, and we describe a way to realise this fault injection.

In [START_REF] Whelan | The Importance of the Final exponentiation in Pairings when considering Fault Attacks Lecture Notes in Computer Science[END_REF], C. Whelan and M. Scott present a fault attack against the Weil and Eta pairings. They consider the case when exactly the last iteration is modied by a fault injection. They deduce that the Miller algorithm is not vulnerable to a fault attack, because the system obtained after the fault attack is nonlinear and then impossible to solve. In [START_REF] Whelan | Side Channel Analysis of Practical Pairing Implementation: Which Path is More Secure ?[END_REF] they conclude that if the secret is used as the rst argument of the pairing computation, then it cannot be found. Contrary to their conclusion, we show that even if the secret is the rst argument of the pairing, we can discover it with a fault attack, and solve the nonlinear system obtained after the fault attack on the Miller algorithm. Moreover, we generalise the fault attack to every iteration of the algorithm, not only the last one. Both articles considered ane coordinates. We show that in every coordinate systems, our attack will give us the result.

Our contribution is to generalise the fault attack to the Miller algorithm, not only for the last iteration, but for every possible iterations; and to demonstrate that for all the coordinate systems (ane, projective, Jacobian, and Edwards coordinates) a fault attack against the Miller algorithm can be done through the resolution of a nonlinear system. This demonstration will be followed by discussion about the weakness to this fault attack of pairings based on the Miller algorithm. We show that the Weil pairing is directly sensitive to the fault attack described. Some methods to override the nal exponentiation are given, and then, for a motivated attacker, the nal exponentiation will no longer be a natural counter measure for the Tate and Ate pairings [START_REF] Boneh | On the importance of checking cryptographic protocols faults[END_REF].

The outline of this article is as follow. First we will give a short introduction to pairing and to the Miller algorithm in Section 2. Section 3 presents our fault attack against the Miller algorithm, Section 4 analyses the vulnerability of pairings using the Miller algorithm as a central step, nally, we give our conclusion in Section 5.

2 Pairings and the Miller algorithm

Short introduction to the pairing

We will consider pairings dened over an elliptic curve E over a nite eld F q , for q a prime number. In the case where q is a power of a prime number, while the equations are a slightly dierent the same scheme can be applied. We describe the attack for calculations in Jacobian coordinates. The ane, projective and Edwards coordinates cases are considered in Section 3.3.4. We will consider the Weierstrass elliptic curve in Jacobian coordinates : Y 2 = X 3 + aXZ 4 + bZ 6 , with a and b ∈ F q . The integer a can be considered to be (-3) as Brier and Joye have shown in [START_REF] Brier | Point multiplication on elliptic curves through isogenies[END_REF]. Let l ∈ N * , and k be the smallest integer such that l divides (q k -1), k is called the embedding degree.

The following description of the Miller algorithm is referenced in [7, chapter 16].

The Miller algorithm is the most important step for the Weil, Tate and Ate pairings computation. It is constructed like a double and add scheme using the construction of [l]P . The Miller algorithm is based on the notion of divisors. We only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function F P associated to the point P , where P is a generator of G 1 ⊂ E(F q ); and at the same time, it evaluates Data: l = (l n . . . l 0 )(radix 2 representation), P ∈ G 1 (⊂ E(F q )) and

F P (Q) for a point Q ∈ G 2 ⊂ E(F q k ).
Q ∈ G 2 (⊂ E(F q k )); Result: F P (Q) ∈ G 3 (⊂ F * q k ); 1 : T ← P 2 : f 1 ← 1 3 : f 2 ← 1 for i = n -1 to 0 do 4 : T ← [2]T , where T = (X, Y, Z) and [2]T = (X 2 , Y 2 , Z 2 ) 5 : f 1 ←-f 1 2 × h 1 (Q) if l i = 1 then 6 : T ← T + P 7 : f 1 ←-f 1 × h 2 (Q) end end return f 1
Algorithm 1 is a simplied version of the Miller algorithm (see [START_REF] Menezes | An introduction to pairing-based cryptography Notes from lectures given in Santander[END_REF] or [START_REF] Bajard | Pairing in cryptography: an arithmetic point de view[END_REF]). The original algorithm is given in Section A.1. Without loss of generality we can consider this simplied Miller algorithm. We will see in Section 4.1 that the conclusions for the original algorithm are the same.

In algorithm 1, the function h 1 is the equation h 1 (x, y) = 0 of the tangent to the curve E at the point T (that corresponds to the doubling [2]T ), the second function is done only if the digit of l considered is equal to one, and h 2 is the equation of the straight line dened by T and P . The equations are given in Section 3.3.

Fault Attack against the Miller algorithm

From here on, the secret key will be denoted P and the public parameter Q. We are going to describe a fault attack against the Miller algorithm. We assume that the algorithm is implemented on an electronic device (like a smart card). We restrict this study to the case where the secret is used as the rst argument of the pairing. If the secret is used as the second argument, the same attack can easily be applied as it is explained in Section 3.3.5. Thus whatever the position of the secret point, we can recover it.

The goal of a fault injection attack is to provoke mistakes during the calculation of an algorithm, for example by modifying the internal memory, in order to reveal sensitive data. This attack needs a very precise positioning and an expensive apparatus to be performed. Nevertheless, new technologies could allow for this attack [START_REF] Habing | The Use of Lasers to Simulate Radiation-Induced Transients in Semiconductor Devices and Circuits[END_REF].

Description of the fault attack

We complete the scheme of attack described in [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF] to use it against the Miller algorithm. In [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF] the attack consists in modifying the number of iterations.

We complete the idea of [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF] by giving a precise description of the attack, by computing the probability of nding suitable number of iterations and by adapting it to the Miller algorithm case. We assume that the pairing is used during an Identity Based Protocol, that the secret point P is introduced in a smart card or an electronic device as the rst argument of the pairing. If the secret key is the second argument, then it is easier to nd it, as it is explained in Section 3.3.5. The aim of the attack is to nd P in the computation of e(P, Q). We assume that we have as many public point Q as we want, and for each of them we can compute the pairing between the secret point P and the point Q. In order to nd the secret P , we modify the number of iterations in the Miller algorithm by the following way.

First of all, we have to nd the ip-ops belonging to the counter of the number of iterations (i.e. l) in the Miller algorithm. This step can be done by using reverse engineering procedures. In classical architecture, the counter is divided into small piece of 8 bits. We want to nd the piece corresponding with the less signicant bits of the counter. To nd it, we make one normal execution of the algorithm, without any fault. Then we choose one piece of the counter, and provoke disturbances in order to modify it and consequently the number of iterations of the Miller algorithm. For example the disturbance can be induced by a laser [START_REF] Anderson | Tamper Resistance a Cautionary Note The Second USENIX Workshop on Electronic Commerce Proceedings[END_REF]. Lasers are today thin enough to make this attack realistic [START_REF] Habing | The Use of Lasers to Simulate Radiation-Induced Transients in Semiconductor Devices and Circuits[END_REF]. Counting the clock cycles, we are able to know how many iterations the Miller loop has done. If the dierence between the new number of iterations and the number of non modied iterations is smaller than 2 8 , then we nd the correct piece. If not, we repeat this manipulation until we nd the piece of the counter corresponding to the less signicant bits.

Once the less signicant bits are found, we make several pairing computations and for each of them we modify the value of the counter. Each time, we record the value of the Miller loop and the number of iterations we made. The aim is to obtain a couple (d, d + 1) of two consecutive values, corresponding to d and d + 1 iterations during the Miller algorithm, we give the probability to obtain such couple in Section 3.2.1.

3.2

The d th step

We execute the Miller algorithm several times. For each execution we provoke a disturbance in order to modify the value of l, until we nd the result of the d th and (d + 1) th iterations of algorithm 1. We denote the two results by F d,P (Q) and F d+1,P (Q). To conclude the attack, we consider the ratio

F d+1,P (Q) F d,P (Q) 2 .
By identication in the basis of F q k , we are lead to a system which can reveal the secret point P , which is described in Section 3.3.

3.2.1

The probability

The important point of this fault attack is that we can obtain two consecutive couples of iterations, after a realistic number of tests. The number of picks with two consecutive number is the complementary of the number of picks with no consecutive numbers. The number B(n, N ) of possible picks of n numbers among N integers with no consecutive number is given by the following recurrence formula:

   N ≤ 0, n > 0, B(n, N ) = 0, ∀N, n = 0B(n, N ) = 1 B(n, N ) = N j=1 n k=1 B(n -k, j -2).
With this formula, we can compute the probability to obtain two consecutive numbers after n picks among N integers. This probability P (n, N ) is

P (n, N ) = 1 - B(n, N ) C n n+N
The probability for obtaining two consecutive numbers is suciently large to make the attack possible. In fact, for an 8-bits architecture only 15 tests are needed to obtain a probability larger than one half, P (15, 2 8 ) = 0.56.

Finding j

After d iterations, if we consider that the algorithm 1 has calculated [j]P then during the (d+1) th iteration, it calculates [2j]P and considering the value of the (d + 1) th bit of l, it either stops, or it calculates [2j + 1]P . Q has order l,( as P and Q have the same order). By counting the number of clock cycles during the pairing calculation, we can nd the number d of iterations. Then reading the binary decomposition of l gives us directly j. We consider that at the beginning j = 1, if l n-1 = 0 then j ← 2j, otherwise j ← 2j + 1, and we continue, until we arrive at the (n -1 -d) th bit of l. For example, let l = 1000010000101 in basis 2, and d = 5. At the fth iteration j = 65.

3.3

Curve and equations

In [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF] and [START_REF] Whelan | The Importance of the Final exponentiation in Pairings when considering Fault Attacks Lecture Notes in Computer Science[END_REF], only the ane coordinates case is treated. In this case, a simple identication of the element in the basis of F q k gives the result. We demonstrate that for every coordinate systems, the fault attack against the Miller algorithm is ecient. We describe it for example in Jacobian coordinates. The dierence between with the cases described in [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF] and [START_REF] Whelan | The Importance of the Final exponentiation in Pairings when considering Fault Attacks Lecture Notes in Computer Science[END_REF] is that we solve a nonlinear system.

3.3.1

The embedding degree

In order to simplify the equations, we consider case k = 4. As the important point of the method is the identication of the decomposition in the basis of F q k , it is easily applicable when k is larger than 3. k = 3 is the minimal value of the embedding degree for which the system we obtain in Section 3.3.2 can be solve "by hand", without the resultant method described in Section 3.3.3. We use k = 4 in order to make the demonstration easier.

We denote B = {1, ξ, √ ν, ξ √ ν} the basis of F q k , this basis is constructed by a tower extensions.

P ∈ E(F q ) is given in Jacobian coordinates, P = (X P , Y P , Z P ) and the point Q ∈ E(F q k ) is in ane coordinates. As k is even, we can use a classical optimisation in pairing based cryptography which consists in using the twisted elliptic curve to write Q = (x, y √ ν), with x, y and ν ∈ F q k/2 and √ ν ∈ F q k , for more details we refer the reader to [3]. The equations of the function h 1 and h 2 in the Miller algorithm are the following:

                   P = (X P , Y P , Z P ), Q = (x, y √ ν) T = (X, Y, Z) h 1 (x, y √ ν) = Z 3 Z 2 y √ ν -2Y 2 -3(X -Z 2 )(X + Z 2 )(xZ 2 -X), with Z 3 = 2Y Z in step 5, h 2 (x, y √ ν) = Z 3 y √ ν -(Y P Z 3 -Y Z 3 P )x -(X p Y Z p -XY P Z), with Z 3 = ZZ P (X P Z 2 -XZ 2 P ) in step 7.
As we make random modications of l during the fault attack, we suppose that we stop the Miller algorithm at its d th step. Moreover, as the point P is of order l, it is sucient to observe what happens for d < l, because: [j + ρl]P = [j]P for ρ ∈ N, so we consider 1 ≤ d < l.

3.3.2

Case 1: l d+1 = 0

We know the results of the d th and (d + 1) th iterations of the Miller algorithm, F d,P (Q) and F d+1,P (Q). We examine what happens during the (d + 1) th iteration.

At the step 4 of the Miller algorithm we calculate [2j]P = (X 2j , Y 2j , Z 2j ) and store the result in the variable T . The coordinates of [2j]P are given by the following formula:

   X 2j = -8X j Y 2 j + 9(X j -Z 2 j ) 2 (X j + Z 2 j ) 2 , Y 2j = 3(X j -Z 2 j )(X j + Z 2 j )(4X j Y 2 j -X 2 ) -8Y 4 j , Z 2j = 2Y j Z j .
where we denote [j]P = (X j , Y j , Z j ).

Step 5 then gives:

F d+1,P (Q) = (F d,P (Q)) 2 × Z 2j Z 2 j y √ ν -2Y 2 j -3(X j -Z 2 j )(X j + Z 2 j )(xZ 2 j -X j ) .
As we suppose that l d+1 = 0, the additional step is not done. The return result of the Miller algorithm is F d+1,P (Q). We dispose of F d,P (Q), F d+1,P (Q) and the point Q = (x, y √ ν), with x and y ∈ F q 2 . Recall that the coordinates of Q can be freely chosen. We can calculate the value R ∈ F * q k of the ratio

F d+1,P (Q) (F d,P (Q)) 2 , R = R 3 ξ √ ν + R 2 √ ν + R 1 ξ + R 0 , where R 3 , R 2 , R 1 , R 0 ∈ F q .
Moreover, we know the theoretical form of R in the basis B = {1, ξ, √ ν, ξ √ ν} which depends of coordinates of [j]P and Q:

R = 2Y j Z 3 j y √ ν -3Z 2 j (X 2 j -Z 4 j )x -3X j (X 2 j -Z 4 j ) -2Y 2 j .
As the point Q = (x, y √ n u) is known, we know the decomposition of x, y ∈ F q k/2 , x = x 0 + x 1 ξ, y = y 0 + y 1 ξ, where (1, ξ) denes the basis of F q k/2 , and the value of x 0 , x 1 , y 0 , y 1 . Furthermore, X j , Y j , and Z j are in F q .

Consequently, with the exact value of R in F q k , the coordinates of point Q and the theoretical expression of R depending on the coordinates of P and Q, we obtain the following system of equations in F q , by identication in the basis of

F q k .        2Y j Z 3 j y 1 = R 3 , 2Y j Z 3 j y 0 = R 2 , (-3Z 2 j (X 2 j -Z 4 j ))x 1 = R 1 , (-3Z 2 j (X 2 j -Z 4 j ))x 0 -3X j (X 2 j -Z 4 j ) -2Y 2 j = R 0 .
This system can be simplied to the following (where we know value of λ 0,1,2 ):

Y j Z 3 j = λ 2 (1) Z 2 j (X 2 j -Z 4 j ) = λ 1 (2) 3X j (X 2 j -Z 4 j ) + 2Y 2 j = λ 0 (3)       
This nonlinear system can be solve by the following way. Equation (1) gives Y j as a function of Z j , then equation (2) gives 3(X 2 j -Z 4 j ) as a function of Z j . Substituting this expression in equation (3) gives X j as a function of Z j , substituting this expression of X j in equation (2), we obtain a degree 12 equation in Z j :

(λ 2 0 -9λ 2 1 )Z 12 -(4λ 0 λ 2 2 + 9λ 3 1 )Z 6 + 4λ 4 1 = 0
This equation in Z j admits by construction the point P as a solution. As the degree is even, this equation admits automatically at least an other solution, and at worst 12 solutions. We can use the function factorff in PariGP, a software for mathematical computation [START_REF] Pari/Gp | version 2.1.7[END_REF], to obtain the factorization of the equation in Z j in F q , and consequently the solutions of this equation. Using equation (2) we can express X j in Z j , and the rst equation gives Y j . Solving the equation in Z j , we nd at most 24 = 12 × 2 × 1 possible triplets (X j , Y j , Z j ) for the coordinates of the point [j]P . In practice we nd at most eight possible solutions for Z j , one example is given in annex B. Once we have the coordinates of [j]P , to nd the possible points P , we have to nd j the inverse of j modulo l, and then calculate [j ][j]P = [j j]P = P . Using the elliptic curve equation, we eliminate triplets that do not lie on E. Then we just have to perform Miller algorithm with the remaining points and compare with the result obtained with the secret point P . So we recover the secret point P , in the case where l d+1 = 0.

3.3.3

Case 2: l d+1 = 1

In this case, the (d + 1) th iteration involves the addition in the Miller algorithm. The doubling step is exactly the same, for the addition step, we have to consider [2j + 1]P = (X 2j+1 , Y 2j+1 , Z 2j+1 ) knowing that [j]P = (X j , Y j , Z j ), [2j]P = (X 2j , Y 2j , Z 2j ) and P = (X P , Y P , Z P ).

As we have that

h 2 (X, Y ) = Z 2j+1 y √ ν -(Y P Z 3 2j -Y 2j Z 3 P )x -(X P Y 2j Z P -X 2j Y P Z 2j ),
only the coordinate Z 2j+1 appears in Step 7 of algorithm 1, and

Z 2j+1 = Z P Z 2j (X P Z 2 2j -X 2j Z 2 P )
. At the (d + 1) th iteration we have to calculate:

F d+1,P (Q) = (F d,P (Q)) 2 × h 1 (Q)h 2 (Q).
This time, the unknown values are X j , Y j , Z j and X P , Y P , Z P in the ratio

R = h 1 (Q)h 2 (Q).
With the value of R and Q, and the theoretical expression of R, by identication we obtain four equations in the six unknown value. The elliptic curve equation will give us two others equation, as P and

[j]P ∈ E(F q ).                W 1 (X P , Y P , Z P , X j , Y j , Z j ) = λ 1 , W 2 (X P , Y P , Z P , X j , Y j , Z j ) = λ 2 , W 3 (X P , Y P , Z P , X j , Y j , Z j ) = λ 3 , W 4 (X P , Y P , Z P , X j , Y j , Z j ) = λ 4 , Y 2 P -X 3 P + 3X P Z 4 P -bZ 6 P = 0 Y 2 j -X 3 j + 3X j Z 4 j -bZ 6 j = 0 Where, W 1,2,3,4 (
) is a polynomial and λ 1,2,3,4 ∈ F q . We get then a slightly more dicult system to solve, but giving us the coordinates of P directly, as coordinates of P are solution of the system. We can use the resultant method to nd the coordinates of the point P . Considering two polynomials S 1 (X, Y ) and S 2 (X, Y ), if they are seen as polynomials in X with coecients in F q [Y ], then the resultant of S 1 and S 1 is a polynomial in Y whose roots are solution of the system composed with S 1 (X, Y ) and S 2 (X, Y ). A succession of resultant will give an equation in only one unknown value. Experiments show that this equation is of degree 48, but this equation have at most 8 solutions. We can use the function polresultant in PariGP to compute the resultant.

Other coordinates

To not overload the explanation, we consider only the case l d+1 = 0, the other case can be done exactly the same way.

Ane coordinates system has been studied in [START_REF] Dan | Fault and Side Channel Attacks on Pairing based Cryptography[END_REF] and in [START_REF] Whelan | The Importance of the Final exponentiation in Pairings when considering Fault Attacks Lecture Notes in Computer Science[END_REF]. The authors consider the case k = 2. With our method, we can nd the secret point even if k = 1. The ratio of two consecutive iterations in the Miller algorithm will be as following: R = αx j + βy j + γ, considering the elliptic curve equation we obtain a system:

αx j + βy j + γ = R (4) y 2 j = x 3 j + ax P + b (5) 
 



Where, α, β and γ are known constants, and a, b dene the elliptic curve equation. The rst equation gives y j in fonction of x j . Injecting this equality in equation (5) gives a degree 4 equation in x j . We know that this equation admits at least one solution, namely the value x j . Consequently as it is an even equation, two solutions, and at worst 4 solutions. Once we have the possible values for x j , we can nd y j . We obtain at most 8 couple of possible solutions, trying each one in a Miller computation will give the correct one. So for all the value of k, the fault attack can recover the secret point P . The projective coordinates system has not been studied in literature. We just apply the same method as in the Jacobian case, we need k to be larger than is composed of 4 equations with 6 unknown values. Using the elliptic curve equation it can be solved with the resultant method exactly as in 3.3.3. If the original algorithm is employed, the ratio R becomes: h1(Q)H2(P ) h2(Q)H1(P ) , and the same method can be applied.

4.2

Tate and Ate pairings

The Tate and Ate pairings are constructed on the same model, one execution of the Miller algorithm plus a nal exponentiation, for example the Tate pairing is e T (P, Q) = (F P (Q))

q k -1 l

. The rst diculty in attacking these two pairings with our scheme is to nd a ( q k -1 l ) th root of the result. The conclusion in [START_REF] Whelan | The Importance of the Final exponentiation in Pairings when considering Fault Attacks Lecture Notes in Computer Science[END_REF] was that the nal exponentiation is a natural countermeasure to the fault attacks. However, several method exist in literature in the microelectronic community to read the intermediary result during a computation on a smart card, or to override the nal exponentiation.

We describe one of them, the scan attack against smart card, presented by D. Ellie and R. Karri in [START_REF] Yang | Scan Based Side Channel Attack on Dedicated Hardware Implementation of Data Encryption Standard Test Conference 2004[END_REF]. This scan attack consists of reading the intermediary state in the smart card. All smart cards contains an access, the scan chains, for testing the chip, which allows for this scan attack. The method of a scan attack is to scan out the internal state in test mode. This scanning gives us all the intermediary states of the smart card. So if the computation are stopped exactly before the exponentiation, a scan attack can give the result of the Miller algorithm.

Other attacks to override the nal exponentiation exist, they are quitte dicult to realise but not unrealistic. For exemple, the under voltage technique [START_REF] Anderson | Tamper Resistance a Cautionary Note The Second USENIX Workshop on Electronic Commerce Proceedings[END_REF] or the combination of the cipher instruction search attack realised by M. Khun and described in [START_REF] Anderson | Tamper Resistance a Cautionary Note The Second USENIX Workshop on Electronic Commerce Proceedings[END_REF] which consists in recognizing enciphered instructions from their eect and the use of a focused ion beam workstation to access the EEPROM. A taxonomy of attackers has been done in [1], to realise the fault attack describe above, we consider that we were a class II attacker (knowledge insider). In order to perform the scan, under voltage and cipher instruction search, the attacker must be a class III, i.e. a funded organisation. Some material counter measures exist to prevent the modication of the memory by light or electromagnetic emissions, for example a shield. It is also possible to add a Hamming code at the end of the register to detect the fault [START_REF] Macwilliams | The Theory of Error-Correcting Codes II North-Holland Mathematical Library[END_REF], or to use an asynchrone clock.

Conclusion

We have presented in this paper the vulnerability to a fault attack of the Miller algorithm when it is used in an Identity Based Protocol. The attack consists in modifying the internal counter of an electronic device to provoke shorter iterations of the algorithm, we consider all the possible iterations. We describe precisely the way to realise this fault attack. We give the probability of obtaining two consecutive iterations, and we nd out that a small number of tests are needed to nd two consecutive results.

We consider the case when the point P , the rst argument of the Miller algorithm, is secret. The result of the fault attack is a nonlinear system, whose variables are coordinates of P and Q. We describe the method to solve this nonlinear system. If the secret is the second point Q, our scheme is also applicable and the nonlinear system becomes a linear system, which is easier to solve. Thus, whatever the position of the secret point, our fault attack will recover it. Moreover, we have described the resolution in Jacobian coordinates, but the scheme is the same in ane, projective and Edwards coordinates and we explain how to solve it.

Then, we have analised the weakness to this fault attack of pairing based on the Miller algorithm. The Weil pairing is directly sensitive to this attack. The Tate and Ate pairings present a nal exponentiation which previously protect them against this fault attack. We introduce attacks used for a while in the microelectronic community to override the nal exponentiation in the Tate and Ate pairings. The scan attack, the under voltage attack and the cipher instruction search are three dierent attacks which allow the attacker to get the result of the Miller iteration before the nal exponentiation.

As a conclusion, we can say that the fault attack is a threat against the Miller algorithm, and consequently to pairings based on the Miller algorithm. To construct F q k , we use the element a ∈ F q k such that a 4 = 2

F P (Q) ∈ G 3 (⊂ F * p k ); T ← P f 1 ← 1 f 2 ← 1 for i = l -1 to 0 do T ← [2]T 1 
f 1 ←-f 1 2 × h 1 (Q) f 2 ←-f 2 2 × h 2 (Q) (where Div( h1 h2 ) = 2(T ) -([2]T ) -P ∞ ) if n i = 1 then 2 T ← T ⊕ P f 1 ←-f 1 × h 1 (Q) f 2 ←-f 2 × h 2 (Q) (
Q = [a 2 , 1005129166299994575340835479325419003672947435826922 06264363320753064855041994266311971573488636 * a]

Algorithm 1 :

 1 Miller(P, Q, l) 

Algorithm 2 :

 2 Miller(P, Q, n) Data: n = (n l . . . n 0 )(radix 2 representation), P ∈ G 1 (⊂ E(F p )) and Q ∈ G 2 (⊂ E(F p k )); Result:

  where Div( h1 h2 ) = (T ) + D P -((T ) ⊕ D P ) -P ∞ ) exemple using PariGP. k = 4 p = 6802412203485154774779492598941919023699396553915 04568151207016994661689050587617052536187229749 (319 bit) E : Y 2 = X 3 + 3XZ 4 card(E(F p)) = 6802412203485154774779492598941919023699 39655390338170945836123217606411022317222264735061564936 (319 bit) l = 1166397205370893777055276948271688598347500051217 (160 bit) P = [12, 48, 2]

3 to nd 3 equations in the 3 unknown coordinates. Considering the ratio R, we obtain a nonlinear system in coordinates of [j]P . The system is the following:

This system is quite easy to solve, we nd Z j from the rst equation, two possible values. Then equation [START_REF]Handbook of elliptic and hyperelliptic curve cryptography[END_REF] give 2 possible values for X j . Finally equation [START_REF] Yang | Scan Based Side Channel Attack on Dedicated Hardware Implementation of Data Encryption Standard Test Conference 2004[END_REF] gives 4 possible values for Y j . As a result we obtain at most 16 triplets of possible solutions. We can also nd the secret P , if k = 2, but we have to use the resultant method with the two equations obtained by identication in the base of F q 2 , and the elliptic curve equation. The Edwards coordinates are new equations for elliptic curve introduced by H. Edwards one year ago [START_REF] Edwards | A normal Form for Elliptic Curve[END_REF]. Using the equation of the pairing calculation proposed in [START_REF] Ionica | Faster Pairing Computation on Edwards Curves To appear at Indocrypt 2008 conference[END_REF], we nd a nonlinear system of k equations using the equality l(x,y) v(x,y) = R, where l(x, y) denes the equation of the line for the doubling or the addition of point, and v(x, y) the vertical line at the current point of the Miller algorithm. This system is solvable with the resultant method. To solve the system in Edwards coordinates we need k to be greater than 2.

3.3.5

When the secret is the second argument of the pairing If the point Q is secret during the pairing computation, all the system written above are linear in Q coordinates, so it can be recover very easily, by identication in the base of

4 Vulnerability of pairings based on the Miller algorithm

Weil pairing

The Weil pairing is directly sensitive to the attack, as it is composed of two Miller algorithm executions. Indeed, the Weil pairing is dened as e W (P, Q) = F P (Q) F Q (P ) . We consider that the same modied l is used for the Miller Lite and the Full Miller part. We can apply the attack described above, we describe it with the simplied version of the Miller algorithm, the equations with the original Miller algorithm A.1 are similar.

Let H 1 and H 2 be the equations used in the steps 5 and 7, in the Full Miller part. For example, H 1 (P ) is the equation of the tangent at point T in the Full Miller algorithm, and at this moment T = [2j]Q. The ratio R between the result of two consecutive iterations is then h1(Q) H1(P ) = R, the system obtained after the identication of the element in the basis of F q k We stop the Miller algorithm at the 46 th iteration.

The ratio R is:

Written down the equations we obtain the following system: [M od(1660728175872055618509152840075099142307465465155823285225045179343 59493296306626253218820537301, p), M od(1861294396239523882904990499017 50065782778388777506228654648579224687036546331407445908022796608, p), M od(32803896313735752733653492598493192235641472009841601097405391983561 5159207949583353409343895840, p), M od(35220225721115795014141433390 9259980013524935293088557177153097159046529842638033699126843333909, p), M od(49411178072456308918745020999244183658716126661399833949655843776997 4652504256209606628164433141, p), M od(514168402761309915627033975 886681988139193108875922239628702499060302195754280990799317366692448, p)] Among all the possible triplet the six are on the elliptic curve We nd the inverse modulo p of 46 and compute the six possibilities for P . Then we just have to perform six Miller algorithms and compare with the result obtained with the secret point P .