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Fixed-Parameter Tractability of the Maximum
Agreement Supertree Problem

Sylvain Guillemot and Vincent Berry

Abstract— Given a set L of labels and a collection of rooted

trees, but sometimes result from a combination of more sourc

trees whose leaves are bijectively labelled by some element trees which do not conflict when considered pairwise.

of L, the Maximum Agreement Supertree problem ($1AST) is
as follows: find a tree T" on a largest label setlL’ C L that
homeomorphically contains every input tree restricted toL’. The
problem has phylogenetic applications to infer supertreesand
perform tree congruence analyses.

In this paper, we focus on the parameterized complexity of
this NP-hard problem, considering different combinations of
parameters as well as particular cases. We show that MAST
on k rooted binary trees on a label set of sizex can be solved
in O((8n)*) time, which is an improvement with respect to the
previously known O(n3k2) time algorithm. In this case, we also
give an O((2k)*kn?) time algorithm, where p is an upper bound
on the number of leaves ofL missing in a SMAST solution. This
shows that SUAST can be solved efficiently when the input trees
are mostly congruent. Then for the particular case where any
triple of leaves is contained in at least one input tree, we ge
O(4*n®) and O(3.127 + n*) time algorithms, obtaining the first
fixed-parameter tractable algorithms on a single parameterfor
this problem. We also obtain intractability results for seweral
combinations of parameters, thus indicating that it is unlkely
that fixed-parameter tractable algorithms can be found in these
particular cases.

Index Terms— Phylogenetics, maximum agreement supertree,
parameterized complexity, algorithms, reductions, roote triples.

I. INTRODUCTION
A. Motivation.

The most used supertree methods focus on clades, e.g., the
well-known Matrix Representation with Parsimony (MRP)
method [3], [4] and its variants. This is a problem whenever
the input trees contain some “rogue” taxa, i.e., labels whos
position greatly differs from one input tree to another. Stmgue
taxa can result from horizontal gene transfer (HGT) evehis [

a phenomenon that commonly arises in bacteria, plants, @and t
a lesser extent among vertebrates. The presence of rogae tax
can induce tremendous changes in the clade set of an ingyt tre
and hence have a non-negligible impact in the supertreenaiota

by clade-based methods. The Maximum Agreement Supertree
(SMAsT) method [6], [7], [8] has been specifically designed to
deal with rogue taxa: it infers a supertree from a set of sourc
trees by removing some labels, i.e., taxa, on the positiomha¢h

the source trees disagree. More precisely, given a callegti of
rooted trees with labels taken in a common Eetn agreement
supertreefor 7 is a treeT” on a subseL’ C L such that each tree

of T restricted toL’ is included inT". The computational problem
called SuAST, or sometimes MsP [6], consists of finding an
agreement supertree containing the maximum number ofdabel
from L.

The SWAST method, an extension of the maximum agreement
subtree method (MsT), specifically allows the input trees to
have different, and usually overlapping, label sets. Wits t
flexibility, SMAST is well-adapted to replace MsT in several
practical applications where input trees have non-idahtigbel

Supertree construction consists of building trees on aelargets. The first such application is tree congruence anaBsfsre
set of labels from smaller trees covering parts of the labplilding a supertree for a set of source trees, it is esdemtia

set. This task is applied in bioinformatics where trees esent
phylogenies, but also in other fields such as databases {ldata
mining [2]. In phylogenetics, the tree nodes represent eecgs

certify that the source trees are not telling completelyednt
stories on the evolution of studied taxa: if a set of source
trees is not congruent enough, then no supertree can aglgurat

or organismst@xg), and the labels are bijectively associated withepresent the set. This can be problematic when subsequent
the leaves of the trees, representing current organismée whanalyses have to be conducted from the supertree, e.g.ureas

internal nodes represent hypothetical ancestors. Rooted aire

the influence of geographical or climate factors on spemiati

usually described by their set ofades a clade is the set of labels events. Several studies have recently proposed procedares

present under a same internal node. Clades representrsktte

assess the congruence of a set of source trees by randamizati

of organisms such as species, orders, families, etc. Theofoatests performed on MsT scores obtained for these trees: the
supertree methods is to infer a tree that complies as cl@elysource trees become more congruent as the number of leaves

possible with the topological information of the sourceereThe

contained in their maximum agreement subtree increasef.[g]

task is relatively easy when the input trees fully agree am thi11]. The study of [9] focuses on the case where the congidere

relative positions of the labels. In this case, it is possiil find,
in polynomial time, a supertree that contains any input tise
an induced subtree [1], hence fully respecting the topobdgi
information present in the data. However, practical inpees
usually conflict with respect to the relative positioning sasfme
labels. These incompatibilities sometimes affect only twout
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source trees have different label sets and no taxon is common
to all trees. They propose to divide the congruence analygis
MAST computations on pairs of trees. The obtained values are
then normalized and summarized by an average value, forhwhic
ap-value is computed by similar MsT computations on random
trees. Here, replacing MsT with SMAST copes with the fact
that input trees have different label sets, and thus thercenge
analysis can be performed directly: the whole set of treasbea
considered at once, instead of resorting to separate @satys
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pairs of trees. This is preferable to indirect analysis¢sia same practical for largen values, provided that is small. In case (ii),
average value of the separateaBr computations on tree pairsthe algorithm is still practical for the smallegtvalues. In case
can be induced by completely different situations: for anse, (iii), the problem is not easier for instances where the patar
a small average value can be obtained wh@nthe input trees is small.
all roughly conflict on the same small label subset, where it i The central concept of fixed-parameter tractability hasnbee
possible to obtain a large supertree complying with the @®urintroduced to deal with case (i). A problem is said to be fixed
trees on all other labels plus on part of those involved in thgarameter tractablefft) if there is an algorithm that solves the
conflict; (if) when each pair of source trees conflict on differergroblem on an instance of sizein time O(f(k)n°), wheref is
label subsets, where a supertree agreeing with all sowes tan any function of the parametér andc is a constant independent of
only contain a small portion of the labels. In contrast, résg k. In most casesf has exponential growth. The above definition
to SMAST instead of MAST can distinguish between these twmaturally extends to problems involving a combination ofesal
different situations in the congruence of the source treéih,the parameters. In the last 10 years, a large numbeN®Bfhard
SMAST value being large in case (i) and small in case (ii). problems have been shown to be fpt for natural parameters,
A second application where there can be some advantggaticularly in the computational biology and graph thefieyds.
to replacing MAST with SMAST is HGT detection [12], [13].  Tools are also available to distinguish problems that ipedly
[12] show that MAST computations on gene trees enables thall into case (ii) above. Parameterized complexity clasard
successful detection of HGT events. For each pair of tré®s, fparameterized reduction enables one to show that a panazeete
size (i.e., number of labels) of a AT is computed for the two problem is unlikely to be fpt. The ground complexity class
trees restricted to their common labels. A gene tree is tiecis that of fpt problems and is denoted hef@T. The theory
to be affected by HGT events depending on the distribution @&fines several other complexity classes, which are camfstto
MAST scores obtained for the pairs to which it belongs. Howevesroperly contain th&PT class. Showing that a studied problem is
here a MasT cannot be computed for a vast majority of pairsiard for one of these classes is done by a parameterizediduc
simply because the considered genes do not have enougB lafielm an already classified problem, and rules out the pdigibf
in common, which limits the confidence in the final conclusionan fpt algorithm (under some complexity-theoretic assiont
[12]. Replacing the MsT computations on pairs of gene trees byve refer the reader to [14], [15] for formal definitions of siee
SMAST computations on more than two trees would undoubtedibncepts.
increase the proportion of cases where there is enoughapve!

conduct the analysis.
C. Results.

B. Theoretical framework. We first detail known theoretical results for thea&sT prob-

The current paper addresses questions of parameterized cltfi. Complexities for this problem are mainly expressedims
plexity for the SuAsT problem. The theory of parameterizedof the total number: of distinct labels appearing in the input trees,
complexity [14], [15] was developed as a framework to studgnd the numbek of input trees. This problem involves several
computational problems which, in spite of beiftP-hard, can Other natural parameters; the maximum outer degree (number
be efficiently solved when a parameter of the problem is smaff children) of a node in an input tree (when considering edot
This situation occurs in various applied domains such asbdae input trees)y, an upper bound on the maximum size of the input
querying and computational biology: (a) when answeringergu trees;p (resp.q), an upper (resp. lower) bound on the number
in a database, the size of the query is small with respectap t®f input labels that are missing (resp. are present) invass
of the database; (b) when dealing with with biological semes, solution. The $1AST problem isNP-hard as it generalizes the
the size of the alphabet is small, e.g., 4 in the case of DNMAST problem [17]. It remaind\P-hard when the outer degree
sequences. d is unrestricted fork > 3 input trees [6], and for trees with

In both cases, algorithms with a time complexity that ig > 2 when k is unrestricted [6], [7]. Wherk = 2, SMAST
exponential only within the parameter are practical, witte t can be solved in polynomial time by reduction toaBfr [6], [7].
parameter being the query size in case (a) and the alphateet & sufficient condition for $1AST to be solved by resorting to
in case (b). A well-known example for case (b) is the perfe®lAST algorithms is also given in [7]. For such cases, [7] provide
phylogeny problem, related to character compatibilityregi a an algorithm for solving 8AsT in time linear to that needed to
setS of n sequences of. characters admitting different states, solve MAST. For the particular case where= 2, [6] give an
does a tree exist whose leaves are bijectively labeled and O(n**") time algorithm for $1AST.
internal nodes assigned to sequences of sizich that for each  Until now, the only parameterized complexity result retate
i € [m] and each state, the subset of sequences having state SMAST has been obtained for a decision version of the comple-
asith character form a connected subgraphiofThis problem ment problem. The BAST problem parameterized imhas been
can be solved im0 (2%* (nm? + m*)) [16]. shown to ban[2]-hard [7], which rules out the possibility of an fpt

Traditional computational complexity expresses time clemyp algorithm for this parameterization of the problem. Sevesarks
ity of algorithms in terms of the instance size alone, white p have also considered the approximability of the corresjpond
rameterized complexity considers both the instance sigeafly minimization problem, where the measure is the numbef
denotedn) and a parameter (usually denotéjl Parameterized input labels missing in an outputted agreement supertreé76
complexity theory makes a distinction between: (i) a proble The problem cannot be approximated in polynomial time withi
solvable inO(2Fn) time, (ii) a problem solvable it (n") time, a constant factor, unless= NP [7].
and (iii) a problem which i&NP-hard for any value of larger than In this paper, we focus on the particular case whkte2. Note
some constant. In case (i), the corresponding algorithmairesn that in phylogenetics, I8AST input trees will often be binary
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| Parameters | Complexity of SuAST | Source |

q W(1]-complete (even fot = 3) [6], Thm 6 & 7
q,k W[1]-complete Thm 6
D W(2]-hard (even for = 3) [7]
k,p fpt by anO((2k)? x kn?) time algorithm | Thm 2
k XNL-hard Thm 6

Solvable inO((8n)*) time Thm 3

TABLE |

SUMMARY OF PREVIOUS AND NEW RESULTST IS THE NUMBER OF DISTINCT LABELS APPEARING IN THE INPUT TREESk IS THE NUMBER OF INPUT
TREES [ IS AN UPPER BOUND ON THE MAXIMUM SIZE OF THE INPUT TREESp, RESPECTIVELYq, IS AN UPPER BOUND RESPECTIVELY LOWER BOUND
ON THE NUMBER OF INPUT LABELS THAT ARE MISSING RESPECTIVELY ARE PRESEN;IN A SMAST SOLUTION.

as a result of the optimization algorithms used to analyze ra Definition 1: Let T" be a leaf-labelled tree. We identify its leaf
molecular data. We improve on previous results in severgkswa set with its label set, denoted iy(7"). Thesizeof T is the number

First, we give an algorithm that solvesu8sT on k rooted of its labels, i.e.|T| = |L(T)|. The node set of" is denoted by
binary trees on a label set of size in O((2k)’kn?) time. N(T), andr(T) stands for the root of’. We use a recursive
This algorithm is only exponential ip, the number of input parenthesized notation for trees:/fis a label, ther? denotes
labels that are missing in aM3sT solution. Thus, the algorithm the trivial tree whose root is a leaf labelled byif 71, ..., T}, are
will be reasonably fast when dealing with trees inferred birees, then(Ty, ..., T}) stands for the tree whose root is unlabeled
different methods on a same data set, or with trees infermd f and hasly, ..., T}, as child subtrees. if is a node in a tre&, then
genes displaying a low level of conflict. Then we provide afi'(u) stands for the complete subtree Bfrooted atu (i.e., the
O((8n)*) time algorithm, independent g¢f This is a significant subtree made of all nodes descending froypnand L (u) for the
improvement on theg(n%z) time algorithm of [6] and shows label set of this subtree, i.e., the labels descending fronif
that SUAST is tractable for a small number of trees, extending,v are two nodes off’, thenu <7 v means that: is a proper
the previously known results fdr = 2 trees [6], [7]. descendant of in T'; we denote by: <r v if and only if u <7 v

Secondly, we considerMasT on collections of rooted triples Of v = v. The smallest upper bound of two nodes of 7" with
(binary trees on 3 leaves), focusing on the complexity o threspect to<r is called the lowest common ancestor«wfy, and
variant parameterized ip. Since this problem is equivalent toiS denoted byicar (u,v).

SMAST in its general setting [7], it i8V[2]-hard. However, we  Given a treeT" and a label set, the restriction of 7' to L,
show here that an fpt algorithm can be achieved domplete denoted byr'|L, is the tree homeomorphic to the smallest subtree
collections of rooted triples, i.e., when there is at leamt moted Of 7' connecting leaves of. Let ', 7’ be two trees. We say that
triple for each set of 3 labels ih. This results from the fact that 7 embedsn 7", denoted byr" < 7", if and only if T = T'|L(T).
conflicts between input trees can be circumvented to smidl s¥e say thatl” and 7" agreeif and only if T|L(T") = T'|L(T).

of labels, leading t@(4Pn?) andO(3.12” +n*) time algorithms. A collectionis a family 7 = {71, ..., T};} of trees, the label set
Note that this result also applies to input trees of arbjtsize, Of the collection isL(7) = U}_, L(T;). Given a label seL, the
provided their decomposition in rooted triples yields a ptete restriction of 7 to L is the collection7|L = {T1|L, ..., T}|L}.
collection. See Figure 1 for an example of a collection.

Lastly, we obtain some fixed-parameter intractability tssu  We now recall several useful relations on trees.
showing that $1AST is hard for several parameterized complexity Definition 2: An agreement supertrefor a collection7 is a
classes when considering various parameters. The clagses otree S such thatL(S) C L(7) and for eachT; € 7, S and
terest here arev[1], W[2] andXNL (introduced in Section V), and i agree. We say thaf is atotal agreement supertrefer 7 if
the considered parameters drep, ¢ and/orl. The intractability additionally L(S) = L(7). A collection T is compatibleif and
results we obtain are detailed in Table | together with othsults only if there exists a total agreement supertreeZforA conflict
for the problem. In particular, the/[1]-completeness of asT among7 is a setC' C L(7) such that7|C is incompatible. For
on binary trees regarding paramejerresp.k, ¢, contrasts with instance,S = (((a,b),c), (e, f)) is an agreement supertree for the
the results obtained for MsT. Indeed, the latter is polynomial collection7 of Figure 1, and” = {a, b, c, d} is a conflict among
for binary trees [18], [19] and, for trees of unbounded degre? -

MAST is fpt in p [20], [21] and fpt ink, q [22].

Overall, this paper proposes a number of results on the pa-The MAXIMUM AGREEMENTSUPERTREEproblem (S1AsT)
rameterized complexity of then&sT problem for binary trees, asks: given a collectior?, find an agreement supertree for
including two fpt algorithms and an algorithm that runs irwith the largest size. Equivalently, this amounts to seekrgelst
polynomial time for a fixed number of input trees. set L C L(T) such that7|L is compatible. The size of such
an optimal solution is denoted bymast(7) and SMAST(T)
stands for the set of agreement supertrees .ofee Figure 2 for
an example on a real data.

In this paper, we consider rooted trees which are bijegtivel We also denote by PaBAST the parameterized version of
leaf-labelled. We first define some notations for these tribedr SMAST, which asks: given a collectiod and a parametep,
nodes and subtrees. can7 be made compatible by removing at mestistinct labels

Il. DEFINITIONS
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Fig. 1. A collection7 of three input trees on the label set= {a, b, ¢, d, e, f}. Several internal nodes are also given names (bulabeis for the purpose
of referencing them in the text.

T2 T3

w,

x
TN

c d e ad c¢c f

iﬁ>

Colobus Colobus Cercoce Bllenopi
Bllenopi Mandrill Cercopit
Macaca Miopithe Lophoceb E.]:.ytllu.roc
c £ Papio Miopithe
Chloroce ercopl Theropit _E Cercoce
Erythroc Chlorace Macaca Mandrill
Erythroe Cercopit Lophoceb
Cercopit Macaca Chloroce 4|_E Papio
Mandrill Erythroc Theropit
Hylobate Lophoceb Colobus Macaca
Gorilla Gorilla
Gorilla Theropit
Homo Homo
- Papio Pan Pan
oma
4[ Homo Pongo Pongo
Pan Hylobate Hylobate
irbp albuid4 SMAST

A collection of three source trees on Old World priesa{Catarrhinii) and a maximum agreement supertree, reqmexs as cladograms. Source

trees were respectively obtained by PhyML analyses of DNgussces of Interphotoreceptor Retinoid Binding Proteianek ¢rbp), chromosome Xq13.3
fragment k) and Albumin gene introns 3 and 4lfu:34). The maximum agreement supertree is obtained by remoeiages Colobus and Chloroce on
the relative position of which the source trees disagree.

form the trees in7? A. SolvingSMAST in O((2k)P x kn?) time

In this section, we first describe an algorithm deciding the
compatibility of a collection inO(kn?) time, and returning a
conflict of size< 2k in case of incompatibility. This yields an fpt

Throughout this section, we consider a fixed collectibn= algorithm for P-SAST with O((2k)P x kn?) running time.
{T1,...,T};} of binary trees, let» denote the size of the corre- The compatibility of a collectionZ can be decided by the
sponding label seL(7) andk the number of trees if. In the well-known BuiLD algorithm [1], [23]. However, in case of
following algorithms, we usually consider nodes of inp@es as incompatibility, this algorithm does not provide a confliathich
ancestors of label sets. Furthermore, a tfewill sometimes be s required here to serve as basis for a bounded search fpt
considered together with a sétof labels, some of which will algorithm. Like BuiLD, the compatibility algorithm presented
come from other trees. In such cases, we will be interestéldein here progressively builds the supertree using a recursipe t
node of T that is the least common ancestor of the labeld.in down approach. Each step constructs a graph where the ¢ednec
appearing in7'. In the case where no label @f appears inI’, components correspond to subtrees of the supertree. Here, w
we assign the label set with the null node, denoted by thei@pegeplace the graphs used inUBD with graphs G(7, =), with
symbol 1. We adjoin the null node to the node S€{T') of any varying postitionsr. When such a graph is connected, it yields
tree T' for the rest of Section llI, as this facilitates description a conflict of size< 2k, identified thanks to a spanning tree. The
We also extend the notation for complete subtrees, assufifing recursive steps of the algorithm focus on particular positir
denotes the empty tree, and that for node descendencie=es trin the collection7. We first define these positions, then we will
assuminglL <7 u for eachu € N(T). define theG(7,«) graphs and state associated results.

As several papers describing algorithms for&t, we will Definition 4: A position isreducedif and only if no component
consider tuples of nodes, each tuple containing a node pet inis a leaf (i.e., each component is eitheior an internal node). To
tree. We will solve $1AST recursively by considering subtrees ofany positionr, we associate a reduced positioh by replacing
the input trees whose roots will correspond to the nodesglesu by L any component ofr that is a leaf.

Formal definitions are given below: Given a positon = in 7, we set 7T(m) =

Definition 3: A positionin 7 is a tupler = (uq, ..., ug), where {Ti(x[1]), ..., Tx(w[k])}; we say thatr is compatible if and
eachu; is in the respective se¥(7T;) and is called a&omponent only if 7 (r ) is compatible.
of w. For anyi € [k], theith component ofr is denotedr[i]. We Observe that:
define theinitial position 7+ = (r(T}),...,(1})) and thefinal Lemma 1
positiont; = (L,..., L). The set of labels under a positianis 1) =, is compatible.
denotedL(w) = Uk L(nli]). 2) = is compatible if and only ifr| is compatible.

[1l. ALGORITHMS FOR SOLVINGSMAST ON BINARY TREES
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Fig. 3. A. The graphG(7,n) of the positionm+ = (r1,r2,r3) for the collection of trees of Figure 1. This graph is discerted, the two connected
components indicate the two successor positions= (p,r2,w) and w2 = (¢, L, z) of 7. B. The graphG(7,m1) is connected. Choosing a spanning
tree (bold edges) of the graph and an arbitrary label shayetieotwo subtrees corresponding to the extremities of edge ef this tree identifies a conflict
C ={a,b,c,d}.

3) if T is compatible therY () is compatible, for any position then the successor positions atie= succy, (), m2 = succy, (1),
min7T. and recursive calls are issued fer, m». The correctness of this
Proof: Points 1 and 2 result from definitions. Point 3 resultstep is precisely stated in Lemma 2. If the graph is connected
from the fact that any tree df () is a restriction of a tree if.  then the connectivity test yields a spanning tre&5¢f, =) from

The compatibility of 7 (x) hence follows from that of. m which a conflict can be obtained by choosing, for each €dge)
We now turn to the definition of the graphs that will serve asf the tree, a label present ib(v) N L(v) (as shown in Lemma
a basis for testing the compatibility of a collection. 3). See Figure 3B for an illustration of this process.
Definition 5: Let = be a reduced position, the gragh(7, =) To prove these lemmas, we need some intermediary results on
is defined as follows: parts of a graphG(7,r). GivenVy, Vo C V, we say thati, Vo
(i) its vertex setl is composed of the two child nodes of eacf@reconnectedf and only if G(7, ) contains an edgeu, v) with
noder[i] such thatr|i] #.1; u € V1 andv € Va; otherwise,Vy, V are said to belisconnected
(i) two verticesu,v € V are adjacent if and only if;(x) 0 Additionally, givenV’ C V, setL(V’) = Uyev L(u).
L(v) # 0. Observation 1:Two setsVy, Vo C V are connected (7, )

In other termsG (7, ) is the intersection graph of the set systerH and only if L(V1) N L(V2) # 0. i . .
{L(u):ue VY. Proof: V1, V5 are connected if and only if there existise

We are also interested in subsgtsC V' of vertices in a graph V1> € V2 such thatl(u) N L(v) # 0, which is equivalent to the

G(T, ), to which we can associate respective successor positiéﬁ@temenm(_vl) n L(V2),7é 0. , u
of - O/bservatlclm 2:Let V' C V, and letr’ = succy/(r). Then:
Definition 6: GivenV’ C V, we define the successorofwith (™) = L(V'). , , ,
respect toV”’, denoted bysucey (), as the positionr’ such that Proof: For eachi & [k], let V;' be the set of nodes af
o if 7li] = L, thenn'[i] = L: belolnglng toL(Ti)./Qbserve that. (V') = Uie[k_]L(V}) and that
o if #[s] is an internal node; of T;, with childrenwv;, v}, then .L(W) - UZ',e[k]L(7T EZ].)' we co_nglgde by noting _that for each
either: i € [k], L(VZ-_) = L(='[i]), by definition of the notatiosucc. M
Observation 3:Let V1, V2 C V, and letr; = succy, (), m2 =
= v;, succey, (m). Then, L(my) N L(ne) = 0 if and only if V1, V, are
v disconnected irG(7, ).
Proof: Directly follows by applying Observations 1 and 2.
]
Let us now consider a reduced positier# 7 . We have the
following recursive characterization of compatibility:
Lemma 2: Suppose thatr is a reduced position such that

if v; € V' andv} ¢ V' thenr'[1]
if v; ¢ V' andv} € V' thenr'[4]
if v; € V' andv] € V' then'[i]
if v; ¢ V' andv} ¢ V' thenr'[i] = L.
In other words succy - () is the position whosé&h component
is the root of the smallest subtree i including nodes iri”’, or

. , ; _ X
is set to L whenV’ contains no node of;. See Figure 3A for x4, and letV be the vertex set of the graph(T, ). The

an illustration of these definitions. following statements are equivalent:
We now describe a recursive algorithm to decide the compati- 9 q ’

/
i
Ug,

]

bility of a given position (see pseudo-cod&CIOMPATIBLE). Call- o 7 is compatible;

ing this algorithm withrr allows us to decide the compatibility * there exists a partitiofr;, V> of V' such that

of 7. Any recursive step of the algorithm is given a positioin (i) V1,V are disconnected it¥(7, ), and

7. For the rest of the algorithm, by considering instead ofr, (il) w1 = sucey, (r) andmy = succy, (7) are compatible.

we can assume thatis a reduced position. The base case of the Proof: For a given partitiori/;, V5 of V, and forj € {1, 2},
recursion corresponds to = 7, the algorithm then succeedslet 7; = succy;, ().

since w, is known to be compatible. The general case of the (=). Suppose that is compatible. LetS be a total agreement
recursion corresponds to a reduced positica | , for which the  supertree forT (). Sincer # m,, then|L(n)| > 2, hencesS =
algorithm tries to identify two successofg, 2, corresponding (51, S2). Since S is a total agreement supertree fér(r), for
to child subtrees of an hypothetical agreement supertregf6). each: € [k] the subtre€T;(=[i]) embeds inS, which is denoted
To that aim, it considers the grapf(7,=), and performs a T;(rx[:]) < S. Define a partitionV;, V> of V' by considering all
connectivity test on this graph. If the graph is not conngctieen components € [k] of = as follows. Suppose thaf:] is an internal
the connectivity test yields a partition &f into two disconnected node of 7; with childrenv;, ;. ThenT;(x[i]) = (T;(v;), Ti(v}))
setsVi, Vo (WwhereV, can contain several connected components)sing bracket notation for trees. Together witl{=[i]) < S, this
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yields eitherT;(v;) < Sy or T;(v;) < S3: addwv; to V4 in the first
case, and td% in the second case. Proceed similarly #rin the
end,V; andV; are a partition oft” such thatZ(V;) C L(S;) and
L(V2) C L(S2), i.e., such thaL(V1)NL(Vz2) = (. Thus, we obtain
Point (i) by applying Observation 1. We now prove Point (it):
and wo are positions inZ (), and since7 (w) is compatible by

hypothesis, it follows that; and wo are compatible by Point 3

of Lemma 1.
(«=). Suppose that there exists a partition 1 of V' satisfying

Points (i) and (ii). Sincer; andny are compatible by hypothesis,

there exists a total agreement supertsedor 7 (1) and similarly
Sy for 7(my). We then haveL(w;) = L(S;) and L(ms) =
L(S3). Since Vi,V are disconnectedl(w1) N L(m2) = @ by
Observation 3. Therefore, we havgsS;) N L(S2) = 0, and we
can define the tre& = (51,52). We show thatS is a total
agreement supertree far(w) by showing thatl;(x[i]) < S for
eachi € [k].

Fix such ani, let u; = =[i]. If w; = L, then the relation

obviously holds. Suppose now thaf is an internal node of7,

and letw;, v, be its two children. We consider three cases.
v;,vi € V1 thenm[i] = u;, which together with the definition

of Sy implies T;(u;) < Si; we conclude that;(u;) < S. If
v;, v} € Vai in a similar way, we conclude thaf;(u;) < S. If
v; € Vi,v; € Vai thenmy[i] = v;, which implies thatT;(v;) <
Sy, and mo[i] = v}, which implies thatT;(v]) < Ss. It is easy
to see thatl;(v;) < S1 and Tj(v)) < Sy imply that Tj(u;) =
(Ti(vi), Ti(v)) < (S1,52) = S. u
We now prove that if the graplz(7,n ) turns out to be

Algorithm 1: ISCOMPATIBLE(7)
Input: A position 7 in a collection7 of trees.
Result A tuple (B, C) where
« B is a boolean indicating whetheris compat-
ible
« C is a conflict amongr when the positionr is
not compatible.

if #=m, then return (true,)
if = is not reducedhen m «— 7|
if G(T,n) is connectedhen
C—0;LetT = (V,F) be a spanning tree af
foreach edge(u,v) € F do
| choose a labet € L(u) N L(v) ; C — C U {¢}

| return (fal se,C);

else

Let V; be a connected component 6{(7,x) ; Vo «—
V-V

T — succy, (7) ; T2 «— succy, ()

(B1,C1) « ISCOMPATIBLE(my) ; if By isfal se then
return (fal se,C)
(B2, C2) «— ISCOMPATIBLE(mg) ; if Bg isfal se then
return (fal se,Cs)
return (true,)

If

Lemmas 2 and 3. For the running time, we rely on the fact

connected, a spanning tree of this graph yields a small conflinat using appropriate data structures, we can ensure that a

among7:

Lemma 3:Let © be a reduced position such that# = .
Suppose thatG(7,r) is connected, and lel" = (V, F) be a
spanning tree o&(7, ). For each edge = (u,v) € F, choose
Le € L(u)N L(v). ThenC = {¢. : e € F'} is a conflict amond’ .

Proof: We show thatZ’ = 7|C is incompatible. For each
such thatr[i] #1, letu; = =[i], and letv;, v} be its two children in
T;. By definition of C, the setd.(v;)NC, L(v;)NC are not empty,
hence to the nodes;, v;, v, there corresponds nodés, 3;, o, in
T;|C, whered; is the least common ancestor1)|C of L(u;) N
C, and the other two nodes are defined similarly. kétbe the
reduced position ir7”’ obtained by settingr’[i] = L if =[i] =L,
or n'[i] = @; w[i] #L. Consider the grapl&(7’,=’), then by
definition of C for each edgé€z, y) of T, the edg€z, ) is present

call to ISCOMPATIBLE takes O(kn) time (see Appendix | for
details). Moreover, when a callSCOMPATIBLE(7) issues two
recursive calls for positions;, wo, thenL(w1), L(m2) are disjoint
(by Observation 3) and included ih(r) (as a consequence of
Observation 2). Hence the total number of callssGOMPATIBLE
is O(n), therefore the total running time of the algorithm is
O(kn?). [ |
On the basis of this compatibility algorithm, we can design
a simple fpt algorithm for solving PM¥AST on a collection7
with parameterp (see end of section Il for the formal definition
of this problem). Algorithm 2 contains the pseudo-code for
this procedure, called RESMAST, that uses the well-known
bounded search tree technique. Note that the third argument
mentioned in the heading of the procedure, namglyis only

in G(7',7"), therefore the tred” formed by these edges is apresent in order to know a set of leaves to remove from thetinpu
spanning tree ofG(7”’,7’), hence the graph is connected. Bytrees in case of success. The initial call to the algorithrasus

Lemma 2, we conclude that is an incompatible position of”,
therefore7” is incompatible (by Point 3 of Lemma 1). [ ]

X =0.
Theorem 2:The P-3$1AST problem can be solved in

Lemmas 2 and 3 give rise to an algorithm for deciding the((2k)? x kn?) time.

compatibility of a collection, and obtaining a conflict of aln
size in case of incompatibility.

Theorem 1:There is an algorithm which, inO(an) time,
decides if7 is compatible, and returns a conflict of sige2k in
case of incompatibility.

Proof: We rely on the proceduresCOMPATIBLE(7) which
takes as input a positiom in 7, decides ifr is compatible
and returns a conflict of siz& 2k in case of incompatibility.

Proof: A run of the algorithm follows a search tree of height
< p, whose nodes at depthare each labelled by a set of labels
X C L such that|X| = i. At a given nodeu labelled by a
set X, the algorithm determines i®(kn?) time if T|(L\X) is
compatible, using the procedure of Theorem 1. If the answer i
positive, the node is labelled by "success”, and is then fdéa
the search tree. Otherwise, the algorithm proceeds asvllid
the node is at depth, then it is labelled by "failure” and becomes

The procedure is formally stated in the pseudo-code calledeaf of the search tree; if it is at depthp, then the procedure
Algorithm 1. To decide if7 is compatible, the procedure is calledof Theorem 1 has returned a confli¢tof size< 2k, and for each

with the argumentr—.
The correctness of the proceduClompATIBLE follows from

¢ € C a child node ofu is added in the search tree, with label
X U {z}. The running time follows easily, since the search tree
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Algorithm 2: RECSMAST(7,p, X)

Input: A collection7 of rooted binary trees, an integer>
0 and a setR C L(7).

Result A tuple (B, X) where

e B is a boolean stating whether a solution to
SMAST for 7 can be obtained by removing at
mostp leaves fromL(7);
e X is a set of leaves to remove frof(7) to
obtain such a solution when it exists, otherwise
X =0.
w1 « the initial position of7, ie (r(11),r(12),...,r(T}))
(compatible, C') «— ISCOMPATIBLE(7T)
if compatible is true then return (True, X)
if p > 0 then
foreach label ¢ € C do
L (re, Xe) —RECSMAST(T|(L(T) — {¢}),p—1,X U

{23)
return (f al se, ()

if rc istrue then return (true, X.)

has height< p, degree< 2k, and since each node is processed

in O(kn?) time. [ |

B. SolvingSMAST in O((8n)*) time
In this section, we describe an algorithm to solveaAST in

O((8n)*) time. The algorithm uses dynamic programming, an

is somewhat similar in spirit to the algorithm described 24
for solving MAST on two trees.

For the needs of this section, it is convenient to charazer
the agreement relation on trees in termspaftial embeddings
First definechildr(u,v) as the child ofv along the path joining
v to u in T, wherew,v are two nodes ofl" such thatu < v.
Let 7,7’ be two trees, say that a partial embeddingl'ohto 7’
is a functiong : N(T') — N(1") such that:

« for any u leaf of T, we have¢(u) = L if w ¢ L(T’), or

¢(u) = u otherwise,

« for any w internal node ofT" with children uq, ..., up, let
V = {j : ¢(u;) # L}, then (i) eitherV ¢, and
o(u) = L, (i) either V= {i} and ¢(u) = ¢(u;), (i) or
|V| > 2 and ¢(u;) <1 ¢(u) for eachi € V, and the nodes
{childp(¢(u), d(u;)) : i € V} are pairwise distinct.

ThenT andT” agree if and only if there exists a partial embeddin
of T'into T’ (and equivalently a partial embedding Bf into 7).
Let 7 be a collection and- a position in7. Let SM AST ()

denote the set of treefs such that (iYI" is an agreement supertree

for 7, (ii) for eachi, the partial embedding; : T — T; is such
that ¢;(r(T)) <r, «[i]. We denote bysmast(w) the size of a
largest tree ofSM AST (7).

The algorithm computes valuesast(r) for each positionr

ICS

strict counterpart, where <7 =’ if and only if for eachi € [k],
7[i] <7, 7'[i], and one of these relations is strict.

The following observation states that agreement supertoée
restricted parts of the input trees (identified in a positien
are also agreement supertrees of wider parts of the inpes tre
(associated with a position with =’ C =).

Observation 4:If =’ <7 then SMAST (')
SMAST (r).

The base case of the recurrence correspondsrininal posi-
tions: a positionr is terminal if and only if for each: € [k], 7]
is a leaf orL. For a terminal positionr, note thatL(r) is the set
of labels occuring as components 4n Moreover, in this case,
say that an element € L(r) is maximally presenif and only if
for eachi € [k], z € L(T;) implies«[i] = . Let P(x) denote the
set of maximally present elements bfr). Then:

Lemma 4:Suppose thatr is terminal. Then:smast(r)
|P(m)].

Proof: First, letT be any binary tree on the label se{r),
thenT € SMAST(r). Indeed, for each € [k] define ¢; as
follows:

o if w[i] = L, theng,;(u) = L for eachu € L(T);

o if 7[i] is a leafz of T;, theng; (u) = « if z € T'(u), otherwise
qzﬁl(u) =1.

Then ¢; is a partial embedding of" into T; satisfying

¢i(r(T)) <, w[i]. We conclude thal’ € SMAST ().

We now show that for each € SM AST (r), we haveL(T) C
P(r). Indeed, consider such a tréeand for eachi € [k] consider
t(pe partial embedding; : T — T;. Fix an elementc € L(T),
and considet € [k] such thatr € L(T;), we show thatr[i] = z.
By definition of a partial embedding we hawg;(z) = z. Since
¢i(x) <r, w[i] and~[i] is a leaf (because is terminal), it follows
that 7[¢] = . We conclude that € P(r). [ |

We now describe the general case of the recurrence relation,
corresponding to nonterminal positions.aifis nonterminal, then
smast() is computed from two valuesnast; (), smasta (7).

We first definesmast; (7). Say that a positior’ is asuccessor
of = if and only if there exists € [k] such thatr’[i] is a child of
#[i] and 7'[j] = =[j] for eachj # i. Let S(x) denote the set of
successors of. Then define:

m, -

@)

/
smast (m) = ﬂ/rél?fir) smast (7).

We now definesmastq (7). Say that a paifr;, 72) of positions
is adecompositiorof  if and only if (i) w1 # m, w2 # 7 and (ii)
fpr eachi € [k], the following holds:
either=[i] = L, in which caser; [i] = ma[i] = L;
eitherr[:] is a leafz, in which case we havér [i], m2[i]} =
{L,z};
either «[i] is an internal nodex with two children v,v’,
in which case we have eithepr[i], m2[i]} = {L,u} or
{m[i], ma[i]} = {v, 0"}

Let D(w) denote the set of decompositionsafThen define:

using a recurrence relation whose base case is stated in &emm

4 and general case is stated in Lemma 5. The recurrenceorelati

relies on a partial ordex+ on positions, which is defined below.
Given a positionr, smast(w) will be computed from values
smast(n’) with 7’ <7 7. At the end of the algorithmsmast(7)
is obtained asmast(w).

We define the relatior<s on positions in7 by: = <7 7’ if
and only if for eachi € [k], =[i] <7, 7'[i]. We denote by< its

smastg (1) max (2

(ﬂ17ﬂ2)€D(ﬁ)(smast(7r1) + smast(m3)).

Note that computing the valuesast; () andsmasts(7) only
involves valuessmast(n’) with =’ <z =, by the following
observation:

Observation 5:

@) If «’ € S(n), thenn’ <7 m;
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(i) If (w1, m2) € D(x) thenm; <7 7 andmy <7 . If = is terminal, computing|P(r)| takes O(k) time. If = is
We are now ready to state the relation for nonterminal pmsiti nonterminal, then we need to computeast; (7) andsmasta (),
Lemma 5: Suppose that is not terminal. Then: which respectively requir@ (k) and O(4%) time. Thus smast (r)

smast(7) = max(smasty (), smasta(7)). is computed inO(4%) time, hence the total running time of the

Proof: We first prove thasmast; () < smast(r). Let S €  algorithm isO((8n)"). ]

SMAST (") for somer’ € S(r), such thatS| is maximal. Since ~ We note that after the first version of this paper was subditte

7’ <7 7 by Lemma 5, we havé ¢ SMAST (=) by Observation an O((Gn)k) algorithm was provided in [25]. However, applying

4, and the result follows. a finer mathematical analysis of the subcases encounteredrby
We now prove thatmasty(r) < smast(n). Let (r1,m) € algorithm, similar to that of [25], also yields an((6n)*) time

D(r), and letSy, S, such thatS; € SMAST (r;), |5j’ maximal. complexity. We refer the reader to [25] for mathematicaladst

If one of the S;’s is empty, sayS;, thensmast(r;) = 0, and

we obtain smasta(m) = |S2| = smast(m2) < smast(m) by IV. ALGORITHM FOR SOLVINGSMAST ON COMPLETE

Observations 4 and 5. Suppose now thatSs are not empty. COLLECTIONS OF TRIPLES

Forj € {1,2}, sinceS; € SMAST(m;), there exists partial  Recall that P-SIAST is the version of $IAST parameterized

embeddingsy; ; : S; — T; such thatg; i(r(Si)) <r; m;[i] for in the numberp of distinct labels to remove from the input trees

eachi € [k]. Let S = (51, 52), we claim thatS € SMAST(r).  to obtain an agreement. We consider in this section theictstr

Indeed, definep; : S — T; as follows. Setp;(z) = ¢;:(x) if  of P-QuasT to complete collections of rooted triples.

z is a node ofS;, and ¢;(z) = Icar, (¢1,i(r(S1)), ¢2,i(r(S2)) A rooted triple (or triple for short) is a binary tred’ such

if = is the root of S. Then: (i) L(S1) N L(S2) = 0, henceS  ihat |L(T)| = 3; such a tree has the forfi = ((z,y),2) in

is well-defined, (ii)¢; is a partial embedding of into T, (iii) parenthetical notation, and will be denotedylz. A collection

¢i(r(5)) <r, =[] (see Appendix II-A for a proof). We conclude of riplesis a collectionR = {1, ..., T}, } where eacl; is a triple.

that smasty () = [S1| + |S2| = [S] < smast(r). R is completeif each set of three labels ih(R) is present in at
Finally, we show thasmast(r) < max(smast; (7),smast2(7)).  |east oneT;. To a binary treel” of arbitrary size, we associate a

Let S € SMAST(m) such thatS| is maximal. Then there exists complete collection of triplest(T') formed by the triple§; < T;

partial embedding®; : S — T; such thate;(r(5)) <r, n[i] for to a collection7, we associate a collection of triples(7) =

eachi € [k]. Letu; = ¢;(r(S5)) for eachi. We consider two cases. .. r¢(T). For a complete collection of tripleR, we say that
First case: there existse [k] such thatu; <7, =[i]. This case R is treelikeif there exists a tred" such thatR = r¢(T); then

holds in particular if|S| < 1. Definex’ from 7 by setting the e say thatr displaysT.

ith component tehildr, (u;, 7[i]), thenz’ € S(r). We verify that  \we consider the following parameterized problem, denoted

S e SMAST(x'): indeed,¢; is a partial embedding of into 7;  p-QuASTCR: given a complete collection of tripleR and a

such thaig,(r(S)) <7, ='[i]. We conclude tha{S| = smast(7) < parameterp, can R be made treelike by removing at most

smast(r') < smast; (7). p distinct labels? Observe that this problem is the restricti
Second caseu; = [i] for eachi € [k]. In this case, we have of P-QuAsT to complete collections of triples, since for such

|S| > 2, henceS = (51, 52). Letu be the root ofS, letv; be the collections treelikeness is equivalent to compatibiliy, defined

root of S; in S, thennw = (¢1(u),..., Pk (u)). For j € {1,2}, in Section II.

define 7; as follows: giveni € [k], (i) if ¢i(v;) = ¢i(w), This section presents an fpt-algorithm to solve RASTCR,

set mjfi] = ¢i(u), (i) if ¢;(vj) = L, setm;[i] = L, (i) which contrasts with the fact that PM&sT is W[2]-hard on

if ¢i(vj) <7, ¢i(u), setn;[i] = childr,(¢;i(vj),di(w)). Then non-complete collections of triples. This algorithm alquples

(m1,m2) € D(m) (see Appendix II-B for a proof). We now showto collections of general trees such that any triple of skl

that S; € SMAST (r;): indeed,¢; is a partial embedding of;  present in at least one input tree. Indeed, recall that @e/dan

into 73, and by definition ofr; we have¢;(r(S;)) <, m;[i] for be equivalently described by the triples it contains.

eachi € [k]. We conclude thatS| = smast(r) = |S1| + |S2| < It is possible to show that non-treelike complete colletsiof

smast (1) + smast(m2) < smasta(7). B triples have conflicts of siz& 4, a result similar to that known
Lemmas 4 and 5 yield an algorithm for computisigast(7):  on quartets [26]. This allows to solve RM8STCR in O(n* +
Theorem 3:smast(7) can be computed i®((8n)*) time and  3.127) time by reduction to 4-HTING SET [27], and also in

O((2n)*) space. O(4Pn*) time by bounded search (similar to the work of [28] for

Proof: Using dynamic programming, the algorithm comthe minimum quartet inconsistency problem). In the follogyi

putes the valuesmast(r) for eachr position in 7, using the we describe a faster algorithm with(4”»>) running time. We

recurrence relations stated in Lemmas 4 and 5. The corstnfirst present an algorithm to decide treelikeness in lineas®)

of the algorithm follows from the lemmas, and the terminatid time (Proposition 1 and Theorem 4).

the algorithm is ensured by Observation 5 and the fact ¢hat Proposition 1: There is an algorithm

is an order relation on positions in. INSERTFLABEL-OR-FIND-CONFLICT(R, X, z,T) which takes a
We now consider the space and time requirements for themplete collection of triplesk, a setX C L(R), an element

algorithm. First observe that the number of positiendn 7 =z € L(R)\X and a treel such thatR|X displaysT’, and in

is < (2n)*: a componentr[i] has < 2n possible values (one O(n?) time decides ifR’ = R|(XU{z}) is treelike. Additionally,

of the < 2n — 1 nodes ofT;, or the valuel). It follows the algorithm returns the tre€’ displayed byR’ in case of

that the space complexity i9((2n)*). We claim that the time positive answer, or returns a confli€t amongR’ with |C| <4

complexity is O((8n)*). Indeed, consider the time required tdn case of negative answer.

computesmast(r), assuming that the valuesast(r’) for =’ <z Proof: In a first step, the algorithm checks whethgr

m are available. Testing ifr is terminal requiresO(k) time. contains two different triples on the same set of three fbel
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z,0,¢'. In such a case, they form a conflict of size 3 which is Using bounded search, we obtain:

then returned by the algorithm. Theorem 5:The P-34ASTCR problem can be solved in
If no such conflict is found, the algorithm proceeds to a sdco®(4Pn?) time.

step during which it determines for each internal nedef T,

the relative subtree in which would accept to insert: its left V. HARDNESS RESULTS

subtree (denoted), its right subtree (denoteft), or the subtree  The parameterized complexity of the18sT problem on binary

aboveit, i.e., the part of the tree excluding(u) (denotedA), trees is considered with respect to the following pararseter

namely the part of the tree that is not belewTo that aim, the denotes the number of input treésjenotes an upper bound on

algorithm checks that the triples ¢, ¢/, with ¢, ¢’ labels undern.  the maximum size of the input trees(resp.q) denotes an upper

in T, all indicate the same subtree relative:toMore formally, (resp. lower) bound on the number of labels to remove (resp.

letv, v’ be the two children of.. An u-fork is a pair{¢, ¢’} where conserve) in order to obtain compatibility of the collectid\fter

¢ € L(v),t' € L(v'"). Eachu-fork {¢,¢'} gives an opiniono, ;»  having obtained an fpt algorithm when theu&sT problem is

on the positioning ofz with respect tou in T, whereo, o is parameterized irk, p, we now turn to intractability results. We

computed fromR as follows: if (z|¢' € R thenoy, is set toL, remind the reader thatV[1], W[2] and XNL are parameterized

if ¢'z|¢ € R theno, 4 is set toR, otherwiset¢'|z € R andoy,»  complexity classes which are conjectured to properly donta

is set toA. The algorithm considers each internal nad& turn  FPT. They have the respective complete problems:

and computes the opiniong, of the u-forks {¢,¢'}. If two u- , Ww[1]: CLIQUE: given a graphG and a parametey, decide
forks indicate a different subtree faf, then the algorithm easily if G has a clique of size> ¢;

identifies a conflict. In such a case, it can be shown that there, W/[2]: DOMINATING SET: given a graph and a parameter
exist £, £1, £y such thatoy ¢, # 0.4, (O 0g, ¢ # 04, ¢), In Which q, decide ifG' has a dominating set of size g;

caseC = {z, {1, /2, ¢} is a conflict, which is then returned by the , xNL: BOUNDED SPACE TURING MACHINE COMPUTA-
algorithm. Otherwise, alli-forks indicate the same subtree far TION: given a nondeterministic Turing machidg with a
(L, R or A). q, decide if M accepts the empty string using spase

In a third step, the algorithm checks that the opinions of the qlogs n.

different nodesu in T consistently indicate a single position t0The classXNL is a parameterized analogue of the clags it

insertz in T. The opinions are compatible i_f gnd_ only if fornas peen introduced in [29], [15], note that the class we call
each edgeu, v of T' with u abovev, we have: (i) ifv is the left x| js the clasgUnIFORM-XNL]FFT of [29].

child of u, theno, = R = o0, = A, (ii) if v is the right child

of u, thenoy = L = o, = A, (iii) if v is a child ofu, then  The intractability results we prove here mainly follow from

ou = A = oy = A. If one pair of nodesu, v does not meet gimjlar results for the Scs problem [30], which we now define. A

the above requirements, then by considerfig¢’} v-fork and p_sequencéafter [31], or sequence for short)is a word without

{¢, fﬁ_} u-fork, we obtain a conflicC = {z,¢,¢,¢"}. Otherwise, repetition on an alphabdt. We denote byi.(s) C L thelabel set

consider the sets of nodes such thato. # A, they form a of ; je. the set of letters (dabel§ appearing ins. We define

(possibly empty) path irf” starting at the root and ending athe relation<, on L(s) by: = <, y if and only if z precedes; in

a nodev. ThenR|(X U {z}) is treelike, and displays the tree, A collection (of sequences) is a family = {s1, ..., s}, where

obtaiped fromI” by insertingz abovewv, which is returned by the e 5;5 are sequences. Thabel setof C is L(C) = Uy L(s:)-

algorithm. Given a sequence and a label set.’, we denotes|L’ the
We now justify the running time of the algorithm. The firstestriction of s to L. Given two sequences s’, we say thats

step trivially takesO(n?) time. Consider the second step. Giveryng agreeif s|L(s') = s'|L(s). A compatible sequencir a

a nodeu, let F, be the set ofu-forks, then an internal node collectionC = {s1, ..., sy} is a sequence such thatr.(s) C L(C)

is processed in timé(|F ). Therefore, the time required by theand for each € [], s ands; agree.

second step i§~,, O(|Fu|) = O(n?). Now consider the third step. The S.cs problem consists in finding a largest compatible

The algorithm checks that for each edge of 7', Conditions (i)- sequence of a collectio@ (the size of such a sequence is

(i)-(iii) hold: for a given edge, checking the conditionsfmding denoted by#SLCS(C)). While the Scs and SuAsT problems

a conflict is done in constant time, hence the time required RBye optimization problems, for the need of the proofs we iciems

this step isO(n). It follows that the total time required by thetheir decision version iSs-D and S4AsT-D, which are defined

algorithm isO(n?). B 5s follows. $cs-D takes a collectionC of k sequences and
Theorem 4:There is an algorithm an integerq, and asks if#SLCS(C) > q. SMAST-D takes a

FIND-TREE-OR-CONFLICT(R) which takes a complete collection7 of k trees and an integey, and asks ismast(7) >

collection of triplesR, and in O(n®) time decides ifR is 4. We denote by P-&s-D (resp. P-®1AsT-D) the problem

treelike, returns a tre@ displayed byR in case of positive S cs-D (resp. $1AsT-D) parameterized by, q.

answer, or a conflictC among R with |C| < 4 in case of  We rely on a parameter-preserving reduction from IR:SD

negative answer. to P-SvAsST-D. For the sake of clarity, the reduction is performed

Proof: We use the procedureN6ERTFLABEL-OR-FIND- in two steps.

CONFLICT to decide treelikeness as follows. We iteratively insert

each label, starting from an empty tree, until: (i) eithezrgabel First step: a parameter-preserving reduction from PeS-D to

has been inserted, in which case the collection is treeliketae a variant called P-GLORED-SLCS. This problem is defined as

displayed tree is returned, (ii) or a conflict is found andine¢d. follows. Given a label sek partitioned ing setsLy, ..., Ly, and a

B collectionC on L, acolored sequencis a sequence;...aq With
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a; € L;. The problem P-OLORED-SLCS asks: given parameters Theorem 6:The following results hold for 8AST:
k,q, a collectionC of k sequences on a label set partitioned;in , /[1]-hardness fog and forg, k;
sets, doe€ have a colored compatible sequence? We show: , xNL-hardness fok.

Lemma 6:There is a polynomial-time reduction from  proof: The hardness results follow from similar results for
P-Scs-D to P-COLORED-SLCS which maps an instance g cs [30], and from the parameter-preserving reduction given by
(C,k.q) of P-Scs-D to an instance (C',2k.q) of Pproposition 2. =
P-COLORED-SLCS. In addition, we now show membership W[1] for SMAST

Proof: Given an instancd = (C,k,q) of P-S.cs-D, we  parameterized by (Thm 7) by resorting to triples (see Section
construct an instancé’ = (C’,2k,q) of P-COLORED-SLCS as |V for related definitions). We rely on two preliminary lemma

follows. Suppose thaf = {s, ..., s} has label sef. For each Proposition 3: Let T be a tree such that(T) C L(T). The
x € L we create new labels', ..., 27, we setL’ = {z' :z € L} following statements are equivalent:

andL’' = L''U...UL?. Consider the morphisms of free monoids

) T is an agreement supertree o
¢, ¢, from L* to L'*, defined as follows: for each € L, * 9 P !

o 1t(T)|L(T) C rt(T).

o(x) = ol oz Proof: Observe that for eacli; € 7, there is equivalence
¢ (x) = 29..z" between: (i)I" and T; agree, (ii)rt(T;)|L(T) C rt(T). [ |
We are now ready to show:
For each sequence € C, defines) = ¢(s;) ands! = ¢'(s;). Theorem 7:SMAST parameterized i is in W([1].
Thenc’ = {s1,s, ..., s}, sk }- Proof: We use a parameterized reduction #0GRT TURING

Note thatC’ contains 2k sequences. Thus, the reduction i?MACHINE COMPUTATION [14]. Let I = (T, ¢) be an instance of
parameter-preserving. The correction of the reductioretsittd SwmasT, where T is a collection andg an integer. We define
in Appendix [lI-A. B a nondeterministic Turing maching/ which accepts the empty
Second stepwe give a parameter-preserving reduction fromstring in ¢’ steps if and only if7 has an agreement supertree of
P-COLORED-SLCS to P-SMAST-D. If TY,...,T:, are trees, the size> q.

notationrake(T1, ..., Trm) is defined as follows using the paren- The tape alphabet aff consists of the following symbols:
thesized notation for trees: « a symbolp, for eachz € L;

rake(Ty) -7 e a symbolrwy‘z for eachz,y,z € L, z < y andzz|y, yz|z ¢
rake(Ty, ., Tm) = (rake(Ty, .., Tm—1),Tim) ri(T).

_ _ In a first stepM guesseg symbolsp,, and (%) symbolsr,,,..

In other wordsyake(T1, ..., Trm) is a caterpillar tree whose leaveSTnhe idea is that for a consistent solution, the symbalswill

are replaced by the treds, ..., T, hanging in increasing order correspond to a label sdt, and the symbols.,. will form a

from the bootom to the root the tree. We show: complete collection of triple®, such that: ()L(R) = L, (i) R

Lemma 7:There is a polynomial-time reduction fromig treelike. TherR = r¢(T') for some treel’, and since't(T)|L C

P-COLORED-SLCS 10 P-SMAST-D which maps an instance ,.;(r) py definition of the symbols,,., it will follow that 7" is
(C,k,q) of P-COLORED-SLCS to an instance7,k +2,2¢ + 1)  an agreement supertree for by Proposition 3.

of P-SAST-D. . In a second step) checks that the labelp, and .

Proof: ~ Let I = (C,kq) be an instance of gre consistent. First, it checks that the symhels, ..., p., are
P-CoLORED-SLCS, where C = {s1,..,s;} IS a collection gych thatz; < < x4, Which requiresO(q) steps. Let
on a label sel, partitioned ing setsLy, ..., L,. We construct an ; _ {z1,..,z4}, then M verifies that for eachr,y,z € L
instancel’ = (T, kl?Q/) of SMAST[k’,q] as follows. distinct with z < y < z, one of Taylzs Tozlys Tyz| is present.

« we first define the label seL’: we create new labels The machine needs to examinkq®) triples, and each triple is
20,21, .-, 2q. FOr eachi € [q], we setL; = L; U{z;}, and checked inO(¢>) time by scanning the tape. NoR = {xzy|z :
we defineL’ = {20} UL} U...ULj. T4y Quessed is a complete collection of triples without direct

o we defineT = {5,5"} U{Ty,...,T}} as follows. For each contradiction (i.e., such that for all elementsy,z € L(R),

i € [q], we defineR;, R; as follows: consider an enumerationnot zy|- and zz|y are both inR). Finally, M verifies thatR

of L} = {z1,...,am}, thenR; = rake(x1,...,zm) andR; = satisfies property (P): there ar@(¢*) quadruples to examine,
rake(zm, ..., x1). We then setS = rake(zo, R1, ..., Rg) and and each check takes tini(¢>). Overall, the machine performs
S" = rake(z0, R}, ..., Ry). For each sequencg = y1...zn ¢ = O(q") steps. m

in C, we create a tre&; = rake(zo,y1, -, Yn)-
e we setk’ =k+2andq’ =2¢+ 1.

Note that7 containsk+2 trees. Thus, the reduction is parameter-

: . . . : . [1] Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: &fing a tree
preserving. The correction of the reduction is detailed ip- A from lowest common ancestors with an application to thenoigttion

pendix IlI-B. u of relational expressions. SIAM Journal on Computibg3) (1981)
Combining the two above results we obtain: 405-421

it . ; ialoti ; [2] Xia, Y., Yang, Y.: Mining Closed and Maximal Frequent Swdes from
Proposition 2: There is a polynomial-time reduction from Databases of Labeled Rooted Trees. IEEE Transactions owlkdge
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APPENDIXI
COMPLEMENTS OF PROOF OAHEOREM 1.

We show that the proceduresCOMPATIBLE can be imple-
mented as aO(kn) time algorithm. Obviously, (i) testing if
7 = 7, is done inO(k) time, (ii) given T spanning tree of
G(T, =), constructingC is done in|T| = O(k) time, provided
we have stored a label for each edge off", (iii) given V1, Vs
partition of V, constructing the positions;, w5 is done inO(k)
time. We now justify that inO(kn) time we can perform a
connexity test orG(7, ).

The crucial point is that the algorithm tests the connexity o
the graph, by working on the intersection model®f= G(7, )
provided by the set§L(z) : = € V}. In this way, we avoid
constructing the adjacency matrix @f, which would require
O(k*n) time. We thus need to describe a connexity test for a
graphG = (V, E) given by an intersection modglS, : v € V'},
where theS, are subsets of a base setWe will justify that the
algorithm has running timé&(kn), wherek = [V| andn = |S|.

The algorithm proceeds as follows. It performs a travergal o
the graph, by starting at an arbitrary vertex V, and maintains
the following information during the traversal: (i) the g€t of
nodes already visited, (ii) a sét of edges forming a spanning
tree of G[U]. At each step, the algorithm seekfansversal edge
which is an edge: = (u,v) € E with v € U,v € U. If such an
edge is found, them is added toU, ande is added toF'. If no
such edge exists, the algorithm stops, and the graph is ctathe
if and only if U = V.

We show that using appropriate data structures, each step of
the algorithm can be done i®(n) time. For eachw € S, let

= {veV:xzeS,}. We maintain for eaclr € S, two lists
representing the set$;, = V, NU andU, = V,, nT. Initializing
these lists at the beginning of the algorithm is doneCifkn)
time. Moreover, at a given step of the algorithm: (i) we cau fin
a tranversal edge i@(n) time, (ii) we can update the structures in
O(n) time. To justify Point (i), observe that finding a transvérsa
edge amounts to find an elemente S such that both,; and
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U are non empty; if such an is found then by choosing €
Uz,v € Uy We obtain a transversal edde,v); clearly, these
operations can be performed @(n) time. To justify Point (ii),
observe that when adding a new verteto U, we need, for each
x € Sy, to addv to U, and to removey from U, which can be
performed inO(n) time by using appropriate linkage in the data
structure storing elements in a set.

Pseudo-code of algorithm 3, calledd@NECTIVITYTEST, de-
scribes this routine in detail, in the context where theivest of
V are subtrees corresponding to a positioin trees7 and the
sets{L(z) : z € V'} are the leaves of these subtrees. Note that the
forestF’ could be obtained by adding edg¢e v) to F' after line 2,
but the forest itself is not useful as for each of its edgesapallf
shared by the extremities of that edge is already identifiebpat
into the conflict set at line 1. For ease of implementation ige a
give in Algorithm 4 the variant3CoMPATIBLE* of Algorithm 1
that resorts to GNNECTIVITYTEST for deciding if a position in
a collection7 is compatible.

APPENDIXII
COMPLEMENTS OF PROOF OE.EMMA 5.
A.
(i) L(S1) N L(S2) = 0: indeed, if there was: € L(S1) N L(S2)
then we would havex € L(T;) for somei: < [k]; then
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Algorithm 3: CONNECTIVITYTEST(m, V)

Algorithm 4: ISCOMPATIBLE* ()

Input: A positionr in a collection7 of trees and the sét
of vertices of the grapl&z(7, «).
Result A tuple (B, R) where
« B is a boolean indicating whethe¥ (7, ) is
disconnected
e R asetU C V of nodes forming a connected
component when the graph is disconnected,
otherwiseR is a conflict amongr.

/* Note that the graphG(7, ) is never explicitly built */
Choose an arbitrary vertexin V and setU «— {u}
foreach ¢ € L(x) do
if £¢€ L(u) then Uy « {u} elseU; « 0
U@ — @
foreach v € V with v # « do

| if £€L(v) then Uy, —T,U{v}

C 0
while U # V do
/* Look for a transversal edge, i.e(x,v) such thatu €
Uwv¢U*
Choosef € L(r) such thatU; # 0 andU s # 0
if no suchf existsthen
return (true,U)
| of G(T,m) *
Ise
C—Ccu{f}
Chooseu € Uy andv € Uy
U~ UU{v}
foreach ¢ € L(w) do
L if v GU@ then U@ <—U¢—{’U} yUp — UgU{U}

[* U is a connected component

return (fal se,C) [* Cis a conflict */

z = ¢;i(x) <r, m;[i]. Sincex € L(T;), we must have
mli], m2[i] #L; then they are equal to distinct children ofi],
impossible.

(i) ¢; is a partial embedding of into T;:
o if z € L(S), thenz € L(S;). We conclude using the fact
that ¢; ; is a partial embedding and thai(z) = ¢, ;(z).
o if z is an internal node of with childrenz’, 2", then:
— if = € N(S;), we conclude using the fact that ; is a
partial embedding and that;(z) = ¢; ;(z).
— if 2 = r(9), with childrenz’ = r(S;), 2" = r(S2): then
* either ¢y ;(2) $2,i(z"”) =1, in which case

bi(w) =1,
either ¢1 ;(z') #L, ¢2,(z”) =L, in which case
pi(x) = ¢1,4(x");
either ¢1 ;(z') =1, ¢2,:(z"”) #L, in which case
pi(z) = ¢o,i(z");
eitherey ;(z’) #.L, ¢2,:(2”") #L, in which case these
are nodes/,y” such thaty <r. m1[i], v <r. ma[i].
Since (m1,m2) € D(w), it follows that m[:], w2 [i]
are #1 and are distinct children ofr[i], hence
¢i(z) = «[i], which implies thatp, ;(z’) <7, ¢i(z),
po.i(x") <1, ¢i(x).
(iii) ¢i(r(S)) <r, =[4]: follows from the definition ofp;(r(S))

*

Input: A position 7 in a collection7 of trees.
Result A tuple (B, C) where
« B is a boolean indicating whetheris compat-
ible
« C is a conflict amongr when the positionr is
not compatible.

if #=m, then return (true,)

if = is not reducedhen m «— 7|

V «—U;childreng, (x[i])

(disconnected, Ror) < CONNECTIVITYTEST(7,V)

if disconnected is f al se then

| return (fal se,Rcr) /*Rer is a conflict amongr*/

else

I* Rer is a connected component 67, ) */
Vi<~ Rer ; Va2 <=V — Ror

T — succy, (7) ; T2 «— succy, ()

(B1,C1) <« ISCOMPATIBLE* (7r1) ;

if By isfal se then return (f al se,C})
(B2, C2) <« |ISCOMPATIBLE* (72) ;

if By isfal se then return (fal se,Cb)
return (true,)

and from the fact tha;(r(S;)) <z, m;[d].

B.

We show thaf(r,72) € D(w). Indeed, (i) we haver; # © since
if we hadry[i] = =[i] for eachi, this would implyms[i] =L for
each:, but givenz € L(S2) there exists such thatr € L(T;),
impossible; (i) fix: € [k]:

o if 7[i] =1, then ¢;(u) =1, and we then have;(vi) =
¢i(v2) =L by definition of a partial embedding, hence
m[i] = mali] =1;

o if w[i] #£L1, theng;(u) is a node ofT;, and we have:

— either ¢;(v1),¢;(v2) #L, in which case the nodes
childz, (¢;(v1), ¢i(u)),
childr, (¢;(v2), ¢;(u)) are distinct, which implies that
m1[i], m2[] are distinct children ofr[4];
or one of ¢;(v1), #;(v2) is equal toL, in which case
the other must be equal t9;(v), which implies that
m1[i] = w[i], m2[i] =L or the symmetric case.

APPENDIXIII
COMPLEMENTARY PROOFS FOR INTRACTABILITY RESULTS

Below, given two treesl’, T, we use the notatiom” x T’
to denote thatl’ and 7’ agree. We use a similar notation for
sequences.

A. Complement for the proof of Lemma 6

Proof: The correctness of the reduction given in the main
text follows by proving that? is a positive instance of Pt8s-D
if and only if I’ is a positive instance of P-@.ORED-SLCS.
(=): suppose that is a compatible sequence f@with |s| = g.
Thens = z1...2q. Let s’ = 2] ...z, we show thats’ is a colored

compatible sequence f@r'. Clearly s’ is a colored sequence. To
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prove thats’ is a compatible sequence féf, we need to show
that:
o s’ X sy considerx,.y € L(s") N L(s},) such thatr <y y,
thenz = 2L,y = z; with i+ < j, and sincezZ <s 2z and
s ™ sp it follows that z; <s, zj, thus 2} <s;, #}, and we
obtain thatz <s1 Y
o s’ x sy the reasonlng is similar.

(«<): suppose that’ is a colored compatible sequence &t
Thens' = y;...y, with y; € L'® for eachi. Sincey; € L%, there
existsz; € L such thaty; = z!.

Note that the labels, ..., z; are pairwise distinct: ifz;, z;/
were equal (to a labet) with j < j’, then by conside/ring a
sequencs; such thatr € L(s;), we would obtainzjf <s! z;/ but
zj,l <y 2], impossible.

Let us now defines = z;...z¢, we show thats is a compatible
sequence foC. We need to show that x s,. Considerz,y €
L(s) N L(sp) such thatr < y, thenz = z;,y = 2; with i < j.
Since 2] <y zg and sinces’ x s, we obtainz} <s z; and
sincez;, z; are distinct this implieg; <s, z;, and thu <sp Y-

[ |

B. Complement for the proof of Lemma 7

Proof: The correctness of the reduction given in the
main text follows by proving that? is a positive instance of
P-CoLoRED-SLCs if and only if I’ is a positive instance of
P-SvAST-D.

(=): suppose that is a colored compatible sequengefor
C, with |s| = ¢. Thens = yj..yq, With y; € L;. Let T =
rake(zo, (21,y1), ---» (24, yq)), thenT is an agreement supertree
for 7, with |T| = ¢. Clearly, we havel’ x S andT ~ S’, since
Ril{zi,yi} = Ri|{zi,v:} = (z;,y;) for eachi € [q]. Moreover,
we haveT x T; for eachi € [k]: indeed, ifs|L(s;) = s;|L(s) =
Yiq - Yim with i1 < ... < im, then T|L(TZ) = T1|L(T) =
rake(20, Yiy s - Yiyy )-

(«): suppose thaf" is an agreement supertree f@r, with
|T| = 4. First observe thatr.(T)NL}| < 2 for eachi € [q], since
otherwise one off' x R;, T x R, would fail. Since|T| = ¢/, it
follows that we haveL(T) N L}| = 2 for eachi ¢ [q], and thus
29 € L(T). Now, for eachi € [¢] choosey; € L(T) n L} distinct
from z;, and lets = y;..y4. Then s is a colored compatible
sequence foC. Indeed, considef € [k], sinceT ~ T; we have
T|L(T;) = T;|L(T) = rake(20, Yiy» - Yi,,, ) With 41 < ... < im,
it follows that s|L(s;) = s;|L(s) = yi; ...4,,, hences x s;. N
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