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1 PROBLEM DEFINITION

This problem is a pattern matching problem on leaf-labeled trees. Each input tree is considered as
a branching pattern inducing specific groups of leaves. Given a set of input trees with identical leaf
sets, the goal is to find a largest subset of leaves on the branching pattern of which the input trees
do not disagree. A maximum compatible tree is a tree with such a leaf-set and with the branching
patterns associated to these leaves by the input trees. The Maximum Compatible Tree problem
(mct) is to find such a tree or, equivalently, its leaf set. The main motivation for this problem is
in phylogenetics, to measure the similarity between evolutionary trees, or to represent a consensus
of a set of trees. The problem was introduced in [9] and [10, under the MRST acronym]. Previous
related works concern the well-known Maximum Agreement Subtree problem (mast). Solving mast
is finding a largest subset of leaves on which all input trees exactly agree. The difference between
mast and mct, is that mast seeks a tree whose branching information is isomorphic to that of a
subtree in each of the input trees, while mct seeks a tree that contains the branching information
(i.e. groups) of a subtree of each input tree. This difference allows the tree obtained for mct to be
more informative, as it can include branching information present in one input tree but not in the
others, as long as this information is compatible with them. Both problems are equivalent when
all input trees are binary. Ganapathy and Warnow [5] were the first to give an algorithm to solve
mct in its general form. Their algorithm relies on a simple dynamic programming approach similar
to a work on mast [12] and has a running time exponential in the number of input trees and in
the maximum degree of a node in the input trees. Later, [2] proposed a fixed-parameter algorithm
using one parameter only. Approximation results have also been obtained [1, 6], the result being
low-cost polynomial-time algorithms that approximate the complement of mct within a constant
threshold.

Notations Trees considered here are evolutionary trees (phylogenies). Such a tree T has its leaf
set L(T ) in bijection with a label set and is either rooted, in which case all internal nodes have at
least two children each, or unrooted, in which case internal nodes have a degree of at least three.
Given a set L of labels and a tree T , the restriction of T to L, denoted T |L, is the tree obtained in
the following way: take the smallest induced subgraph of T connecting leaves with labels in L∩L(T ),
then remove any degree two (non-root) node to make the tree homeomorphically irreducible. Two
trees T , T ′ are isomorphic, denoted T = T ′, if and only if there is a graph isomorphism T 7→ T ′

preserving leaf labels (and the root if both trees are rooted). A tree T refines a tree T ′, denoted
T D T ′, whenever T can be transformed into T ′ by collapsing some of its internal edges (collapsing
an edge means removing it and merging its extremities). See Figure 1 for examples of these
relations between trees. Note that a tree T properly refining another tree T ′, agrees with the entire
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Figure 1: Three unrooted trees. A tree T , a tree T ′ such that T ′ = T |{a, c, e} and a tree T ′′ such
that T ′′ D T .

evolutionary history of T ′, while containing additional information absent from T ′: at least one
high degree node of T ′ is replaced in T by several nodes of lesser degree, hence T contains more
speciation events than T ′. Given a collection T = {T1, T2, . . . , Tk} of input trees with identical
leaf sets L, a tree T with leaves in L is said to be compatible with T if and only if ∀Ti ∈ T ,
T D Ti|L(T ). If there is a tree T compatible with T such that L(T ) = L, then the collection T is
said to be compatible. Knowing whether a collection is compatible is a problem for which linear-
time algorithms have been known for a long time (e.g. [8]). The Maximum Compatible Tree
problem is a natural optimization version of this problem to deal with incompatible collections of
trees.

Problem 1 (Maximum Compatible Tree – mct).
Input: A collection T of trees with the same leaf sets.
Output: A tree compatible with T having the largest number of leaves. Such a tree is denoted
MCT (T ).

See Figure 2 for an example. Note that ∀T , |MCT (T )| ≥ |MAST (T )| and that mct is equivalent
to mast when input trees are binary. Note also that instances of mct and mast can have several
optimum solutions.
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Figure 2: An incompatible collection of two input trees {T1, T2} and their maximum compatible
tree, T = MCT (T1, T2). Removing the leaf d renders the input trees compatible, hence L(T ) =
{a, b, c, e}. Here, T strictly refines T2 restricted to L(T ), which is expressed by the fact that a node
in T2 (the blue one) has its child subtrees distributed between several connected nodes of T (blue
nodes). Note also that here |MCT (T1, T2)| > |MAST (T1, T2)|.

2 KEY RESULTS

Exact algorithms

The mct problem was shown to be NP-hard on 6 trees in [9], then on 2 trees in [10]. The NP-
hardness holds as long as one of the input trees is not of bounded degree. For two bounded-degree
trees, Hein et al. mention a polynomial-time algorithm based on aligning trees. The work of



Ganapathy and Warnow [5] proposes an exponential algorithm for solving mct in the general
case. Given two trees T1, T2, they show how to compute a binary mct of any pair of subtrees
(S1 ∈ T1, S2 ∈ T2) by dynamic programming. Subtrees whose root is of high degree are handled by
considering every possible partition of the roots’s children in two sets. This leads the complexity
bound to have a term exponential in d, the maximum degree of a node in the input trees. When
dealing with k input trees, k-tuples of subtrees are considered, and the simultaneous bipartitions of
the roots’s children for k subtrees are considered. Hence, the complexity bound is also exponential
in k.

Theorem 1. [5] Let L be a set of n leaves. The mct problem for a collection of k rooted trees on
L in which each tree has degree at most d + 1, can be solved in O(22kdnk) time.

The result easily extends to unrooted trees by considering each of the n leaves in turn as a
possible root for all trees of the collection.

Theorem 2. [5] Given a collection of k unrooted trees with degree at most d + 1 on an n-leaf set,
the mct problem can be solved in O(22kdnk+1).

Let T be a collection on a leaf-set L, [2] considered the following decision problem, denoted
mctp: given T and p ∈ [0, n], does |MCT (T )| ≥ n − p?

Theorem 3. [2]

1. mctp on rooted trees can be solved in O(min{3pkn, 2.27p + kn3}) time.

2. mctp on unrooted trees can be solved in O
(

(p + 1) × min{3pkn, 2.27p + kn3}
)

time.

The 3pkn term comes from an algorithm that first locates in O(kn) time a 3-leaf set S on which
the input trees conflict, then recursively obtains a maximum compatible tree T1, resp. T2, T3 for
each of the three collecions T1, resp. T2,T3 obtained by removing from the input trees a leaf in S,
and last returning the Ti such that |Ti| is maximum (for i ∈ [1, 3]). The 2.27p + kn3 term comes
from an algorithm using a reduction of mct to 3-hitting set. Negative results have been obtained
by Guillemot and Nicolas concerning the fixed-parameter tractability of mct wrt the maximum
degree D of the input trees.

Theorem 4. [7]

1. mct is W [1]-hard with respect to D.

2. mct can not be solved in O(No(2D/2)) time unless SNP ⊆ SE, where N denotes the input
length, i.e. N = O(kn).

The mct problem also admits a variant that deals with supertrees, i.e. trees having different
(but overlapping) sets of leaves. The resulting problem is W [2]-hard with respect to p [3].

Approximation algorithms

The idea of locating and then eliminating successively all the conflicts between the input trees has
also led to approximation algorithms for the complement version of the mct problem, denoted
cmct. Let L be the leaf set of each tree in an input collection T , cmct aims at selecting the
smallest number of leaves S ⊆ L such that the collection {Ti|(L − S) : Ti ∈ T } is compatible.

Theorem 5. [6] Given a collection T of k rooted trees on an n-leaf set L, there is a 3-approximation
algorithm for cmct that runs in O(k2n2) time.

The running time of this algorithm was later improved:



Theorem 6. [1] There is an O(kn+n2) time 3-approximation algorithm for cmct on a collection
of k rooted trees with n leaves.

Note also that working on rooted or unrooted trees does not change the achievable approxima-
tion threshold for cmct [1].

3 APPLICATIONS

In bioinformatics, the mct problem (and similarly mast) is used to reach different practical goals.
The first motivation is to measure the similarity of a set of trees. These trees can represent RNA
secondary structures [10, 11] or estimates of a phylogeny inferred from different datasets composed
of molecular sequences (e.g. genes) [13]. The gap between the size of a maximum compatible tree
and the number of input leaves indicates the degree of disimilarity of the input trees. Concerning
the phylogenetic applications, quite often some edges of the trees inferred from the datasets have
been collapsed due to unsufficient statistical support, resulting in some higher-degree nodes in the
trees considered by mct. Each such node does not indicate a multi-speciation event but rather the
uncertainty with respect to the branching pattern to be chosen for its child subtrees. In such a
situation, the mct problem is to be preferred to mast, as it correctly handles high degree nodes,
enabling them to be resolved according to branching information present in other input trees. As a
result, more leaves are conserved in the output tree, hence a larger degree of similarity is detected
between the input trees. Note also that a low similarity value between the input trees can be due
to horizontal gene transfers. When these events are not too numerous, identifying species subject
to such effects is done by first suspecting leaves discarded from a maximum compatible tree.

The shape of a maximum compatible tree, i.e. not just its size, also has an application in sys-
tematic biology to obtain a consensus of a set of phylogenies that are optimal for some tree-building
criterion. For instance, the maximum parsimony and maximum likelihood criteria can provide sev-
eral dozens (sometimes hundreds) of optimal or near-optimal trees. In practice, these trees are
first grouped into islands of neighbouring trees, and a consensus tree is obtained for each island
by resorting to a classical consensus tree method, e.g. the majority-rule or strict consensus. The
trees representing the islands form a collection of which a consensus is then sought. However, con-
sensus methods keeping all input leaves tend to create trees that lack of resolution. An alternative
approach lies in proposing a representative tree that contains a largest possible subset of leaves on
the position of which the trees of the collection agree. Again, mct is more suited than mast as
the input trees can contain some high-degree nodes, with the same meaning as discussed above.

4 OPEN PROBLEMS

A direction for future work would be to examine the variant of mct where some leaves are imposed
in the output tree. This question arises when a biologist wants to ensure that the species central to
his study are contained in the output tree. For mast on two trees, this constrained variant of the
problem was shown in a natural way to be of the same complexity as the regular version [4]. For
mct however, such a constraint can lead to several optimization problems that need to be sorted
out. Another important work to be done is a set of experiments to measure the range of parameters
for which the algorithms proposed to solve or approximate mct are useful.

5 URL to CODE

A beta-version of a Perl program can be asked to the author of this entry.



6 CROSS REFERENCES

Maximum Agreement Subtree (of 2 Binary Trees) Entry 00178, Maximum Agreement Subtree (of
3 or More Trees) Entry 00177.

7 RECOMMENDED READING

[1] V. Berry, S. Guillemot, F. Nicolas, and C. Paul, On the approximation of computing
evolutionary trees, in Proc. of the 11th Annual International Conference on Computing and
Combinatorics (COCOON’05), L. Wang, ed., vol. 3595 of LNCS, Springer, 2005, pp. 115–125.

[2] V. Berry and F. Nicolas, Improved parametrized complexity of the maximum agreement
subtree and maximum compatible tree problems, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 3 (2006), pp. 289–302.

[3] , Maximum agreement and compatible supertrees, Journal of Discrete Algorithms, to
appear (2006).

[4] V. Berry, Z. S. Peng, and H.-F. Ting, From constrained to unconstrained maximum
agreement subtree in linear time, Algorithmica, to appear (2006).

[5] G. Ganapathy and T. J. Warnow, Finding a maximum compatible tree for a bounded
number of trees with bounded degree is solvable in polynomial time, in Proc. of the 1st In-
ternational Workshop on Algorithms in Bioinformatics (WABI’01), O. Gascuel and B. M. E.
Moret, eds., 2001, pp. 156–163.

[6] , Approximating the complement of the maximum compatible subset of leaves of k trees,
in Proc. of the 5th International Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX’02), 2002, pp. 122–134.

[7] S. Guillemot and F. Nicolas, Solving the maximum agreement subtree and the maximum
compatible tree problems on many bounded degree trees, in Proc. of the 17th Combinatorial
Pattern Matching Symposium (CPM’06), M. Lewenshtein and G. Valiente, eds., vol. 4009 of
LNCS, Springer-Verlag, 2006, pp. 165–176.

[8] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks, 21 (1991),
pp. 19–28.

[9] A. M. Hamel and M. A. Steel, Finding a maximum compatible tree is NP-hard for
sequences and trees, Applied Mathematics Letters, 9 (1996), pp. 55–59.

[10] J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary
trees, Discrete Applied Mathematics, 71 (1996), pp. 153–169.

[11] T. Jiang, L. Wang, and K. Zhang, Alignment of trees - an alternative to tree edit,
Theoretical Computer Science, 143 (1995), pp. 137–148.

[12] M. A. Steel and T. J. Warnow, Kaikoura tree theorems: Computing the maximum agree-
ment subtree, Information Processing Letters, 48 (1993), pp. 77–82.

[13] D. Swofford, G. Olsen, P. Wadell, and D. Hillis, Phylogenetic inference, in Molecular
systematics (2nd edition), D. Hillis, D. Moritz, and B. Mable, eds., Sunderland, USA, 1996,
pp. 407–514.


