A. Amir and D. Keselman, Maximum Agreement Subtree in a Set of Evolutionary Trees: Metrics and Efficient Algorithms, SIAM Journal on Computing, vol.26, issue.6, pp.1656-1669, 1997.
DOI : 10.1137/S0097539794269461

T. Berger-wolf, Consensus and agreement of phylogenetic trees, 4th Workshop on Algorithms in Bioinformatics (WABI). LNCS, pp.350-361, 2004.

V. Berry and F. Nicolas, Maximum agreement and compatible supertrees, Proceedings of The 15th Annual Symposium on Combinatorial Pattern Matching (CPM'04), S. C, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108782

V. Berry and F. Nicolas, Improved parametrized complexity and approximation of the maximum agreement subtree and maximum compatible tree problems, IEEE/ACM Transactions in Computational Biology and Bioinformatics

D. Bryant, Building trees, hunting for trees and comparing trees: theory and method in phylogenetic analysis, 1997.

D. Bryant, M. Steel, M. , and A. , The size of a maximum agreement subtree for random binary trees, pp.55-66, 1983.

R. Cole, M. Farach-colton, R. Hariharan, T. M. Przytycka, and M. Thorup, ) Algorithm for the Maximum Agreement Subtree Problem for Binary Trees, SIAM Journal on Computing, vol.30, issue.5, pp.1385-1404, 2001.
DOI : 10.1137/S0097539796313477

R. G. Downey, M. R. Fellows, and U. Stege, Computational tractability: The view from mars, Bulletin of the European Association for Theoretical Computer Science, vol.69, pp.73-97, 1999.

M. Farach, T. M. Przytycka, and M. Thorup, On the agreement of many trees, Information Processing Letters, vol.55, issue.6, pp.297-301, 1995.
DOI : 10.1016/0020-0190(95)00110-X

G. Ganapathy and T. J. Warnow, Approximating the Complement of the Maximum Compatible Subset of Leaves of k Trees, Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX'02, pp.122-134, 2002.
DOI : 10.1007/3-540-45753-4_12

G. Ganapathysaravanabavan and T. J. Warnow, Finding a Maximum Compatible Tree for a Bounded Number of Trees with Bounded Degree Is Solvable in Polynomial Time, Proceedings of the 1st International Workshop on Algorithms in Bioinformatics (WABI'01), pp.156-163, 2001.
DOI : 10.1007/3-540-44696-6_12

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

A. Gupta and N. Nishimura, Finding Largest Subtrees and Smallest Supertrees, Algorithmica, vol.21, issue.2, pp.183-210, 1998.
DOI : 10.1007/PL00009212

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. M. Hamel and M. A. Steel, Finding a maximum compatible tree is NP-hard for sequences and trees, Applied Mathematics Letters, vol.9, issue.2, pp.55-59, 1996.
DOI : 10.1016/0893-9659(96)00012-2

URL : http://doi.org/10.1016/0893-9659(96)00012-2

D. Harel and R. E. Tarjan, Fast Algorithms for Finding Nearest Common Ancestors, SIAM Journal on Computing, vol.13, issue.2, pp.338-355, 1984.
DOI : 10.1137/0213024

J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics, vol.71, pp.1-3, 1996.

M. Kao, T. W. Lam, W. Sung, and H. Ting, A Decomposition Theorem for MaximumWeight Bipartite Matchings with Applications to Evolutionary Trees, Proceedings of the 7th Annual European Symposium on Algorithms (ESA'99, pp.438-449, 1999.
DOI : 10.1007/3-540-48481-7_38

M. Kao, T. W. Lam, W. Sung, and H. Ting, An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings, Journal of Algorithms, vol.40, issue.2, pp.212-233, 2001.
DOI : 10.1006/jagm.2001.1163

URL : http://arxiv.org/abs/cs/0101010

F. Mcmorris, D. Meronik, and D. Neumann, A View of Some Consensus Methods for Trees, pp.122-125, 1983.
DOI : 10.1007/978-3-642-69024-2_18

N. Nishimura, P. Ragde, T. , and D. , Smaller Kernels for Hitting Set Problems of Constant Arity, International Workshop on Parameterized and Exact Computation (IW- PEC). Number 3162 in Lecture Notes in Computer Science, pp.121-126, 2004.
DOI : 10.1007/978-3-540-28639-4_11

M. A. Steel and T. J. Warnow, Kaikoura tree theorems: Computing the maximum agreement subtree, Information Processing Letters, vol.48, issue.2, pp.77-82, 1993.
DOI : 10.1016/0020-0190(93)90181-8